Targeting the Fibroblast Growth Factor Receptor (FGFR) in Advanced Cholangiocarcinoma: Clinical Trial Progress and Future Considerations
Abstract
:Simple Summary
Abstract
1. Introduction
2. Molecular Landscape of Cholangiocarcinoma
3. Fibroblast Growth Factor Receptor
4. Clinical Development of FGFR Inhibitors in Advanced Cholangiocarcinoma
4.1. Pemigatinib
4.2. Infigratinib
4.3. Derazantinib
4.4. Debio 1347
4.5. Futibatinib (TAS-120)
4.6. Erdafitinib
5. Discussion and Future Considerations
5.1. Side Effects of FGFR Inhibitors
5.2. Molecular Scope of FGFR Inhibitors in CCA
5.3. Molecular Profiling to Identify Appropriate Candidates
5.4. Primary and Secondary Resistance to FGFR Inhibitors
5.5. Biomarkers to Guide FGFR-Directed Therapies
5.6. Other Avenues to Exploit Therapeutic Potential
5.7. Testing FGFR Inhibitors in the First-Line Setting
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bergquist, A.; von Seth, E. Epidemiology of Cholangiocarcinoma. Best Pract. Res. Clin. Gastroenterol. 2015, 29, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, V.; Semeraro, R.; Torrice, A.; Gatto, M.; Napoli, C.; Bragazzi, M.C.; Gentile, R.; Alvaro, D. Intra-hepatic and Extra-hepatic Cholangiocarcinoma: New Insight into Epidemiology and Risk Factors. World J. Gastrointest. Oncol. 2010, 2, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Fitzmaurice, C.; Dicker, D.; Pain, A.; Hamavid, H.; Moradi-Lakeh, M.; MacIntyre, M.F.; Allen, C.; Hansen, G.; Woodbrook, R.; Wolfe, C.; et al. The Global Burden of Cancer 2013. JAMA Oncol. 2015, 1, 505–527. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Tavolari, S.; Brandi, G. Cholangiocarcinoma: Epidemiology and Risk factors. Liver Int. 2019, 39 (Suppl. 1), 19–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, A.; Dixon, E. Epidemiology and Risk Factors: Intrahepatic cholangiocarcinoma. Hepatobiliary Surg. Nutr. 2017, 6, 101–104. [Google Scholar] [CrossRef] [Green Version]
- Banales, J.M.; Cardinale, V.; Carpino, G.; Marzioni, M.; Andersen, J.B.; Invernizzi, P.; Lind, G.E.; Folseraas, T.; Forbes, S.J.; Fouassier, L.; et al. Expert Consensus Document: Cholangiocarcinoma: Current Knowledge and Future Perspectives Consensus Statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 261–280. [Google Scholar] [CrossRef] [PubMed]
- Valle, J.; Wasan, H.; Palmer, D.H.; Cunningham, D.; Anthoney, A.; Maraveyas, A.; Madhusudan, S.; Iveson, T.; Hughes, S.; Pereira, S.P.; et al. Cisplatin Plus Gemcitabine vs. Gemcitabine for Biliary Tract Cancer. N. Engl. J. Med. 2010, 362, 1273–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamarca, A.; Palmer, D.H.; Wasan, H.S.; Ross, P.J.; Ma, Y.T.; Arora, A.; Falk, S.; Gillmore, R.; Wadsley, J.; Patel, K.; et al. ABC-06 | A Randomised Phase III, Multi-centre, Open-label Study of Active Symptom Control (ASC) Alone or ASC with Oxaliplatin/5-FU Chemotherapy (ASC+mFOLFOX) for Patients (Pts) with Locally Advanced/Metastatic Biliary Tract Cancers (ABC) Previously-treated with Cisplatin/Gemcitabine (CisGem) Chemotherapy. J. Clin. Oncol. 2019, 37, 4003. [Google Scholar] [CrossRef]
- Farshidfar, F.; Zheng, S.; Gingras, M.C.; Newton, Y.; Shih, J.; Robertson, A.G.; Hinoue, T.; Hoadley, K.A.; Gibb, E.A.; Roszik, J.; et al. Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles. Cell Rep. 2017, 18, 2780–2794. [Google Scholar] [CrossRef] [PubMed]
- Lowery, M.A.; Ptashkin, R.; Jordan, E.; Berger, M.F.; Zehir, A.; Capanu, M.; Kemeny, N.E.; O’Reilly, E.M.; El-Dika, I.; Jarnagin, W.R.; et al. Comprehensive Molecular Profiling of Intrahepatic and Extrahepatic Cholangiocarcinomas: Potential Targets for Intervention. Clin. Cancer Res. 2018, 24, 4154–4161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nepal, C.; O’Rourke, C.J.; Oliveira, D.; Taranta, A.; Shema, S.; Gautam, P.; Calderaro, J.; Barbour, A.; Raggi, C.; Wennerberg, K.; et al. Genomic Perturbations Reveal Distinct Regulatory Networks in Intrahepatic Cholangiocarcinoma. Hepatology 2018, 68, 949–963. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, H.; Arai, Y.; Totoki, Y.; Shirota, T.; Elzawahry, A.; Kato, M.; Hama, N.; Hosoda, F.; Urushidate, T.; Ohashi, S.; et al. Genomic Spectra of Biliary Tract Cancer. Nat. Genet. 2015, 47, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Jusakul, A.; Cutcutache, I.; Yong, C.H.; Lim, J.Q.; Huang, M.N.; Padmanabhan, N.; Nellore, V.; Kongpetch, S.; Ng, A.W.T.; Ng, L.M.; et al. Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma. Cancer Discov. 2017, 7, 1116–1135. [Google Scholar] [CrossRef] [Green Version]
- Andersen, J.B.; Spee, B.; Blechacz, B.R.; Avital, I.; Komuta, M.; Barbour, A.; Conner, E.A.; Gillen, M.C.; Roskams, T.; Roberts, L.R.; et al. Genomic and Genetic Characterization of Cholangiocarcinoma Identifies Therapeutic Targets for Tyrosine Kinase Inhibitors. Gastroenterology 2012, 142, 1021–1031.e1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borad, M.J.; Champion, M.D.; Egan, J.B.; Liang, W.S.; Fonseca, R.; Bryce, A.H.; McCullough, A.E.; Barrett, M.T.; Hunt, K.; Patel, M.D.; et al. Integrated Genomic Characterization Reveals Novel, Therapeutically Relevant Drug Targets in FGFR and EGFR Pathways in Sporadic Intrahepatic Cholangiocarcinoma. PLoS Genet. 2014, 10, e1004135. [Google Scholar] [CrossRef] [PubMed]
- Chan-On, W.; Nairismägi, M.L.; Ong, C.K.; Lim, W.K.; Dima, S.; Pairojkul, C.; Lim, K.H.; McPherson, J.R.; Cutcutache, I.; Heng, H.L.; et al. Exome Sequencing Identifies Distinct Mutational Patterns in Liver Fluke-related and Non-infection-related Bile Duct Cancers. Nat. Genet. 2013, 45, 1474–1478. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.S.; Wang, K.; Gay, L.; Al-Rohil, R.; Rand, J.V.; Jones, D.M.; Lee, H.J.; Sheehan, C.E.; Otto, G.A.; Palmer, G.; et al. New Routes to Targeted Therapy of Intrahepatic Cholangiocarcinomas Revealed by Next-generation Sequencing. Oncologist 2014, 19, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sia, D.; Hoshida, Y.; Villanueva, A.; Roayaie, S.; Ferrer, J.; Tabak, B.; Peix, J.; Sole, M.; Tovar, V.; Alsinet, C.; et al. Integrative Molecular Analysis of Intrahepatic Cholangiocarcinoma Reveals 2 Classes That Have Different Outcomes. Gastroenterology 2013, 144, 829–840. [Google Scholar] [CrossRef] [Green Version]
- Sia, D.; Losic, B.; Moeini, A.; Cabellos, L.; Hao, K.; Revill, K.; Bonal, D.; Miltiadous, O.; Zhang, Z.; Hoshida, Y.; et al. Massive Parallel Sequencing Uncovers Actionable FGFR2-PPHLN1 Fusion and ARAF Mutations in Intrahepatic Cholangiocarcinoma. Nat. Commun. 2015, 6, 6087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, S.; Li, J.; Zhou, H.; Frech, C.; Jiang, X.; Chu, J.S.; Zhao, X.; Li, Y.; Li, Q.; Wang, H.; et al. Mutational Landscape of Intrahepatic Cholangiocarcinoma. Nat. Commun. 2014, 5, 5696. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Macarulla, T.; Javle, M.M.; Kelley, R.K.; Lubner, S.J.; Adeva, J.; Cleary, J.M.; Catenacci, D.V.; Borad, M.J.; Bridgewater, J.; et al. Ivosidenib in IDH1-mutant, Chemotherapy-refractory Cholangiocarcinoma (ClarIDHy): A Multicentre, Randomised, Double-blind, Placebo-controlled, Phase 3 Study. Lancet Oncol. 2020, 21, 796–807. [Google Scholar] [CrossRef]
- Katoh, M. Fibroblast Growth Factor Receptors as Treatment Targets in Clinical Oncology. Nat. Rev. Clin. Oncol. 2019, 16, 105–122. [Google Scholar] [CrossRef] [PubMed]
- Eswarakumar, V.P.; Lax, I.; Schlessinger, J. Cellular Signaling by Fibroblast Growth Factor Receptors. Cytokine Growth Factor Rev. 2005, 16, 139–149. [Google Scholar] [CrossRef]
- Hallinan, N.; Finn, S.; Cuffe, S.; Rafee, S.; O’Byrne, K.; Gately, K. Targeting the Fibroblast Growth Factor Receptor Family in Cancer. Cancer Treat. Rev. 2016, 46, 51–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goyal, L.; Shi, L.; Liu, L.Y.; Fece de la Cruz, F.; Lennerz, J.K.; Raghavan, S.; Leschiner, I.; Elagina, L.; Siravegna, G.; Ng, R.W.S.; et al. TAS-120 Overcomes Resistance to ATP-Competitive FGFR Inhibitors in Patients with FGFR2 Fusion-Positive Intrahepatic Cholangiocarcinoma. Cancer Discov. 2019, 9, 1064–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Churi, C.R.; Shroff, R.; Wang, Y.; Rashid, A.; Kang, H.C.; Weatherly, J.; Zuo, M.; Zinner, R.; Hong, D.; Meric-Bernstam, F.; et al. Mutation Profiling in Cholangiocarcinoma: Prognostic and Therapeutic Implications. PLoS ONE 2014, 9, e115383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, R.P.; Barr Fritcher, E.G.; Pestova, E.; Schulz, J.; Sitailo, L.A.; Vasmatzis, G.; Murphy, S.J.; McWilliams, R.R.; Hart, S.N.; Halling, K.C.; et al. Fibroblast Growth Factor Receptor 2 Translocations in Intrahepatic Cholangiocarcinoma. Hum. Pathol. 2014, 45, 1630–1638. [Google Scholar] [CrossRef] [PubMed]
- Arai, Y.; Totoki, Y.; Hosoda, F.; Shirota, T.; Hama, N.; Nakamura, H.; Ojima, H.; Furuta, K.; Shimada, K.; Okusaka, T.; et al. Fibroblast Growth Factor Receptor 2 Tyrosine Kinase Fusions Define a Unique Molecular Subtype of Cholangiocarcinoma. Hepatology 2014, 59, 1427–1434. [Google Scholar] [CrossRef] [PubMed]
- Javle, M.; Bekaii-Saab, T.; Jain, A.; Wang, Y.; Kelley, R.K.; Wang, K.; Kang, H.C.; Catenacci, D.; Ali, S.; Krishnan, S.; et al. Biliary Cancer: Utility of Next-generation Sequencing for Clinical Management. Cancer 2016, 122, 3838–3847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, A.; Borad, M.J.; Kelley, R.K.; Wang, Y.; Abdel-Wahab, R.; Meric-Bernstam, F.; Baggerly, K.A.; Kaseb, A.O.; Al-shamsi, H.O.; Ahn, D.H.; et al. Cholangiocarcinoma With FGFR Genetic Aberrations: A Unique Clinical Phenotype. JCO Precis. Oncol. 2018, 1–12. [Google Scholar] [CrossRef]
- Silverman, I.M.; Hollebecque, A.; Friboulet, L.; Owens, S.; Newton, R.C.; Zhen, H.; Féliz, L.; Zecchetto, C.; Melisi, D.; Burn, T.C. Clinicogenomic Analysis of FGFR2-Rearranged Cholangiocarcinoma Identifies Correlates of Response and Mechanisms of Resistance to Pemigatinib. Cancer Discov. 2021, 11, 326. [Google Scholar] [CrossRef]
- Li, F.; Peiris, M.N.; Donoghue, D.J. Functions of FGFR2 Corrupted by Translocations in Intrahepatic Cholangiocarcinoma. Cytokine Growth Factor Rev. 2020, 52, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-M.; Su, F.; Kalyana-Sundaram, S.; Khazanov, N.; Ateeq, B.; Cao, X.; Lonigro, R.J.; Vats, P.; Wang, R.; Lin, S.-F.; et al. Identification of Targetable FGFR Gene Fusions in Diverse Cancers. Cancer Discov. 2013, 3, 636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abou-Alfa, G.K.; Sahai, V.; Hollebecque, A.; Vaccaro, G.; Melisi, D.; Al-Rajabi, R.; Paulson, A.S.; Borad, M.J.; Gallinson, D.; Murphy, A.G.; et al. Pemigatinib for Previously Treated, Locally Advanced or Metastatic Cholangiocarcinoma: A Multicentre, Open-label, Phase 2 Study. Lancet Oncol. 2020, 21, 671–684. [Google Scholar] [CrossRef]
- Javle, M.M.; Roychowdhury, S.; Kelley, R.K.; Sadeghi, S.; Macarulla, T.; Waldschmidt, D.T.; Goyal, L.; Borbath, I.; El-Khoueiry, A.B.; Yong, W.-P.; et al. Final Results from a Phase II Study of Infigratinib (BGJ398), an FGFR-selective Tyrosine Kinase Inhibitor, in Patients with Previously Treated Advanced Cholangiocarcinoma Harboring an FGFR2 Gene Fusion or Rearrangement. J. Clin. Oncol. 2021, 39, 265. [Google Scholar] [CrossRef]
- Javle, M.; Lowery, M.; Shroff, R.T.; Weiss, K.H.; Springfeld, C.; Borad, M.J.; Ramanathan, R.K.; Goyal, L.; Sadeghi, S.; Macarulla, T.; et al. Phase II Study of BGJ398 in Patients With FGFR-Altered Advanced Cholangiocarcinoma. J. Clin. Oncol. 2018, 36, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Javle, M.; Kelley, R.K.; Roychowdhury, S.; Weiss, K.H.; Abou-Alfa, G.K.; Macarulla, T.; Sadeghi, S.; Waldschmidt, D.; Zhu, A.X.; Goyal, L.; et al. AB051. P-19. A Phase II Study of Infigratinib (BGJ398) in Previously-treated Advanced Cholangiocarcinoma Containing FGFR2 Fusions. Hepatobiliary Surg. Nutr. 2019, 8, AB051. [Google Scholar] [CrossRef]
- Mazzaferro, V.; El-Rayes, B.F.; Droz Dit Busset, M.; Cotsoglou, C.; Harris, W.P.; Damjanov, N.; Masi, G.; Rimassa, L.; Personeni, N.; Braiteh, F.; et al. Derazantinib (ARQ 087) in Advanced or Inoperable FGFR2 Gene Fusion-positive Intrahepatic Cholangiocarcinoma. Br. J. Cancer 2019, 120, 165–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Droz Dit Busset, M.; Braun, S.; El-Rayes, B.; Harris, W.P.; Damjanov, N.; Masi, G.; Rimassa, L.; Bhoori, S.; Niger, M.; Personeni, N.; et al. 721P - Efficacy of Derazantinib (DZB) in Patients (Pts) with Intrahepatic Cholangiocarcinoma (iCCA) Expressing FGFR2-fusion or FGFR2 Mutations/Amplifications. Ann. Oncol. 2019, 30, v276–v277. [Google Scholar] [CrossRef]
- Ng, M.C.H.; Goyal, L.; Bang, Y.-J.; Oh, D.-Y.; Chao, T.-Y.; Cleary, J.M.; Voss, M.H.; Meric-Bernstam, F.; Iyer, G.; Heist, R.S.; et al. AB065. P-36. Debio 1347 in Patients with Cholangiocarcinoma Harboring an Gene Alteration: Preliminary Results. Hepatobiliary Surg. Nutr. 2019, 8. [Google Scholar] [CrossRef]
- Voss, M.H.; Hierro, C.; Heist, R.S.; Cleary, J.M.; Meric-Bernstam, F.; Tabernero, J.; Janku, F.; Gandhi, L.; Iafrate, A.J.; Borger, D.R.; et al. A Phase I, Open-Label, Multicenter, Dose-escalation Study of the Oral Selective FGFR Inhibitor Debio 1347 in Patients with Advanced Solid Tumors Harboring FGFR Gene Alterations. Clin. Cancer Res. 2019, 25, 2699–2707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meric-Bernstam, F.; Arkenau, H.; Tran, B.; Bahleda, R.; Kelley, R.; Hierro, C.; Ahn, D.; Zhu, A.; Javle, M.; Winkler, R. O-001 Efficacy of TAS-120, an irreversible Fibroblast Growth Factor Receptor (FGFR) inhibitor, in cholangiocarcinoma patients with FGFR pathway alterations who were previously treated with chemotherapy and other FGFR inhibitors. Ann. Oncol. 2018, 29, v100. [Google Scholar] [CrossRef]
- Furuse, J.; Goyal, L.; Meric-Bernstam, F.; Hollebecque, A.; Valle, J.W.; Morizane, C.; Karasic, T.B.; Abrams, T.A.; Kelley, R.K.; Cassier, P.A.; et al. 116MO Efficacy, Safety, and Quality of Life (QoL) with Futibatinib in Patients (Pts) with Intrahepatic Cholangiocarcinoma (iCCA) Harboring FGFR2 Fusions/Rearrangements: FOENIX-CCA2. Ann. Oncol. 2020, 31, S1288–S1289. [Google Scholar] [CrossRef]
- Bridgewater, J.; Meric-Bernstam, F.; Hollebecque, A.; Valle, J.W.; Morizane, C.; Karasic, T.; Abrams, T.; Furuse, J.; Kelley, R.K.; Cassier, P.; et al. 54P Efficacy and Safety of Futibatinib in Intrahepatic Cholangiocarcinoma (iCCA) Harboring FGFR2 Fusions/Other Rearrangements: Subgroup Analyses of a Phase II Study (FOENIX-CCA2). Ann. Oncol. 2020, 31, S261–S262. [Google Scholar] [CrossRef]
- Soria, J.-C.; Strickler, J.H.; Govindan, R.; Chai, S.; Chan, N.; Quiroga-Garcia, V.; Bahleda, R.; Hierro, C.; Zhong, B.; Gonzalez, M.; et al. Safety and Activity of the Pan-fibroblast Growth Factor Receptor (FGFR) Inhibitor Erdafitinib in Phase 1 Study Patients (Pts) with Molecularly Selected Advanced Cholangiocarcinoma (CCA). J. Clin. Oncol. 2017, 35, 4074. [Google Scholar] [CrossRef]
- Bahleda, R.; Italiano, A.; Hierro, C.; Mita, A.; Cervantes, A.; Chan, N.; Awad, M.; Calvo, E.; Moreno, V.; Govindan, R.; et al. Multicenter Phase I Study of Erdafitinib (JNJ-42756493), Oral Pan-Fibroblast Growth Factor Receptor Inhibitor, in Patients with Advanced or Refractory Solid Tumors. Clin. Cancer Res. 2019, 25, 4888–4897. [Google Scholar] [CrossRef]
- Park, J.O.; Feng, Y.-H.; Chen, Y.-Y.; Su, W.-C.; Oh, D.-Y.; Shen, L.; Kim, K.-P.; Liu, X.; Bai, Y.; Liao, H.; et al. Updated Results of a Phase IIa Study to Evaluate the Clinical Efficacy and Safety of Erdafitinib in Asian Advanced Cholangiocarcinoma (CCA) Patients with FGFR Alterations. J. Clin. Oncol. 2019, 37, 4117. [Google Scholar] [CrossRef]
- Javle, M.M.; Shaib, W.L.; Braun, S.; Engelhardt, M.; Borad, M.J.; Abou-Alfa, G.K.; Boncompagni, A.; Friedmann, S.; Gahlemann, C.G. FIDES-01, a Phase II Study of Derazantinib in Patients with Unresectable Intrahepatic Cholangiocarcinoma (iCCA) and FGFR2 Fusions and Mutations or Amplifications (M/A). J. Clin. Oncol. 2020, 38, TPS597. [Google Scholar] [CrossRef]
- Droz Dit Busset, M.; Shaib, W.L.; Harris, W.P.; Damjanov, N.; Borad, M.; Vogel, A.; Bridgewater, J.A.; Sellmann, L.; Dadduzio, V.; Borner, M.; et al. 45P Efficacy of Derazantinib in Intrahepatic Cholangiocarcinoma Patients with FGFR2 Mutations or Amplifications: Pooled Analysis of Clinical Trials and Early Access Programs. Ann. Oncol. 2020, 31, S1231. [Google Scholar] [CrossRef]
- Loriot, Y.; Necchi, A.; Park, S.H.; Garcia-Donas, J.; Huddart, R.; Burgess, E.; Fleming, M.; Rezazadeh, A.; Mellado, B.; Varlamov, S.; et al. Erdafitinib in Locally Advanced or Metastatic Urothelial Carcinoma. N. Engl. J. Med. 2019, 381, 338–348. [Google Scholar] [CrossRef]
- Pemazyre (Pemigatinib) [Package Insert]; Incyte Corporation: Wilmington, DE, USA, 2020.
- Mahipal, A.; Tella, S.H.; Kommalapati, A.; Yu, J.; Kim, R. Prevention and Treatment of FGFR Inhibitor-associated Toxicities. Crit. Rev. Oncol. Hematol. 2020, 155, 103091. [Google Scholar] [CrossRef] [PubMed]
- Saborowski, A.; Lehmann, U.; Vogel, A. FGFR Inhibitors in Cholangiocarcinoma: What’s Now and What’s Next? Ther. Adv. Med. Oncol. 2020, 12, 1758835920953293. [Google Scholar] [CrossRef] [PubMed]
- FDA Grants Accelerated Approval to Pemigatinib for Cholangiocarcinoma with an FGFR2 Rearrangement or Fusion. FDA. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-pemigatinib-cholangiocarcinoma-fgfr2-rearrangement-or-fusion (accessed on 14 December 2020).
- FoundationOne CDx [Technical Information]; Foundation Medicine, Inc.: Cambridge, MA, USA, 2020.
- De Luca, A.; Esposito Abate, R.; Rachiglio, A.M.; Maiello, M.R.; Esposito, C.; Schettino, C.; Izzo, F.; Nasti, G.; Normanno, N. FGFR Fusions in Cancer: From Diagnostic Approaches to Therapeutic Intervention. Int. J. Mol. Sci. 2020, 21, 6856. [Google Scholar] [CrossRef] [PubMed]
- Benayed, R.; Offin, M.; Mullaney, K.; Sukhadia, P.; Rios, K.; Desmeules, P.; Ptashkin, R.; Won, H.; Chang, J.; Halpenny, D.; et al. High Yield of RNA Sequencing for Targetable Kinase Fusions in Lung Adenocarcinomas with No Mitogenic Driver Alteration Detected by DNA Sequencing and Low Tumor Mutation Burden. Clin. Cancer Res. 2019, 25, 4712. [Google Scholar] [CrossRef]
- Beaubier, N.; Tell, R.; Lau, D.; Parsons, J.R.; Bush, S.; Perera, J.; Sorrells, S.; Baker, T.; Chang, A.; Michuda, J.; et al. Clinical Validation of the Tempus xT Next-generation Targeted Oncology Sequencing Assay. Oncotarget 2019, 10, 2384–2396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caris Life Sciences. Product Pipeline. Available online: https://www.carislifesciences.com/product-pipeline/ (accessed on 11 March 2021).
- Kobayashi, S.; Boggon, T.J.; Dayaram, T.; Jänne, P.A.; Kocher, O.; Meyerson, M.; Johnson, B.E.; Eck, M.J.; Tenen, D.G.; Halmos, B. EGFR Mutation and Resistance of Non–Small-Cell Lung Cancer to Gefitinib. N. Engl. J. Med. 2005, 352, 786–792. [Google Scholar] [CrossRef]
- Goyal, L.; Saha, S.K.; Liu, L.Y.; Siravegna, G.; Leshchiner, I.; Ahronian, L.G.; Lennerz, J.K.; Vu, P.; Deshpande, V.; Kambadakone, A.; et al. Polyclonal Secondary FGFR2 Mutations Drive Acquired Resistance to FGFR Inhibition in Patients with FGFR2 Fusion-Positive Cholangiocarcinoma. Cancer Discov. 2017, 7, 252–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollebecque, A.; Silverman, I.; Owens, S.; Féliz, L.; Lihou, C.; Zhen, H.; Newton, R.; Burn, T.; Melisi, D. 720P Comprehensive Genomic Profiling and Clinical Outcomes in Patients (Pts) with Fibroblast Growth Factor Receptor Rearrangement-positive (FGFR2+) Cholangiocarcinoma (CCA) Treated with Pemigatinib in the Fight-202 Trial. Ann. Oncol. 2019, 30, v276. [Google Scholar] [CrossRef]
- Wu, D.; Guo, M.; Min, X.; Dai, S.; Li, M.; Tan, S.; Li, G.; Chen, X.; Ma, Y.; Li, J.; et al. LY2874455 Potently Inhibits FGFR Gatekeeper Mutants and Overcomes Mutation-based Resistance. Chem. Commun. 2018, 54, 12089–12092. [Google Scholar] [CrossRef] [PubMed]
- Varghese, A.M.; Patel, J.A.A.; Janjigian, Y.Y.; Meng, F.; Selcuklu, S.D.; Zimel, C.; Hyman, D.M.; Iyer, G.; Houck-Loomis, B.; Abou-Alfa, G.K.; et al. Non-invasive Detection of Acquired Resistance to FGFR Inhibition in Patients with Cholangiocarcinoma Harboring FGFR2 Alterations. J. Clin. Oncol. 2019, 37, 4096. [Google Scholar] [CrossRef]
- Palakurthi, S.; Kuraguchi, M.; Zacharek, S.J.; Zudaire, E.; Huang, W.; Bonal, D.M.; Liu, J.; Dhaneshwar, A.; DePeaux, K.; Gowaski, M.R.; et al. The Combined Effect of FGFR Inhibition and PD-1 Blockade Promotes Tumor-Intrinsic Induction of Antitumor Immunity. Cancer Immunol. Res. 2019, 7, 1457–1471. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.; Kan, A.; Lyu, N.; Mu, L.; Han, Y.; Liu, L.; Zhang, Y.; Duan, Y.; Liao, S.; Li, S.; et al. Dual Vascular Endothelial Growth Factor Receptor and Fibroblast Growth Factor Receptor Inhibition Elicits Antitumor Immunity and Enhances Programmed Cell Death-1 Checkpoint Blockade in Hepatocellular Carcinoma. Liver Cancer 2020, 9, 338–357. [Google Scholar] [CrossRef]
- McSheehy, P.; Bachmann, F.; Forster-Gross, N.; Lecoultre, M.; Shemerly, M.E.; Roceri, M.; Reinelt, S.; Kellenberger, L.; Walker, P.R.; Lane, H. Abstract LB-C12: Derazantinib (DZB): A Dual FGFR/CSF1R-inhibitor Active in PDX-models of Urothelial Cancer. Mol. Cancer Ther. 2019, 18, LB–C12. [Google Scholar] [CrossRef]
- Cannarile, M.A.; Weisser, M.; Jacob, W.; Jegg, A.-M.; Ries, C.H.; Rüttinger, D. Colony-stimulating Factor 1 Receptor (CSF1R) Inhibitors in Cancer Therapy. J. Immunother. Cancer 2017, 5, 53. [Google Scholar] [CrossRef] [PubMed]
- Bekaii-Saab, T.S.; Valle, J.W.; Cutsem, E.V.; Rimassa, L.; Furuse, J.; Ioka, T.; Melisi, D.; Macarulla, T.; Bridgewater, J.; Wasan, H.; et al. FIGHT-302: First-line Pemigatinib vs. Gemcitabine Plus Cisplatin for Advanced Cholangiocarcinoma with FGFR2 Rearrangements. Future Oncol. 2020, 16, 2385–2399. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Borbath, I.; Cohn, A.L.; Goyal, L.; Lamarca, A.; Macarulla, T.; Oh, D.Y.; Roychowdhury, S.; Sadeghi, S.; Shroff, R.T.; et al. 1014TiP PROOF: A Multicenter, Open-label, Randomized, Phase III Trial of Infigratinib vs. Gemcitabine + Cisplatin in Patients with Advanced Cholangiocarcinoma with FGFR2 Gene Rearrangements. Ann. Oncol. 2020, 31, S701–S702. [Google Scholar] [CrossRef]
- Borad, M.J.; Bridgewater, J.A.; Morizane, C.; Shroff, R.T.; Oh, D.-Y.; Moehler, M.H.; Furuse, J.; Benhadji, K.A.; He, H.; Valle, J.W. A Phase III Study of Futibatinib (TAS-120) vs. Gemcitabine-cisplatin (Gem-cis) Chemotherapy as First-line (1L) Treatment for Patients (Pts) with Advanced (Adv) Cholangiocarcinoma (CCA) Harboring Fibroblast Growth Factor Receptor 2 (FGFR2) Gene Rearrangements (FOENIX-CCA3). J. Clin. Oncol. 2020, 38, TPS600. [Google Scholar] [CrossRef]
Trial, Setting, References | n, FGFR Alterations | Primary Endpoint | Findings |
---|---|---|---|
Pemigatinib (ATP-competitive mechanism, selective for FGFR1-3) | |||
FIGHT-202 (NCT02924376, Phase II), CCA, ≥1 previous systemic therapy [34] | n = 107 FGFR2 fusions or rearrangements, n = 20 other FGF/FGFR alterations, n = 18 with no FGF/FGFR alterations, n = 1 undetermined status | ORR | FGFR2 fusions/rearrangements: ORR 35.5% (95% CI 26.5–45.4) including 3 CRs, 35 PRs; mPFS 6.9 months (95% CI 6.2–9.6) Other FGFR/FGF alterations: 0% ORR, mPFS 2.1 months (95% CI 1.2–4.9) No FGF/FGFR alterations: 0% ORR, mPFS 1.7 months (95% CI 1.3–1.8) |
Infigratinib [BGJ398] (ATP-competitive mechanism, selective for FGFR1-3) | |||
NCT02150967 (Phase II), CCA, ≥1 previous systemic therapy, FGFR2 fusions or rearrangements [35,36,37] | n = 83 FGFR2 fusions, n = 25 FGFR rearrangements | ORR | ORR 23.1% (95% CI 15.6–32.2); mPFS 7.3 months (95% CI 5.6–7.6); mDOR 5.0 months (range 0.9–19.1) |
Derazantinib (ATP-competitive mechanism, selective for FGFR1-3) | |||
ARQ 087-101 (NCT01752920, Phase I/II), iCCA, ≥1 previous systemic therapy or ineligible for first-line chemotherapy [38,39] | n = 29 FGFR2 fusions; n = 6 FGFR2 mutations/amplifications; n = 9 no FGFR2 alterations | Safety and tolerability | FGFR2 fusions: ORR 20.7% (0 CRs, 6 PRs); mPFS 5.7 months (95% CI 4.0–9.2) FGFR2 mutations/amplifications: 0% ORR, mPFS 6.7 (95% CI 1.0–14.7) No FGFR2 alterations: 0% ORR, mPFS 1.5 (95% CI 0.7–N/A) |
Debio 1347 (ATP-competitive mechanism, selective for FGFR1-3) | |||
NCT1948297 (Phase I), advanced solid malignancies harboring activating FGFR alterations. Included 9 iCCA patients (1–3 prior lines of systemic therapy) [40,41] | n = 5 FGFR2 translocations, n = 1 FGFR1 translocation, n = 1 FGFR2 mutation, n = 1 FGFR2 activating deletion, n = 1 FGFR3 mutation | Safety and tolerability | 2/9 PR, 4/9 stable disease |
Futibatinib [TAS-120] (covalent irreversible mechanism, selective for FGFR1-4) | |||
FOENIX-101 (NCT02052778, Phase I), 45 CCA patients (41 iCCA), ≥1 prior systemic therapies (13 received prior reversible FGFR inhibitors) [42] | n = 28 FGFR2 gene fusions, n = 17 other FGF/FGFR alterations | Safety and tolerability | ORR 25% (7/28) in the FGFR2 gene fusion patients and 17.6% (3/17) in those with other alterations; 30.8% ORR (4/13) in patients who had previously been treated with other FGFR inhibitors; Overall DCR 79% |
FOENIX-CCA2 (NCT02052778, Phase II), iCCA patients with FGFR2 fusions/other rearrangements, ≥1 prior systemic therapy, no prior FGFR inhibitor, ECOG PS 0/1 [43,44] | n = 55 FGFR2 fusions; n = 12 other FGFR2 rearrangements | ORR | ORR 37.3%; mPFS 7.2 months; mDOR 8.3 months; DCR 82.1% |
Erdafitinib (ATP-competitive mechanism, selective for FGFR1-4) | |||
NCT01703481 (Phase I), patients with advanced solid tumors for which standard therapy failed [45,46] | Within cohort of 11 CCA patients: n = 3 FGFR mutations, n = 8 FGFR fusions | Safety and tolerability | CCA patients: ORR 27.3% (95% CI 6–61); mPFS 5.1 months (95% CI 1.6–16.4); mDOR 12.9 months (n = 3) |
LUC2001 (NCT02699606, Phase IIa), Asian patients with advanced CCA with FGFR alterations [47] | n = 8 FGFR2 fusions, n = 3 FGFR2 mutations, n = 1 FGFR3 fusion, n = 2 FGFR3 mutations | ORR | Out of 12 response-evaluable patients: ORR 50%; mPFS 5.59 months (95% CI: 1.87–13.67); mDOR 6.83 months (95% CI: 3.65–12.16); DCR 83.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, P.C.; Hendifar, A.; Osipov, A.; Cho, M.; Li, D.; Gong, J. Targeting the Fibroblast Growth Factor Receptor (FGFR) in Advanced Cholangiocarcinoma: Clinical Trial Progress and Future Considerations. Cancers 2021, 13, 1706. https://doi.org/10.3390/cancers13071706
Lee PC, Hendifar A, Osipov A, Cho M, Li D, Gong J. Targeting the Fibroblast Growth Factor Receptor (FGFR) in Advanced Cholangiocarcinoma: Clinical Trial Progress and Future Considerations. Cancers. 2021; 13(7):1706. https://doi.org/10.3390/cancers13071706
Chicago/Turabian StyleLee, Patrick C., Andrew Hendifar, Arsen Osipov, May Cho, Daneng Li, and Jun Gong. 2021. "Targeting the Fibroblast Growth Factor Receptor (FGFR) in Advanced Cholangiocarcinoma: Clinical Trial Progress and Future Considerations" Cancers 13, no. 7: 1706. https://doi.org/10.3390/cancers13071706
APA StyleLee, P. C., Hendifar, A., Osipov, A., Cho, M., Li, D., & Gong, J. (2021). Targeting the Fibroblast Growth Factor Receptor (FGFR) in Advanced Cholangiocarcinoma: Clinical Trial Progress and Future Considerations. Cancers, 13(7), 1706. https://doi.org/10.3390/cancers13071706