A Systematic Review of Glioblastoma-Targeted Therapies in Phases II, III, IV Clinical Trials
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
3. Results-Glioblastoma Targeted Therapies
3.1. Targeting Stem Cells and Stem Cell Pathways
3.1.1. Targeting the Self-Renewal of GICs
- (i)
- Wnt pathway
- (ii)
- Notch pathway
- (iii)
- Hedgehog (SHH) pathway
- (iv)
- STAT3 pathway
3.1.2. Inducing the Differentiation of GICs or Inhibiting Pathways That Control Resistance
- -
- Activation of an effector of the BMP pathway, such as BMP-7, blocks the tumor progression in vitro [98].
- -
- Using mimic effectors of the BMP pathway: the BMP-2 protein mimicking peptide, GBMP1, has been developed to activate this pathway and is currently being studied [99]. Activation of the BMP pathway is currently tested in clinical trials. A Phase I study is testing the recombinant protein hrBMP4 in recurrent GBMs (NCT02869243).
3.2. Targeting Growth Autonomy and Migration
3.2.1. Inhibition of EGFR and HER2
i. Inhibition of EGFR
Monoclonal Antibodies
Tyrosine Kinase Activity Inhibitors
ii. Inhibition of HER2
3.2.2. Multikinase Inhibitors
- (i)
- Inhibition of PDGFR
- (ii)
- Inhibition of IGFR1 and FGFR
- (iii)
- Inhibition ALK
3.2.3. Inhibition of the PI3K/AKT Pathway
- (i)
- Inhibition of mTOR.
- (ii)
- Inhibition of PI3K
- (iii)
- Inhibition of AKT
3.2.4. Inhibition of RAS/MAPK Pathway
3.3. Targeting the Cell Cycle and Escape to Cell Death
3.3.1. Therapies Targeting Apoptosis
- (i)
- Activating proteins involved in the extrinsic pathway of apoptosis
- (ii)
- Activating proteins involved in the intrinsic pathway of apoptosis
- (iii)
- Targeting proteins involved in the regulation of apoptosis
3.3.2. Therapies Targeting Autophagy
3.3.3. Targeting Multifaceted Pathways and DNA Modifications
- (i)
- CDK4/6 inhibitors
- (ii)
- Proteasome inhibitors
- (iii)
- Histone deacetylase inhibitors
- (iv)
- TGF-β inhibitors
- (v)
- PARP inhibitors
3.4. Targeting Angiogenesis
3.4.1. Targeting VEGF/VEGFR Pathway
- (i)
- Bevacizumab
Clinical Trials in Recurrent GBMs
Clinical Trials in Newly Diagnosed GBMs
- (ii)
- Molecules targeting VEGFR
3.4.2. The secondary Pathways of Angiogenesis
- (i)
- c-MET pathway
- (ii)
- PIGF pathway
- (iii)
- Endoglin
3.4.3. Other Pathways of Angiogenesis
4. Discussion-Guidance towards Future GBM Targeted Therapies
- (i)
- Performing a full surgical resection is impossible. Eliminating tumor cells that have migrated into the healthy parenchyma without causing neurological or cognitive disorders is not feasible. 35% of newly diagnosed patients are estimated to be non-operable due to the location or size of the tumor. In these cases, a biopsy is recommended in order to establish a diagnosis [364]. When surgery is possible, macroscopic resection is described as a good prognostic factor [365]. A recent meta-analysis showed that out of 27,865 patients diagnosed with GBM between 2004 and 2013, a biopsy (non-operable case), partial resection and massive resection accounted for 28.5%, 34.8% and 36.8% of cases [366].
- (ii)
- (iii)
- New molecular and genomic data has highlighted the inter- but also intra-tumoral heterogeneity of GBM, with tumors and tumor areas differing in target expression. Intratumoral heterogeneity is described as the root cause of therapy resistance and might explain the failure of targeted therapies specifically targeting tumor biomarkers, including anti-EGFR (cetuximab, gefitinib, erlotinib …), anti-VEGF (bevacizumab) and anti-integrin (cilengitide) therapies. Below, we tried to explain the failure of the therapies targeting these three proteins. These data highlight the need to combine different targeted therapies.
4.1. The Failure of Anti-EGFR Therapies
4.2. The Failure of Bevacizumab
4.3. The Failure of Cilengitide
- (iv)
- The plasticity of GBM cells complicates heterogeneity. It has been shown a bidirectional plasticity between glioma stem cell and their more differentiated counterparts either to form the tumor mass or in answer to therapies. These two types of cells will have different sensitivity to radio/chemotherapies but also to targeted therapies. Recent data emphasized that differentiated tumoral cells may contribute to GIC-dependent tumor progression [394,395]. These results indicate that targeting both cell populations will be needed to eradicate GBM. In a given tumor, glioma stem cells may vary from a proneuronal to a mesenchymal phenotype with intermediary states and thus acquiring new targets. Plasticity occurs also at the metabolic level when GBM cells adapt to the microenvironment to survive (for example from hypoxic to normoxic area) leading to new resistances. Treatments by themselves induce phenotypic and genomic modifications of tumor areas provoking secondary resistance. For example, bevacizumab has been shown to become ineffective due to the activation of secondary pathways involved in angiogenesis (c-MET, PIGF …).
- (v)
- It is increasingly recognized that preclinical models have to be improved to reflect the clinical reality. In vitro, from 2D long term established cell lines grown on flat surface, 3D spheroids or cells embedded in several matrices, we now go through investigations on patient-derived primary cell lines either as glioma stem cell culture or as organoids. This last model certainly will recapitulate at best the tumoral and environmental heterogeneity of GBM. The deal for the following years will be to test therapies on such personalized models in a time framework which will allow to return towards the patient as rapidly as possible. Majority of in vivo models still are based on nude mice where immunological networks are absent. Even if syngeneic mice models of glioma can be useful, they lack the human specificities and complexities. Success of targeted therapies may be in part dependent on the development of reliable modeling of GBM.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CNS | central nervous system |
GBM | glioblastoma |
HR | hazard ratio |
OS | overall survival |
PFS | progression-free survival |
References
- Stoyanov, G.S.; Dzhenkov, D.L. On the Concepts and History of Glioblastoma Multiforme—Morphology, Genetics and Epigenetics. Folia Med. 2018, 60, 48–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.C. Diffuse Gliomas for Nonneuropathologists: The New Integrated Molecular Diagnostics. Arch. Pathol. Lab. Med. 2018, 142, 804–814. [Google Scholar] [CrossRef]
- Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.B.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; et al. Effects of Radiotherapy with Concomitant and Adjuvant Temozolomide versus Radiotherapy Alone on Survival in Glioblastoma in a Randomised Phase III Stud y: 5-Year Analysis of the EORTC-NCIC Trial. Lancet Oncol. 2009, 10, 459–466. [Google Scholar] [CrossRef]
- Zhang, J.; Stevens, M.F.G.; Bradshaw, T.D. Temozolomide: Mechanisms of Action, Repair and Resistance. Curr. Mol. Pharmacol. 2012, 5, 102–114. [Google Scholar] [CrossRef]
- Prados, M.D.; Byron, S.A.; Tran, N.L.; Phillips, J.J.; Molinaro, A.M.; Ligon, K.L.; Wen, P.Y.; Kuhn, J.G.; Mellinghoff, I.K.; de Groot, J.F.; et al. Toward Precision Medicine in Glioblastoma: The Promise and the Challenges. Neuro-Oncology 2015, 17, 1051–1063. [Google Scholar] [CrossRef] [Green Version]
- Franceschi, E.; Tosoni, A.; Bartolini, S.; Mazzocchi, V.; Fioravanti, A.; Brandes, A.A. Treatment Options for Recurrent Glioblastoma: Pitfalls and Future Trends. Expert Rev. Anticancer Ther. 2009, 9, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Gallego, O. Nonsurgical Treatment of Recurrent Glioblastoma. Curr. Oncol. 2015, 22, e273–e281. [Google Scholar] [CrossRef] [Green Version]
- Barani, I.J.; Larson, D.A. Radiation Therapy of Glioblastoma. Cancer Treat. Res. 2015, 163, 49–73. [Google Scholar] [CrossRef] [PubMed]
- Lawrie, T.A.; Evans, J.; Gillespie, D.; Erridge, S.; Vale, L.; Kernohan, A.; Grant, R. Long-term Side Effects of Radiotherapy, with or without Chemotherapy, for Glioma. Cochrane Database Syst. Rev. 2019, 8, CD013047. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Du, S.; Liao, G.; Xie, X.; Ren, C.; Yuan, Y.W. Do Glioma Patients Derive Any Therapeutic Benefit from Taking a Higher Cumulative Dose of Temozolomide Regimens?: A Meta-Analysis. Medicine 2015, 94, e827. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Brada, M.; van den Bent, M.J.; Tonn, J.-C.; Pentheroudakis, G. High-Grade Glioma: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2014, 25 (Suppl. 3), iii93–iii101. [Google Scholar] [CrossRef]
- Maschio, M. Brain Tumor-Related Epilepsy. Curr. Neuropharmacol. 2012, 10, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Geraldo, L.H.M.; Garcia, C.; da Fonseca, A.C.C.; Dubois, L.G.F.; de Sampaio e Spohr, T.C.L.; Matias, D.; de Camargo Magalhães, E.S.; do Amaral, R.F.; da Rosa, B.G.; Grimaldi, I.; et al. Glioblastoma Therapy in the Age of Molecular Medicine. Trends Cancer 2019, 5, 46–65. [Google Scholar] [CrossRef]
- Jain, K.K. A Critical Overview of Targeted Therapies for Glioblastoma. Front. Oncol. 2018, 8, 419. [Google Scholar] [CrossRef] [PubMed]
- Mooney, J.; Bernstock, J.D.; Ilyas, A.; Ibrahim, A.; Yamashita, D.; Markert, J.M.; Nakano, I. Current Approaches and Challenges in the Molecular Therapeutic Targeting of Glioblastoma. World Neurosurg. 2019, 129, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Rajaratnam, V.; Islam, M.M.; Yang, M.; Slaby, R.; Ramirez, H.M.; Mirza, S.P. Glioblastoma: Pathogenesis and Current Status of Chemotherapy and Other Novel Treatments. Cancers 2020, 12, 937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanders, E.D.; Svensson, F.; Bailey, D.S. Therapy for Glioblastoma: Is It Working? Drug Discov. Today 2019, 24, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
- Alemany, M.; Velasco, R.; Simó, M.; Bruna, J. Late Effects of Cancer Treatment: Consequences for Long-Term Brain Cancer Survivors. Neuro-Oncol. Pract. 2020, 8, 18–30. [Google Scholar] [CrossRef]
- Bobo, R.H.; Laske, D.W.; Akbasak, A.; Morrison, P.F.; Dedrick, R.L.; Oldfield, E.H. Convection-Enhanced Delivery of Macromolecules in the Brain. Proc. Natl. Acad. Sci. USA 1994, 91, 2076–2080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akiyama, Y.; Kimura, Y.; Enatsu, R.; Mikami, T.; Wanibuchi, M.; Mikuni, N. Advantages and Disadvantages of Combined Chemotherapy with Carmustine Wafer and Bevacizumab in Patients with Newly Diagnosed Glioblastoma: A Single-Institutional Experience. World Neurosurg. 2018, 113, e508–e514. [Google Scholar] [CrossRef] [PubMed]
- Vellimana, A.K.; Recinos, V.R.; Hwang, L.; Fowers, K.D.; Li, K.W.; Zhang, Y.; Okonma, S.; Eberhart, C.G.; Brem, H.; Tyler, B.M. Combination of Paclitaxel Thermal Gel Depot with Temozolomide and Radiotherapy Significantly Prolongs Survival in an Experimental Rodent Glioma Model. J. Neurooncol. 2013, 111, 229–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westphal, M.; Hilt, D.C.; Bortey, E.; Delavault, P.; Olivares, R.; Warnke, P.C.; Whittle, I.R.; Jääskeläinen, J.; Ram, Z. A Phase 3 Trial of Local Chemotherapy with Biodegradable Carmustine (BCNU) Wafers (Gliadel Wafers) in Patients with Primary Malignant Glioma. Neuro-Oncology 2003, 5, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Wolinsky, J.B.; Colson, Y.L.; Grinstaff, M.W. Local Drug Delivery Strategies for Cancer Treatment: Gels, Nanoparticles, Polymeric Films, Rods, and Wafers. J. Control. Release Off. J. Control. Release Soc. 2012, 159, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Xing, W.; Shao, C.; Qi, Z.; Yang, C.; Wang, Z. The Role of Gliadel Wafers in the Treatment of Newly Diagnosed GBM: A Meta-Analysis. Drug Des. Devel. Ther. 2015, 9, 3341–3348. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.-D.; Dai, R.-Y.; Chen, Z.; Zhang, Y.-H.; He, X.-Z.; Zhou, J. Efficacy and Safety of Carmustine Wafers in the Treatment of Glioblastoma Multiforme: A Systematic Review. Turk. Neurosurg. 2014, 24, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Karim, R.; Palazzo, C.; Evrard, B.; Piel, G. Nanocarriers for the Treatment of Glioblastoma Multiforme: Current State-of-the-Art. J. Control. Release Off. J. Control. Release Soc. 2016, 227, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Gutkin, A.; Cohen, Z.R.; Peer, D. Harnessing Nanomedicine for Therapeutic Intervention in Glioblastoma. Expert Opin. Drug Deliv. 2016, 13, 1573–1582. [Google Scholar] [CrossRef]
- Kim, S.-S.; Harford, J.B.; Pirollo, K.F.; Chang, E.H. Effective Treatment of Glioblastoma Requires Crossing the Blood-Brain Barrier and Targeting Tumors Including Cancer Stem Cells: The Promise of Nanomedicine. Biochem. Biophys. Res. Commun. 2015, 468, 485–489. [Google Scholar] [CrossRef] [Green Version]
- Avril, T.; Vauleon, E.; Tanguy-Royer, S.; Mosser, J.; Quillien, V. Mechanisms of Immunomodulation in Human Glioblastoma. Immunotherapy 2011, 3, 42–44. [Google Scholar] [CrossRef] [Green Version]
- Brown, N.F.; Carter, T.J.; Ottaviani, D.; Mulholland, P. Harnessing the Immune System in Glioblastoma. Br. J. Cancer 2018, 119, 1171–1181. [Google Scholar] [CrossRef] [Green Version]
- McGranahan, T.; Therkelsen, K.E.; Ahmad, S.; Nagpal, S. Current State of Immunotherapy for Treatment of Glioblastoma. Curr. Treat. Options Oncol. 2019, 20, 24. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, T.; Ishikawa, E.; Sugii, N.; Matsuda, M. Therapeutic Strategies for Overcoming Immunotherapy Resistance Mediated by Immunosuppressive Factors of the Glioblastoma Microenvironment. Cancers 2020, 12, 1960. [Google Scholar] [CrossRef]
- Romani, M.; Pistillo, M.P.; Carosio, R.; Morabito, A.; Banelli, B. Immune Checkpoints and Innovative Therapies in Glioblastoma. Front. Oncol. 2018, 8, 464. [Google Scholar] [CrossRef]
- Fuchs, Q.; Pierrevelcin, M.; Messe, M.; Lhermitte, B.; Blandin, A.-F.; Papin, C.; Coca, A.; Dontenwill, M.; Entz-Werlé, N. Hypoxia Inducible Factors’ Signaling in Pediatric High-Grade Gliomas: Role, Modelization and Innovative Targeted Approaches. Cancers 2020, 12, 979. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Potdar, A.A.; Gong, Y.; Eswarappa, S.M.; Donnola, S.; Lathia, J.D.; Hambardzumyan, D.; Rich, J.N.; Fox, P.L. Profilin-1 Phosphorylation Directs Angiocrine Expression and Glioblastoma Progression through HIF-1α Accumulation. Nat. Cell Biol. 2014, 16, 445–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, E.; Zhang, C.; Polavaram, N.; Liu, F.; Wu, G.; Schroeder, M.A.; Lau, J.S.; Mukhopadhyay, D.; Jiang, S.-W.; O’Neill, B.P.; et al. The Role of Factor Inhibiting HIF (FIH-1) in Inhibiting HIF-1 Transcriptional Activity in Glioblastoma Multiforme. PLoS ONE 2014, 9, e86102. [Google Scholar] [CrossRef] [Green Version]
- Covello, K.L.; Kehler, J.; Yu, H.; Gordan, J.D.; Arsham, A.M.; Hu, C.-J.; Labosky, P.A.; Simon, M.C.; Keith, B. HIF-2alpha Regulates Oct-4: Effects of Hypoxia on Stem Cell Function, Embryonic Development, and Tumor Growth. Genes Dev. 2006, 20, 557–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strowd, R.E.; Ellingson, B.M.; Wen, P.Y.; Ahluwalia, M.S.; Piotrowski, A.F.; Desai, A.S.; Clarke, J.L.; Lieberman, F.S.; Desideri, S.; Nabors, L.B.; et al. Safety and Activity of a First-in-Class Oral HIF2-Alpha Inhibitor, PT2385, in Patients with First Recurrent Glioblastoma (GBM). J. Clin. Oncol. 2019, 37, 2027. [Google Scholar] [CrossRef]
- Clark, P.M.; Mai, W.X.; Cloughesy, T.F.; Nathanson, D.A. Emerging Approaches for Targeting Metabolic Vulnerabilities in Malignant Glioma. Curr. Neurol. Neurosci. Rep. 2016, 16, 17. [Google Scholar] [CrossRef] [PubMed]
- Woolf, E.C.; Scheck, A.C. The Ketogenic Diet for the Treatment of Malignant Glioma. J. Lipid Res. 2015, 56, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Hay, N. Reprogramming Glucose Metabolism in Cancer: Can It Be Exploited for Cancer Therapy? Nat. Rev. Cancer 2016, 16, 635–649. [Google Scholar] [CrossRef] [Green Version]
- Ghiaseddin, A.P.; Shin, D.; Melnick, K.; Tran, D.D. Tumor Treating Fields in the Management of Patients with Malignant Gliomas. Curr. Treat. Options Oncol. 2020, 21, 76. [Google Scholar] [CrossRef] [PubMed]
- Ceccarelli, M.; Barthel, F.P.; Malta, T.M.; Sabedot, T.S.; Salama, S.R.; Murray, B.A.; Morozova, O.; Newton, Y.; Radenbaugh, A.; Pagnotta, S.M.; et al. Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma. Cell 2016, 164, 550–563. [Google Scholar] [CrossRef] [Green Version]
- Perrin, S.L.; Samuel, M.S.; Koszyca, B.; Brown, M.P.; Ebert, L.M.; Oksdath, M.; Gomez, G.A. Glioblastoma Heterogeneity and the Tumour Microenvironment: Implications for Preclinical Research and Development of New Treatments. Biochem. Soc. Trans. 2019, 47, 625–638. [Google Scholar] [CrossRef]
- Verhaak, R.G.W.; Hoadley, K.A.; Purdom, E.; Wang, V.; Qi, Y.; Wilkerson, M.D.; Miller, C.R.; Ding, L.; Golub, T.; Mesirov, J.P.; et al. Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010, 17, 98–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, K.; Connor, K.; Clerkin, J.; Murphy, B.M.; Salvucci, M.; O’Farrell, A.C.; Rehm, M.; O’Brien, D.; Prehn, J.H.M.; Niclou, S.P.; et al. New Hints towards a Precision Medicine Strategy for IDH Wild-Type Glioblastoma. Ann. Oncol. 2020, 31, 1679–1692. [Google Scholar] [CrossRef] [PubMed]
- Aldape, K.; Zadeh, G.; Mansouri, S.; Reifenberger, G.; von Deimling, A. Glioblastoma: Pathology, Molecular Mechanisms and Markers. Acta Neuropathol. 2015, 129, 829–848. [Google Scholar] [CrossRef]
- Behnan, J.; Finocchiaro, G.; Hanna, G. The Landscape of the Mesenchymal Signature in Brain Tumours. Brain J. Neurol. 2019, 142, 847–866. [Google Scholar] [CrossRef] [Green Version]
- Tirosh, I.; Suvà, M.L. Tackling the Many Facets of Glioblastoma Heterogeneity. Cell Stem Cell 2020, 26, 303–304. [Google Scholar] [CrossRef]
- Neftel, C.; Laffy, J.; Filbin, M.G.; Hara, T.; Shore, M.E.; Rahme, G.J.; Richman, A.R.; Silverbush, D.; Shaw, M.L.; Hebert, C.M.; et al. An Integrative Model of Cellular States, Plasticity and Genetics for Glioblastoma. Cell 2019, 178, 835–849.e21. [Google Scholar] [CrossRef]
- Bailey, P.; Cushing, H. A Classification of Tumors of the Glioma Groupo on a Histogenetic Basis with a Correlation Study of Prognosis; Philadelphia, J.B Lippincott Co.: Philadelphia, PA, USA, 1926. [Google Scholar]
- Kernohan, J.W.; Mabon, R.F. A Simplified Classification of the Gliomas. Proc. Staff Meet. Mayo Clin. 1949, 24, 71–75. [Google Scholar] [PubMed]
- Zülch, K.J. Types Histologiques des Tumeurs du Système Nerveux Central; Organisation mondiale de la santé: Genève, Switzerland, 1979; ISBN 978-92-4-276021-7. [Google Scholar]
- Kleihues, P.; Burger, P.C.; Scheithauer, B.W. The New WHO Classification of Brain Tumours. Brain Pathol. 1993, 3, 255–268. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A Summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louis, D.N.; Ohgaki, H.; Wiestler, O.D.; Cavenee, W.K.; Burger, P.C.; Jouvet, A.; Scheithauer, B.W.; Kleihues, P. The 2007 WHO Classification of Tumours of the Central Nervous System. Acta Neuropathol. 2007, 114, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Louis, D.N.; Holland, E.C.; Cairncross, J.G. Glioma Classification: A Molecular Reappraisal. Am. J. Pathol. 2001, 159, 779–786. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Burger, P.; Ellison, D.W.; Reifenberger, G.; von Deimling, A.; Aldape, K.; Brat, D.; Collins, V.P.; Eberhart, C.; et al. International Society of Neuropathology—Haarlem Consensus Guidelines for Nervous System Tumor Classification and Grading. Brain Pathol. 2014, 24, 429–435. [Google Scholar] [CrossRef]
- Singh, S.K.; Clarke, I.D.; Terasaki, M.; Bonn, V.E.; Hawkins, C.; Squire, J.; Dirks, P.B. Identification of a Cancer Stem Cell in Human Brain Tumors. Cancer Res. 2003, 63, 5821–5828. [Google Scholar]
- Singh, S.K.; Clarke, I.D.; Hide, T.; Dirks, P.B. Cancer Stem Cells in Nervous System Tumors. Oncogene 2004, 23, 7267–7273. [Google Scholar] [CrossRef] [Green Version]
- Cruceru, M.L.; Neagu, M.; Demoulin, J.-B.; Constantinescu, S.N. Therapy Targets in Glioblastoma and Cancer Stem Cells: Lessons from Haematopoietic Neoplasms. J. Cell. Mol. Med. 2013, 17, 1218–1235. [Google Scholar] [CrossRef] [PubMed]
- Ignatova, T.N.; Kukekov, V.G.; Laywell, E.D.; Suslov, O.N.; Vrionis, F.D.; Steindler, D.A. Human Cortical Glial Tumors Contain Neural Stem-like Cells Expressing Astroglial and Neuronal Markers in Vitro. Glia 2002, 39, 193–206. [Google Scholar] [CrossRef]
- Yi, Y.; Hsieh, I.-Y.; Huang, X.; Li, J.; Zhao, W. Glioblastoma Stem-Like Cells: Characteristics, Microenvironment, and Therapy. Front. Pharmacol. 2016, 7, 477. [Google Scholar] [CrossRef] [Green Version]
- Koso, H.; Takeda, H.; Yew, C.C.K.; Ward, J.M.; Nariai, N.; Ueno, K.; Nagasaki, M.; Watanabe, S.; Rust, A.G.; Adams, D.J.; et al. Transposon Mutagenesis Identifies Genes That Transform Neural Stem Cells into Glioma-Initiating Cells. Proc. Natl. Acad. Sci. USA 2012, 109, E2998–E3007. [Google Scholar] [CrossRef] [Green Version]
- Iwadate, Y. Plasticity in Glioma Stem Cell Phenotype and Its Therapeutic Implication. Neurol. Med. Chir. 2018, 58, 61–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Dong, J.; Haiech, J.; Kilhoffer, M.-C.; Zeniou, M. Cancer Stem Cell Quiescence and Plasticity as Major Challenges in Cancer Therapy. Stem Cells Int. 2016, 2016, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, M.; Hassiotou, F.; Nowak, A. Glioblastoma Stem-like Cells: At the Root of Tumor Recurrence and a Therapeutic Target. Carcinogenesis 2015, 36, 177–185. [Google Scholar] [CrossRef]
- Sørensen, M.D.; Fosmark, S.; Hellwege, S.; Beier, D.; Kristensen, B.W.; Beier, C.P. Chemoresistance and Chemotherapy Targeting Stem-like Cells in Malignant Glioma. Adv. Exp. Med. Biol. 2015, 853, 111–138. [Google Scholar] [CrossRef]
- Penas-Prado, M.; Hess, K.R.; Fisch, M.J.; Lagrone, L.W.; Groves, M.D.; Levin, V.A.; De Groot, J.F.; Puduvalli, V.K.; Colman, H.; Volas-Redd, G.; et al. Randomized Phase II Adjuvant Factorial Study of Dose-Dense Temozolomide Alone and in Combination with Isotretinoin, Celecoxib, and/or Thalidomide for Glioblastoma. Neuro-Oncology 2015, 17, 266–273. [Google Scholar] [CrossRef]
- Grossman, S.A.; Olson, J.; Batchelor, T.; Peereboom, D.; Lesser, G.; Desideri, S.; Ye, X.; Hammour, T.; Supko, J.G. New Approaches to Brain Tumor Therapy CNS Consortium Effect of Phenytoin on Celecoxib Pharmacokinetics in Patients with Glioblastoma. Neuro-Oncology 2008, 10, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Wick, W.; Dettmer, S.; Berberich, A.; Kessler, T.; Karapanagiotou-Schenkel, I.; Wick, A.; Winkler, F.; Pfaff, E.; Brors, B.; Debus, J.; et al. N2M2 (NOA-20) Phase I/II Trial of Molecularly Matched Targeted Therapies plus Radiotherapy in Patients with Newly Diagnosed Non-MGMT Hypermethylated Glioblastoma. Neuro-Oncology 2019, 21, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Nusse, R. Wnt Signaling and Stem Cell Control. Cell Res. 2008, 18, 523–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, C.-Y.; Liang, G.-B.; Du, P.; Liu, Y.-H. Lgr4 Promotes Glioma Cell Proliferation through Activation of Wnt Signaling. Asian Pac. J. Cancer Prev. APJCP 2013, 14, 4907–4911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhuvanalakshmi, G.; Arfuso, F.; Millward, M.; Dharmarajan, A.; Warrier, S. Secreted Frizzled-Related Protein 4 Inhibits Glioma Stem-like Cells by Reversing Epithelial to Mesenchymal Transition, Inducing Apoptosis and Decreasing Cancer Stem Cell Properties. PLoS ONE 2015, 10, e0127517. [Google Scholar] [CrossRef]
- Sareddy, G.R.; Kesanakurti, D.; Kirti, P.B.; Babu, P.P. Nonsteroidal Anti-Inflammatory Drugs Diclofenac and Celecoxib Attenuates Wnt/β-Catenin/Tcf Signaling Pathway in Human Glioblastoma Cells. Neurochem. Res. 2013, 38, 2313–2322. [Google Scholar] [CrossRef]
- Korur, S.; Huber, R.M.; Sivasankaran, B.; Petrich, M.; Morin, P.; Hemmings, B.A.; Merlo, A.; Lino, M.M. GSK3beta Regulates Differentiation and Growth Arrest in Glioblastoma. PLoS ONE 2009, 4, e7443. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, J.-K.; Ahn, S.H.; Lee, J.; Nam, D.-H. WNT Signaling in Glioblastoma and Therapeutic Opportunities. Lab. Investig. J. Tech. Methods Pathol. 2016, 96, 137–150. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, I.; Ganapathy, V.; Gillies, E.; Fonseca, I.; Sureban, S.M.; Houchen, C.W.; Reis, A.; Queimado, L. Wnt Inhibitory Factor 1 Suppresses Cancer Stemness and Induces Cellular Senescence. Cell Death Dis. 2014, 5, e1246. [Google Scholar] [CrossRef] [PubMed]
- Kanabur, P.; Guo, S.; Simonds, G.R.; Kelly, D.F.; Gourdie, R.G.; Verbridge, S.S.; Sheng, Z. Patient-Derived Glioblastoma Stem Cells Respond Differentially to Targeted Therapies. Oncotarget 2016, 7, 86406–86419. [Google Scholar] [CrossRef]
- Li, J.-L.; Sainson, R.C.A.; Oon, C.E.; Turley, H.; Leek, R.; Sheldon, H.; Bridges, E.; Shi, W.; Snell, C.; Bowden, E.T.; et al. DLL4-Notch Signaling Mediates Tumor Resistance to Anti-VEGF Therapy in Vivo. Cancer Res. 2011, 71, 6073–6083. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.-B.; Jiang, H.; Zhan, R.-Y. Aberrant Notch Signaling in Glioblastoma Stem Cells Contributes to Tumor Recurrence and Invasion. Mol. Med. Rep. 2016, 14, 1263–1268. [Google Scholar] [CrossRef] [Green Version]
- Shih, I.-M.; Wang, T.-L. Notch Signaling, Gamma-Secretase Inhibitors, and Cancer Therapy. Cancer Res. 2007, 67, 1879–1882. [Google Scholar] [CrossRef] [Green Version]
- Hovinga, K.E.; Shimizu, F.; Wang, R.; Panagiotakos, G.; Van Der Heijden, M.; Moayedpardazi, H.; Correia, A.S.; Soulet, D.; Major, T.; Menon, J.; et al. Inhibition of Notch Signaling in Glioblastoma Targets Cancer Stem Cells via an Endothelial Cell Intermediate. Stem Cells Dayt. Ohio 2010, 28, 1019–1029. [Google Scholar] [CrossRef] [Green Version]
- Saito, N.; Fu, J.; Zheng, S.; Yao, J.; Wang, S.; Liu, D.D.; Yuan, Y.; Sulman, E.P.; Lang, F.F.; Colman, H.; et al. A High Notch Pathway Activation Predicts Response to γ Secretase Inhibitors in Proneural Subtype of Glioma Tumor-Initiating Cells: Targeting Proneural GBM with Notch Inhibition. Stem Cells 2014, 32, 301–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, S.; Nakada, M.; Yamada, D.; Nakano, I.; Todo, T.; Ino, Y.; Hoshii, T.; Tadokoro, Y.; Ohta, K.; Ali, M.A.E.; et al. Strong Therapeutic Potential of γ-Secretase Inhibitor MRK003 for CD44-High and CD133-Low Glioblastoma Initiating Cells. J. Neurooncol. 2015, 121, 239–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yahyanejad, S.; King, H.; Iglesias, V.S.; Granton, P.V.; Barbeau, L.M.O.; van Hoof, S.J.; Groot, A.J.; Habets, R.; Prickaerts, J.; Chalmers, A.J.; et al. NOTCH Blockade Combined with Radiation Therapy and Temozolomide Prolongs Survival of Orthotopic Glioblastoma. Oncotarget 2016, 7, 41251–41264. [Google Scholar] [CrossRef] [Green Version]
- Opačak-Bernardi, T.; Ryu, J.S.; Raucher, D. Effects of Cell Penetrating Notch Inhibitory Peptide Conjugated to Elastin-like Polypeptide on Glioblastoma Cells. J. Drug Target. 2017, 25, 523–531. [Google Scholar] [CrossRef]
- Pan, E.; Supko, J.G.; Kaley, T.J.; Butowski, N.A.; Cloughesy, T.; Jung, J.; Desideri, S.; Grossman, S.; Ye, X.; Park, D.M. Phase I Study of RO4929097 with Bevacizumab in Patients with Recurrent Malignant Glioma. J. Neurooncol. 2016, 130, 571–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auffinger, B.; Spencer, D.; Pytel, P.; Ahmed, A.U.; Lesniak, M.S. The Role of Glioma Stem Cells in Chemotherapy Resistance and Glioblastoma Multiforme Recurrence. Expert Rev. Neurother. 2015, 15, 741–752. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Kim, K.H.; Kim, D.G.; Cho, H.J.; Kim, Y.; Rheey, J.; Shin, K.; Seo, Y.J.; Choi, Y.-S.; Lee, J.-I.; et al. FoxM1 Promotes Stemness and Radio-Resistance of Glioblastoma by Regulating the Master Stem Cell Regulator Sox2. PLoS ONE 2015, 10, e0137703. [Google Scholar] [CrossRef] [Green Version]
- Tu, Y.; Niu, M.; Xie, P.; Yue, C.; Liu, N.; Qi, Z.; Gao, S.; Liu, H.; Shi, Q.; Yu, R.; et al. Smoothened Is a Poor Prognosis Factor and a Potential Therapeutic Target in Glioma. Sci. Rep. 2017, 7, 42630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rimkus, T.K.; Carpenter, R.L.; Qasem, S.; Chan, M.; Lo, H.-W. Targeting the Sonic Hedgehog Signaling Pathway: Review of Smoothened and GLI Inhibitors. Cancers 2016, 8, 22. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.L.; Matsui, W. Hedgehog Pathway as a Drug Target: Smoothened Inhibitors in Development. OncoTargets Ther. 2012, 5, 47–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bar, E.E.; Chaudhry, A.; Lin, A.; Fan, X.; Schreck, K.; Matsui, W.; Piccirillo, S.; Vescovi, A.L.; DiMeco, F.; Olivi, A.; et al. Cyclopamine-Mediated Hedgehog Pathway Inhibition Depletes Stem-like Cancer Cells in Glioblastoma. Stem Cells Dayt. Ohio 2007, 25, 2524–2533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bensalma, S.; Chadeneau, C.; Legigan, T.; Renoux, B.; Gaillard, A.; de Boisvilliers, M.; Pinet-Charvet, C.; Papot, S.; Muller, J.M. Evaluation of Cytotoxic Properties of a Cyclopamine Glucuronide Prodrug in Rat Glioblastoma Cells and Tumors. J. Mol. Neurosci. 2015, 55, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-J.; Ma, Y.-C.; Zhang, W.-J.; Yang, Z.-Z.; Liang, D.-S.; Wu, Z.-F.; Qi, X.-R. Combination Therapy with Micellarized Cyclopamine and Temozolomide Attenuate Glioblastoma Growth through Gli1 Down-Regulation. Oncotarget 2017, 8, 42495–42509. [Google Scholar] [CrossRef] [Green Version]
- de la Iglesia, N.; Puram, S.V.; Bonni, A. STAT3 Regulation of Glioblastoma Pathogenesis. Curr. Mol. Med. 2009, 9, 580–590. [Google Scholar] [CrossRef] [Green Version]
- Reguera-Nuñez, E.; Roca, C.; Hardy, E.; de la Fuente, M.; Csaba, N.; Garcia-Fuentes, M. Implantable Controlled Release Devices for BMP-7 Delivery and Suppression of Glioblastoma Initiating Cells. Biomaterials 2014, 35, 2859–2867. [Google Scholar] [CrossRef]
- Rampazzo, E.; Dettin, M.; Maule, F.; Scabello, A.; Calvanese, L.; D’Auria, G.; Falcigno, L.; Porcù, E.; Zamuner, A.; Della Puppa, A.; et al. A Synthetic BMP-2 Mimicking Peptide Induces Glioblastoma Stem Cell Differentiation. Biochim. Biophys. Acta 2017, 1861, 2282–2292. [Google Scholar] [CrossRef]
- Garrido, W.; Rocha, J.D.; Jaramillo, C.; Fernandez, K.; Oyarzun, C.; San Martin, R.; Quezada, C. Chemoresistance in High-Grade Gliomas: Relevance of Adenosine Signalling in Stem-like Cells of Glioblastoma Multiforme. Curr. Drug Targets 2014, 15, 931–942. [Google Scholar] [CrossRef]
- Uribe, D.; Torres, Á.; Rocha, J.D.; Niechi, I.; Oyarzún, C.; Sobrevia, L.; San Martín, R.; Quezada, C. Multidrug Resistance in Glioblastoma Stem-like Cells: Role of the Hypoxic Microenvironment and Adenosine Signaling. Mol. Asp. Med. 2017, 55, 140–151. [Google Scholar] [CrossRef]
- Quezada, C.; Garrido, W.; Oyarzún, C.; Fernández, K.; Segura, R.; Melo, R.; Casanello, P.; Sobrevia, L.; San Martín, R. 5′-Ectonucleotidase Mediates Multiple-Drug Resistance in Glioblastoma Multiforme Cells. J. Cell. Physiol. 2013, 228, 602–608. [Google Scholar] [CrossRef]
- Torres, A.; Vargas, Y.; Uribe, D.; Jaramillo, C.; Gleisner, A.; Salazar-Onfray, F.; López, M.N.; Melo, R.; Oyarzún, C.; San Martín, R.; et al. Adenosine A3 Receptor Elicits Chemoresistance Mediated by Multiple Resistance-Associated Protein-1 in Human Glioblastoma Stem-like Cells. Oncotarget 2016, 7, 67373–67386. [Google Scholar] [CrossRef]
- Daniele, S.; Zappelli, E.; Natali, L.; Martini, C.; Trincavelli, M.L. Modulation of A1 and A2B Adenosine Receptor Activity: A New Strategy to Sensitise Glioblastoma Stem Cells to Chemotherapy. Cell Death Dis. 2014, 5, e1539. [Google Scholar] [CrossRef] [Green Version]
- Nørøxe, D.S.; Poulsen, H.S.; Lassen, U. Hallmarks of Glioblastoma: A Systematic Review. ESMO Open 2016, 1, e000144. [Google Scholar] [CrossRef]
- Majewska, E.; Szeliga, M. AKT/GSK3β Signaling in Glioblastoma. Neurochem. Res. 2017, 42, 918–924. [Google Scholar] [CrossRef] [Green Version]
- Normanno, N.; De Luca, A.; Bianco, C.; Strizzi, L.; Mancino, M.; Maiello, M.R.; Carotenuto, A.; De Feo, G.; Caponigro, F.; Salomon, D.S. Epidermal Growth Factor Receptor (EGFR) Signaling in Cancer. Gene 2006, 366, 2–16. [Google Scholar] [CrossRef]
- Frederick, L.; Wang, X.Y.; Eley, G.; James, C.D. Diversity and Frequency of Epidermal Growth Factor Receptor Mutations in Human Glioblastomas. Cancer Res. 2000, 60, 1383–1387. [Google Scholar]
- Combs, S.E.; Schulz-Ertner, D.; Hartmann, C.; Welzel, T.; Timke, C.; Herfarth, K.; von Deimling, A.; Edler, L.; Platten, M.; Wick, W.; et al. Phase I/II Study of Cetuximab plus Temozolomide as Radiochemotherapy for Primary Glioblastoma (GERT)—Eudract Number 2005–003911–63; NCT00311857. J. Clin. Oncol. 2008, 26, 2077. [Google Scholar] [CrossRef]
- Hasselbalch, B.; Lassen, U.; Hansen, S.; Holmberg, M.; Sørensen, M.; Kosteljanetz, M.; Broholm, H.; Stockhausen, M.-T.; Poulsen, H.S. Cetuximab, Bevacizumab, and Irinotecan for Patients with Primary Glioblastoma and Progression after Radiation Therapy and Temozolomide: A Phase II Trial. Neuro-Oncology 2010, 12, 508–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westphal, M.; Heese, O.; Steinbach, J.P.; Schnell, O.; Schackert, G.; Mehdorn, M.; Schulz, D.; Simon, M.; Schlegel, U.; Senft, C.; et al. A Randomised, Open Label Phase III Trial with Nimotuzumab, an Anti-Epidermal Growth Factor Receptor Monoclonal Antibody in the Treatment of Newly Diagnosed Adult Glioblastoma. Eur. J. Cancer 2015, 51, 522–532. [Google Scholar] [CrossRef]
- Brown, P.D.; Krishnan, S.; Sarkaria, J.N.; Wu, W.; Jaeckle, K.A.; Uhm, J.H.; Geoffroy, F.J.; Arusell, R.; Kitange, G.; Jenkins, R.B.; et al. Phase I/II Trial of Erlotinib and Temozolomide with Radiation Therapy in the Treatment of Newly Diagnosed Glioblastoma Multiforme: North Central Cancer Treatment Group Study N0177. J. Clin. Oncol. 2008, 26, 5603–5609. [Google Scholar] [CrossRef] [PubMed]
- Peereboom, D.M.; Ahluwalia, M.S.; Ye, X.; Supko, J.G.; Hilderbrand, S.L.; Phuphanich, S.; Nabors, L.B.; Rosenfeld, M.R.; Mikkelsen, T.; Grossman, S.A. NABTT 0502: A Phase II and Pharmacokinetic Study of Erlotinib and Sorafenib for Patients with Progressive or Recurrent Glioblastoma Multiforme. Neuro-Oncology 2013, 15, 490–496. [Google Scholar] [CrossRef] [Green Version]
- Raizer, J.J.; Giglio, P.; Hu, J.; Groves, M.; Merrell, R.; Conrad, C.; Phuphanich, S.; Puduvalli, V.K.; Loghin, M.; Paleologos, N.; et al. A Phase II Study of Bevacizumab and Erlotinib after Radiation and Temozolomide in MGMT Unmethylated GBM Patients. J. Neurooncol. 2016, 126, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Peereboom, D.M.; Shepard, D.R.; Ahluwalia, M.S.; Brewer, C.J.; Agarwal, N.; Stevens, G.H.J.; Suh, J.H.; Toms, S.A.; Vogelbaum, M.A.; Weil, R.J.; et al. Phase II Trial of Erlotinib with Temozolomide and Radiation in Patients with Newly Diagnosed Glioblastoma Multiforme. J. Neurooncol. 2010, 98, 93–99. [Google Scholar] [CrossRef]
- Reardon, D.A.; Desjardins, A.; Vredenburgh, J.J.; Gururangan, S.; Friedman, A.H.; Herndon, J.E.; Marcello, J.; Norfleet, J.A.; McLendon, R.E.; Sampson, J.H.; et al. Phase 2 Trial of Erlotinib plus Sirolimus in Adults with Recurrent Glioblastoma. J. Neurooncol. 2010, 96, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Sathornsumetee, S.; Desjardins, A.; Vredenburgh, J.J.; McLendon, R.E.; Marcello, J.; Herndon, J.E.; Mathe, A.; Hamilton, M.; Rich, J.N.; Norfleet, J.A.; et al. Phase II Trial of Bevacizumab and Erlotinib in Patients with Recurrent Malignant Glioma. Neuro-Oncology 2010, 12, 1300–1310. [Google Scholar] [CrossRef] [Green Version]
- van den Bent, M.J.; Brandes, A.A.; Rampling, R.; Kouwenhoven, M.C.M.; Kros, J.M.; Carpentier, A.F.; Clement, P.M.; Frenay, M.; Campone, M.; Baurain, J.-F.; et al. Randomized Phase II Trial of Erlotinib versus Temozolomide or Carmustine in Recurrent Glioblastoma: EORTC Brain Tumor Group Study 26034. J. Clin. Oncol. 2009, 27, 1268–1274. [Google Scholar] [CrossRef] [Green Version]
- Kesavabhotla, K.; Schlaff, C.D.; Shin, B.; Mubita, L.; Kaplan, R.; Tsiouris, A.J.; Pannullo, S.C.; Christos, P.; Lavi, E.; Scheff, R.; et al. Phase I/II Study of Oral Erlotinib for Treatment of Relapsed/Refractory Glioblastoma Multiforme and Anaplastic Astrocytoma. J. Exp. Ther. Oncol. 2012, 10, 71–81. [Google Scholar] [PubMed]
- Wen, P.Y.; Chang, S.M.; Lamborn, K.R.; Kuhn, J.G.; Norden, A.D.; Cloughesy, T.F.; Robins, H.I.; Lieberman, F.S.; Gilbert, M.R.; Mehta, M.P.; et al. Phase I/II Study of Erlotinib and Temsirolimus for Patients with Recurrent Malignant Gliomas: North American Brain Tumor Consortium Trial 04-02. Neuro-Oncology 2014, 16, 567–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raizer, J.J.; Abrey, L.E.; Lassman, A.B.; Chang, S.M.; Lamborn, K.R.; Kuhn, J.G.; Yung, W.K.A.; Gilbert, M.R.; Aldape, K.A.; Wen, P.Y.; et al. A Phase II Trial of Erlotinib in Patients with Recurrent Malignant Gliomas and Nonprogressive Glioblastoma Multiforme Postradiation Therapy. Neuro-Oncology 2010, 12, 95–103. [Google Scholar] [CrossRef]
- Hegi, M.E.; Diserens, A.-C.; Bady, P.; Kamoshima, Y.; Kouwenhoven, M.C.M.; Delorenzi, M.; Lambiv, W.L.; Hamou, M.-F.; Matter, M.S.; Koch, A.; et al. Pathway Analysis of Glioblastoma Tissue after Preoperative Treatment with the EGFR Tyrosine Kinase Inhibitor Gefitinib--a Phase II Trial. Mol. Cancer Ther. 2011, 10, 1102–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rich, J.N.; Reardon, D.A.; Peery, T.; Dowell, J.M.; Quinn, J.A.; Penne, K.L.; Wikstrand, C.J.; Van Duyn, L.B.; Dancey, J.E.; McLendon, R.E.; et al. Phase II Trial of Gefitinib in Recurrent Glioblastoma. J. Clin. Oncol. 2004, 22, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Chakravarti, A.; Wang, M.; Robins, H.I.; Lautenschlaeger, T.; Curran, W.J.; Brachman, D.G.; Schultz, C.J.; Choucair, A.; Dolled-Filhart, M.; Christiansen, J.; et al. RTOG 0211: A Phase 1/2 Study of Radiation Therapy with Concurrent Gefitinib for Newly Diagnosed Glioblastoma Patients. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 1206–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reardon, D.A.; Nabors, L.B.; Mason, W.P.; Perry, J.R.; Shapiro, W.; Kavan, P.; Mathieu, D.; Phuphanich, S.; Cseh, A.; Fu, Y.; et al. Phase I/Randomized Phase II Study of Afatinib, an Irreversible ErbB Family Blocker, with or without Protracted Temozolomide in Adults with Recurrent Glioblastoma. Neuro-Oncology 2015, 17, 430–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sepúlveda-Sánchez, J.M.; Vaz, M.Á.; Balañá, C.; Gil-Gil, M.; Reynés, G.; Gallego, Ó.; Martínez-García, M.; Vicente, E.; Quindós, M.; Luque, R.; et al. Phase II Trial of Dacomitinib, a Pan–Human EGFR Tyrosine Kinase Inhibitor, in Recurrent Glioblastoma Patients with EGFR Amplification. Neuro-Oncology 2017, 19, 1522–1531. [Google Scholar] [CrossRef] [Green Version]
- Reardon, D.A.; Groves, M.D.; Wen, P.Y.; Nabors, L.; Mikkelsen, T.; Rosenfeld, S.; Raizer, J.; Barriuso, J.; McLendon, R.E.; Suttle, A.B.; et al. A Phase I/II Trial of Pazopanib in Combination with Lapatinib in Adult Patients with Relapsed Malignant Glioma. Clin. Cancer Res. 2013, 19, 900–908. [Google Scholar] [CrossRef] [Green Version]
- Neyns, B.; Sadones, J.; Joosens, E.; Bouttens, F.; Verbeke, L.; Baurain, J.-F.; D’Hondt, L.; Strauven, T.; Chaskis, C.; In’t Veld, P.; et al. Stratified Phase II Trial of Cetuximab in Patients with Recurrent High-Grade Glioma. Ann. Oncol. 2009, 20, 1596–1603. [Google Scholar] [CrossRef]
- Solomon, M.T.; Miranda, N.; Jorrín, E.; Chon, I.; Marinello, J.J.; Alert, J.; Lorenzo-Luaces, P.; Crombet, T. Nimotuzumab in Combination with Radiotherapy in High Grade Glioma Patients: A Single Institution Experience. Cancer Biol. Ther. 2014, 15, 504–509. [Google Scholar] [CrossRef] [Green Version]
- Nitta, Y.; Shimizu, S.; Shishido-Hara, Y.; Suzuki, K.; Shiokawa, Y.; Nagane, M. Nimotuzumab Enhances Temozolomide-Induced Growth Suppression of Glioma Cells Expressing Mutant EGFR in Vivo. Cancer Med. 2016, 5, 486–499. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.; Yoo, J.; Kim, M.-S.; Hur, M.; Lee, E.H.; Hur, H.-S.; Lee, J.-C.; Lee, S.-N.; Park, T.W.; Lee, K.; et al. GC1118, an Anti-EGFR Antibody with a Distinct Binding Epitope and Superior Inhibitory Activity against High-Affinity EGFR Ligands. Mol. Cancer Ther. 2016, 15, 251–263. [Google Scholar] [CrossRef] [Green Version]
- Iida, M.; Brand, T.M.; Starr, M.M.; Li, C.; Huppert, E.J.; Luthar, N.; Pedersen, M.W.; Horak, I.D.; Kragh, M.; Wheeler, D.L. Sym004, a Novel EGFR Antibody Mixture, Can Overcome Acquired Resistance to Cetuximab. Neoplasia 2013, 15, 1196–1206. [Google Scholar] [CrossRef]
- Montagut, C.; Argilés, G.; Ciardiello, F.; Poulsen, T.T.; Dienstmann, R.; Kragh, M.; Kopetz, S.; Lindsted, T.; Ding, C.; Vidal, J.; et al. Efficacy of Sym004 in Patients with Metastatic Colorectal Cancer with Acquired Resistance to Anti-EGFR Therapy and Molecularly Selected by Circulating Tumor DNA Analyses: A Phase 2 Randomized Clinical Trial. JAMA Oncol. 2018, 4, e175245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, A.C.; Boghaert, E.R.; Vaidya, K.S.; Mitten, M.J.; Norvell, S.; Falls, H.D.; DeVries, P.J.; Cheng, D.; Meulbroek, J.A.; Buchanan, F.G.; et al. ABT-414, an Antibody-Drug Conjugate Targeting a Tumor-Selective EGFR Epitope. Mol. Cancer Ther. 2016, 15, 661–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Den Bent, M.; Eoli, M.; Sepulveda, J.M.; Smits, M.; Walenkamp, A.; Frenel, J.-S.; Franceschi, E.; Clement, P.M.; Chinot, O.; De Vos, F.; et al. INTELLANCE 2/EORTC 1410 Randomized Phase II Study of Depatux-M Alone and with Temozolomide vs Temozolomide or Lomustine in Recurrent EGFR Amplified Glioblastoma. Neuro-Oncology 2020, 22, 684–693. [Google Scholar] [CrossRef]
- Clarke, J.L.; Molinaro, A.M.; Phillips, J.J.; Butowski, N.A.; Chang, S.M.; Perry, A.; Costello, J.F.; DeSilva, A.A.; Rabbitt, J.E.; Prados, M.D. A Single-Institution Phase II Trial of Radiation, Temozolomide, Erlotinib, and Bevacizumab for Initial Treatment of Glioblastoma. Neuro-Oncology 2014, 16, 984–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uhm, J.H.; Ballman, K.V.; Wu, W.; Giannini, C.; Krauss, J.C.; Buckner, J.C.; James, C.D.; Scheithauer, B.W.; Behrens, R.J.; Flynn, P.J.; et al. Phase II Evaluation of Gefitinib in Patients with Newly Diagnosed Grade 4 Astrocytoma: Mayo/North Central Cancer Treatment Group Study N0074. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 347–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arkhipov, A.; Shan, Y.; Kim, E.T.; Dror, R.O.; Shaw, D.E. Her2 Activation Mechanism Reflects Evolutionary Preservation of Asymmetric Ectodomain Dimers in the Human EGFR Family. eLife 2013, 2, e00708. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, N.; Iqbal, N. Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Implications. Mol. Biol. Int. 2014, 2014. [Google Scholar] [CrossRef]
- Thiessen, B.; Stewart, C.; Tsao, M.; Kamel-Reid, S.; Schaiquevich, P.; Mason, W.; Easaw, J.; Belanger, K.; Forsyth, P.; McIntosh, L.; et al. A Phase I/II Trial of GW572016 (Lapatinib) in Recurrent Glioblastoma Multiforme: Clinical Outcomes, Pharmacokinetics and Molecular Correlation. Cancer Chemother. Pharmacol. 2010, 65, 353–361. [Google Scholar] [CrossRef]
- Yu, A.; Faiq, N.; Green, S.; Lai, A.; Green, R.; Hu, J.; Cloughesy, T.F.; Mellinghoff, I.; Nghiemphu, P.L. Report of Safety of Pulse Dosing of Lapatinib with Temozolomide and Radiation Therapy for Newly-Diagnosed Glioblastoma in a Pilot Phase II Study. J. Neurooncol. 2017, 134, 357–362. [Google Scholar] [CrossRef]
- Cicenas, J.; Cicenas, E. Multi-Kinase Inhibitors, AURKs and Cancer. Med. Oncol. 2016, 33, 43. [Google Scholar] [CrossRef]
- Shen, G.; Zheng, F.; Ren, D.; Du, F.; Dong, Q.; Wang, Z.; Zhao, F.; Ahmad, R.; Zhao, J. Anlotinib: A Novel Multi-Targeting Tyrosine Kinase Inhibitor in Clinical Development. J. Hematol. Oncol. 2018, 11, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goh, K.C.; Novotny-Diermayr, V.; Hart, S.; Ong, L.C.; Loh, Y.K.; Cheong, A.; Tan, Y.C.; Hu, C.; Jayaraman, R.; William, A.D.; et al. TG02, a Novel Oral Multi-Kinase Inhibitor of CDKs, JAK2 and FLT3 with Potent Anti-Leukemic Properties. Leukemia 2012, 26, 236–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, E.; Li, X.; He, S.; Li, X.; He, S. The Critical Role of the Interplays of EphrinB2/EphB4 and VEGF in the Induction of Angiogenesis. Mol. Biol. Rep. 2020, 47, 4681–4690. [Google Scholar] [CrossRef] [PubMed]
- Jo, M.-Y.; Kim, Y.G.; Kim, Y.; Lee, S.J.; Kim, M.H.; Joo, K.M.; Kim, H.H.; Nam, D.-H. Combined Therapy of Temozolomide and ZD6474 (Vandetanib) Effectively Reduces Glioblastoma Tumor Volume through Anti-Angiogenic and Anti-Proliferative Mechanisms. Mol. Med. Rep. 2012, 6, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.Q.; Kaley, T.J.; Duda, D.G.; Schiff, D.; Lassman, A.B.; Wong, E.T.; Mikkelsen, T.; Purow, B.W.; Muzikansky, A.; Ancukiewicz, M.; et al. A Multicenter, Phase II, Randomized, Noncomparative Clinical Trial of Radiation and Temozolomide with or without Vandetanib in Newly Diagnosed Glioblastoma Patients. Clin. Cancer Res. 2015, 21, 3610–3618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNeill, K.; Iwamoto, F.; Kreisl, T.; Sul, J.; Shih, J.; Fine, H. AT-39A randomized phase II trial of vandetanib (ZD6474) in combination with carboplatin versus carboplatin alone in adults with recurrent glioblastoma. Neuro-Oncology 2014, 16, v17. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.W.; Dietrich, J.; Gerstner, E.R.; Norden, A.D.; Rinne, M.L.; Cahill, D.P.; Stemmer-Rachamimov, A.; Wen, P.Y.; Betensky, R.A.; Giorgio, D.H.; et al. Phase 2 Study of Bosutinib, a Src Inhibitor, in Adults with Recurrent Glioblastoma. J. Neurooncol. 2015, 121, 557–563. [Google Scholar] [CrossRef] [Green Version]
- Joensuu, H.; Puputti, M.; Sihto, H.; Tynninen, O.; Nupponen, N.N. Amplification of Genes Encoding KIT, PDGFRalpha and VEGFR2 Receptor Tyrosine Kinases Is Frequent in Glioblastoma Multiforme. J. Pathol. 2005, 207, 224–231. [Google Scholar] [CrossRef]
- Reardon, D.A.; Dresemann, G.; Taillibert, S.; Campone, M.; van den Bent, M.; Clement, P.; Blomquist, E.; Gordower, L.; Schultz, H.; Raizer, J.; et al. Multicentre Phase II Studies Evaluating Imatinib plus Hydroxyurea in Patients with Progressive Glioblastoma. Br. J. Cancer 2009, 101, 1995–2004. [Google Scholar] [CrossRef]
- Lassman, A.B.; Pugh, S.L.; Gilbert, M.R.; Aldape, K.D.; Geinoz, S.; Beumer, J.H.; Christner, S.M.; Komaki, R.; DeAngelis, L.M.; Gaur, R.; et al. Phase 2 Trial of Dasatinib in Target-Selected Patients with Recurrent Glioblastoma (RTOG 0627). Neuro-Oncology 2015, 17, 992–998. [Google Scholar] [CrossRef] [Green Version]
- Odia, Y.; Sul, J.; Shih, J.H.; Kreisl, T.N.; Butman, J.A.; Iwamoto, F.M.; Fine, H.A. A Phase II Trial of Tandutinib (MLN 518) in Combination with Bevacizumab for Patients with Recurrent Glioblastoma. CNS Oncol. 2016, 5, 59–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batchelor, T.T.; Gerstner, E.R.; Ye, X.; Desideri, S.; Duda, D.G.; Peereboom, D.; Lesser, G.J.; Chowdhary, S.; Wen, P.Y.; Grossman, S.; et al. Feasibility, Phase I, and Phase II Studies of Tandutinib, an Oral Platelet-Derived Growth Factor Receptor-β Tyrosine Kinase Inhibitor, in Patients with Recurrent Glioblastoma. Neuro-Oncology 2017, 19, 567–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dresemann, G.; Weller, M.; Rosenthal, M.A.; Wedding, U.; Wagner, W.; Engel, E.; Heinrich, B.; Mayer-Steinacker, R.; Karup-Hansen, A.; Fluge, O.; et al. Imatinib in Combination with Hydroxyurea versus Hydroxyurea Alone as Oral Therapy in Patients with Progressive Pretreated Glioblastoma Resistant to Standard Dose Temozolomide. J. Neurooncol. 2010, 96, 393–402. [Google Scholar] [CrossRef] [Green Version]
- Wen, P.Y.; Yung, W.K.A.; Lamborn, K.R.; Dahia, P.L.; Wang, Y.; Peng, B.; Abrey, L.E.; Raizer, J.; Cloughesy, T.F.; Fink, K.; et al. Phase I/II Study of Imatinib Mesylate for Recurrent Malignant Gliomas: North American Brain Tumor Consortium Study 99-08. Clin. Cancer Res. 2006, 12, 4899–4907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raymond, E.; Brandes, A.A.; Dittrich, C.; Fumoleau, P.; Coudert, B.; Clement, P.M.J.; Frenay, M.; Rampling, R.; Stupp, R.; Kros, J.M.; et al. Phase II Study of Imatinib in Patients with Recurrent Gliomas of Various Histologies: A European Organisation for Research and Treatment of Cancer Brain Tumor Group Study. J. Clin. Oncol. 2008, 26, 4659–4665. [Google Scholar] [CrossRef] [Green Version]
- Galanis, E.; Anderson, S.K.; Twohy, E.L.; Carrero, X.W.; Dixon, J.G.; Tran, D.D.; Jeyapalan, S.A.; Anderson, D.M.; Kaufmann, T.J.; Feathers, R.W.; et al. A Phase 1 and Randomized, Placebo-Controlled Phase 2 Trial of Bevacizumab plus Dasatinib in Patients with Recurrent Glioblastoma: Alliance/North Central Cancer Treatment Group N0872. Cancer 2019, 125, 3790–3800. [Google Scholar] [CrossRef]
- Franceschi, E.; Stupp, R.; van den Bent, M.J.; van Herpen, C.; Laigle Donadey, F.; Gorlia, T.; Hegi, M.; Lhermitte, B.; Strauss, L.C.; Allgeier, A.; et al. EORTC 26083 Phase I/II Trial of Dasatinib in Combination with CCNU in Patients with Recurrent Glioblastoma. Neuro-Oncology 2012, 14, 1503–1510. [Google Scholar] [CrossRef] [Green Version]
- Balaña, C.; Gil, M.J.; Perez, P.; Reynes, G.; Gallego, O.; Ribalta, T.; Capellades, J.; Gonzalez, S.; Verger, E. Sunitinib Administered Prior to Radiotherapy in Patients with Non-Resectable Glioblastoma: Results of a Phase II Study. Target. Oncol. 2014, 9, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Hutterer, M.; Nowosielski, M.; Haybaeck, J.; Embacher, S.; Stockhammer, F.; Gotwald, T.; Holzner, B.; Capper, D.; Preusser, M.; Marosi, C.; et al. A Single-Arm Phase II Austrian/German Multicenter Trial on Continuous Daily Sunitinib in Primary Glioblastoma at First Recurrence (SURGE 01-07). Neuro-Oncology 2014, 16, 92–102. [Google Scholar] [CrossRef] [Green Version]
- Pan, E.; Yu, D.; Yue, B.; Potthast, L.; Chowdhary, S.; Smith, P.; Chamberlain, M. A Prospective Phase II Single-Institution Trial of Sunitinib for Recurrent Malignant Glioma. J. Neurooncol. 2012, 110, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Phuphanich, S.; Raizer, J.; Chamberlain, M.; Canelos, P.; Narwal, R.; Hong, S.; Miday, R.; Nade, M.; Laubscher, K. Phase II Study of MEDI-575, an Anti-Platelet-Derived Growth Factor-α Antibody, in Patients with Recurrent Glioblastoma. J. Neurooncol. 2017, 131, 185–191. [Google Scholar] [CrossRef]
- Lee, E.Q.; Muzikansky, A.; Reardon, D.A.; Dietrich, J.; Nayak, L.; Duda, D.G.; Chukwueke, U.N.; Beroukhim, R.; Doherty, L.M.; Kane, C.; et al. Phase II Trial of Ponatinib in Patients with Bevacizumab-Refractory Glioblastoma. J. Clin. Oncol. 2018, 36, 2032. [Google Scholar] [CrossRef]
- Aiken, R.; Axelson, M.; Harmenberg, J.; Klockare, M.; Larsson, O.; Wassberg, C. Phase I Clinical Trial of AXL1717 for Treatment of Relapsed Malignant Astrocytomas: Analysis of Dose and Response. Oncotarget 2017, 8, 81501–81510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grisanti, S.; Ferrari, V.D.; Buglione, M.; Agazzi, G.M.; Liserre, R.; Poliani, L.; Buttolo, L.; Gipponi, S.; Pedersini, R.; Consoli, F.; et al. Second Line Treatment of Recurrent Glioblastoma with Sunitinib: Results of a Phase II Study and Systematic Review of Literature. J. Neurosurg. Sci. 2016, 63, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Fondevila, F.; Méndez-Blanco, C.; Fernández-Palanca, P.; González-Gallego, J.; Mauriz, J.L. Anti-Tumoral Activity of Single and Combined Regorafenib Treatments in Preclinical Models of Liver and Gastrointestinal Cancers. Exp. Mol. Med. 2019, 51, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Hare, T.; Shakespeare, W.C.; Zhu, X.; Eide, C.A.; Rivera, V.M.; Wang, F.; Adrian, L.T.; Zhou, T.; Huang, W.-S.; Xu, Q.; et al. AP24534, a Pan-BCR-ABL Inhibitor for Chronic Myeloid Leukemia, Potently Inhibits the T315I Mutant and Overcomes Mutation-Based Resistance. Cancer Cell 2009, 16, 401–412. [Google Scholar] [CrossRef] [Green Version]
- Shah, G.D.; Loizos, N.; Youssoufian, H.; Schwartz, J.D.; Rowinsky, E.K. Rationale for the Development of IMC-3G3, a Fully Human Immunoglobulin G Subclass 1 Monoclonal Antibody Targeting the Platelet-Derived Growth Factor Receptor Alpha. Cancer 2010, 116, 1018–1026. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, J.; Li, M.; Zhang, S.; Lu, Y.; Liang, Y.; Zhao, K.; Li, Y. Insulin-like Growth Factor 1/Insulin-like Growth Factor 1 Receptor Signaling Protects against Cell Apoptosis through the PI3K/AKT Pathway in Glioblastoma Cells. Exp. Ther. Med. 2018, 16, 1477–1482. [Google Scholar] [CrossRef]
- Maris, C.; D’Haene, N.; Trépant, A.-L.; Le Mercier, M.; Sauvage, S.; Allard, J.; Rorive, S.; Demetter, P.; Decaestecker, C.; Salmon, I. IGF-IR: A New Prognostic Biomarker for Human Glioblastoma. Br. J. Cancer 2015, 113, 729–737. [Google Scholar] [CrossRef]
- Jimenez-Pascual, A.; Siebzehnrubl, F.A. Fibroblast Growth Factor Receptor Functions in Glioblastoma. Cells 2019, 8, 715. [Google Scholar] [CrossRef] [Green Version]
- Lasorella, A.; Sanson, M.; Iavarone, A. FGFR-TACC Gene Fusions in Human Glioma. Neuro-Oncology 2017, 19, 475–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawauchi, D.; Takahashi, M.; Yamamuro, S.; Kobayashi, T.; Uchida, E.; Iwadate, Y.; Ichimura, K.; Tomiyama, A. ET-05 Alectinib and Ceritinib, the Second-Generation ALK Inhibitors, Effectively Induce Glioblastoma Cell Death. Neuro-Oncol. Adv. 2020, 2, ii6. [Google Scholar] [CrossRef]
- Lassen, U.; Sorensen, M.; Gaziel, T.B.; Hasselbalch, B.; Poulsen, H.S. Phase II Study of Bevacizumab and Temsirolimus Combination Therapy for Recurrent Glioblastoma Multiforme. Anticancer Res. 2013, 33, 1657–1660. [Google Scholar]
- Galanis, E.; Buckner, J.C.; Maurer, M.J.; Kreisberg, J.I.; Ballman, K.; Boni, J.; Peralba, J.M.; Jenkins, R.B.; Dakhil, S.R.; Morton, R.F.; et al. Phase II Trial of Temsirolimus (CCI-779) in Recurrent Glioblastoma Multiforme: A North Central Cancer Treatment Group Study. J. Clin. Oncol. 2005, 23, 5294–5304. [Google Scholar] [CrossRef]
- Schiff, D.; Jaeckle, K.A.; Anderson, S.K.; Galanis, E.; Giannini, C.; Buckner, J.C.; Stella, P.; Flynn, P.J.; Erickson, B.J.; Schwerkoske, J.F.; et al. Phase I/II Trial of Temsirolimus and Sorafenib in Treatment of Patients with Recurrent Glioblastoma: North Central Cancer Treatment Group Study/Alliance N0572. Cancer 2018, 124, 1455–1463. [Google Scholar] [CrossRef] [PubMed]
- Wick, W.; Gorlia, T.; Bady, P.; Platten, M.; van den Bent, M.J.; Taphoorn, M.J.B.; Steuve, J.; Brandes, A.A.; Hamou, M.-F.; Wick, A.; et al. Phase II Study of Radiotherapy and Temsirolimus versus Radiochemotherapy with Temozolomide in Patients with Newly Diagnosed Glioblastoma without MGMT Promoter Hypermethylation (EORTC 26082). Clin. Cancer Res. 2016, 22, 4797–4806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, S.M.; Wen, P.; Cloughesy, T.; Greenberg, H.; Schiff, D.; Conrad, C.; Fink, K.; Robins, H.I.; De Angelis, L.; Raizer, J.; et al. Phase II Study of CCI-779 in Patients with Recurrent Glioblastoma Multiforme. Investig. New Drugs 2005, 23, 357–361. [Google Scholar] [CrossRef]
- Hainsworth, J.D.; Shih, K.C.; Shepard, G.C.; Tillinghast, G.W.; Brinker, B.T.; Spigel, D.R. Phase II Study of Concurrent Radiation Therapy, Temozolomide, and Bevacizumab Followed by Bevacizumab/Everolimus as First-Line Treatment for Patients with Glioblastoma. Clin. Adv. Hematol. Oncol. 2012, 10, 240–246. [Google Scholar] [PubMed]
- Ma, D.J.; Galanis, E.; Anderson, S.K.; Schiff, D.; Kaufmann, T.J.; Peller, P.J.; Giannini, C.; Brown, P.D.; Uhm, J.H.; McGraw, S.; et al. A Phase II Trial of Everolimus, Temozolomide, and Radiotherapy in Patients with Newly Diagnosed Glioblastoma: NCCTG N057K. Neuro-Oncology 2015, 17, 1261–1269. [Google Scholar] [CrossRef]
- Chinnaiyan, P.; Won, M.; Wen, P.Y.; Rojiani, A.M.; Werner-Wasik, M.; Shih, H.A.; Ashby, L.S.; Michael Yu, H.-H.; Stieber, V.W.; Malone, S.C.; et al. A Randomized Phase II Study of Everolimus in Combination with Chemoradiation in Newly Diagnosed Glioblastoma: Results of NRG Oncology RTOG 0913. Neuro-Oncology 2018, 20, 666–673. [Google Scholar] [CrossRef] [Green Version]
- Pitz, M.W.; Eisenhauer, E.A.; MacNeil, M.V.; Thiessen, B.; Easaw, J.C.; Macdonald, D.R.; Eisenstat, D.D.; Kakumanu, A.S.; Salim, M.; Chalchal, H.; et al. Phase II Study of PX-866 in Recurrent Glioblastoma. Neuro-Oncology 2015, 17, 1270–1274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wick, W.; Puduvalli, V.K.; Chamberlain, M.C.; van den Bent, M.J.; Carpentier, A.F.; Cher, L.M.; Mason, W.; Weller, M.; Hong, S.; Musib, L.; et al. Phase III Study of Enzastaurin Compared with Lomustine in the Treatment of Recurrent Intracranial Glioblastoma. J. Clin. Oncol. 2010, 28, 1168–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wick, W.; Steinbach, J.P.; Platten, M.; Hartmann, C.; Wenz, F.; von Deimling, A.; Shei, P.; Moreau-Donnet, V.; Stoffregen, C.; Combs, S.E. Enzastaurin before and Concomitant with Radiation Therapy, Followed by Enzastaurin Maintenance Therapy, in Patients with Newly Diagnosed Glioblastoma without MGMT Promoter Hypermethylation. Neuro-Oncology 2013, 15, 1405–1412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odia, Y.; Iwamoto, F.M.; Moustakas, A.; Fraum, T.J.; Salgado, C.A.; Li, A.; Kreisl, T.N.; Sul, J.; Butman, J.A.; Fine, H.A. A Phase II Trial of Enzastaurin (LY317615) in Combination with Bevacizumab in Adults with Recurrent Malignant Gliomas. J. Neurooncol. 2016, 127, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Chandrika, G.; Natesh, K.; Ranade, D.; Chugh, A.; Shastry, P. Mammalian Target of Rapamycin Inhibitors, Temsirolimus and Torin 1, Attenuate Stemness-Associated Properties and Expression of Mesenchymal Markers Promoted by Phorbol-Myristate-Acetate and Oncostatin-M in Glioblastoma Cells. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2017, 39. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.Q.; Kuhn, J.; Lamborn, K.R.; Abrey, L.; DeAngelis, L.M.; Lieberman, F.; Robins, H.I.; Chang, S.M.; Yung, W.K.A.; Drappatz, J.; et al. Phase I/II Study of Sorafenib in Combination with Temsirolimus for Recurrent Glioblastoma or Gliosarcoma: North American Brain Tumor Consortium Study 05-02. Neuro-Oncology 2012, 14, 1511–1518. [Google Scholar] [CrossRef] [Green Version]
- Arcella, A.; Biagioni, F.; Antonietta Oliva, M.; Bucci, D.; Frati, A.; Esposito, V.; Cantore, G.; Giangaspero, F.; Fornai, F. Rapamycin Inhibits the Growth of Glioblastoma. Brain Res. 2013, 1495, 37–51. [Google Scholar] [CrossRef]
- Mendiburu-Eliçabe, M.; Gil-Ranedo, J.; Izquierdo, M. Efficacy of Rapamycin against Glioblastoma Cancer Stem Cells. Clin. Transl. Oncol. 2014, 16, 495–502. [Google Scholar] [CrossRef]
- Ferrucci, M.; Biagioni, F.; Lenzi, P.; Gambardella, S.; Ferese, R.; Calierno, M.T.; Falleni, A.; Grimaldi, A.; Frati, A.; Esposito, V.; et al. Rapamycin Promotes Differentiation Increasing βIII-Tubulin, NeuN, and NeuroD While Suppressing Nestin Expression in Glioblastoma Cells. Oncotarget 2017, 8, 29574–29599. [Google Scholar] [CrossRef] [Green Version]
- Kahn, J.; Hayman, T.J.; Jamal, M.; Rath, B.H.; Kramp, T.; Camphausen, K.; Tofilon, P.J. The MTORC1/MTORC2 Inhibitor AZD2014 Enhances the Radiosensitivity of Glioblastoma Stem-like Cells. Neuro-Oncology 2014, 16, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Shi, F.; Guo, H.; Zhang, R.; Liu, H.; Wu, L.; Wu, Q.; Liu, J.; Liu, T.; Zhang, Q. The PI3K Inhibitor GDC-0941 Enhances Radiosensitization and Reduces Chemoresistance to Temozolomide in GBM Cell Lines. Neuroscience 2017, 346, 298–308. [Google Scholar] [CrossRef]
- Netland, I.A.; Førde, H.E.; Sleire, L.; Leiss, L.; Rahman, M.A.; Skeie, B.S.; Miletic, H.; Enger, P.Ø.; Goplen, D. Treatment with the PI3K Inhibitor Buparlisib (NVP-BKM120) Suppresses the Growth of Established Patient-Derived GBM Xenografts and Prolongs Survival in Nude Rats. J. Neurooncol. 2016, 129, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Speranza, M.-C.; Nowicki, M.O.; Behera, P.; Cho, C.-F.; Chiocca, E.A.; Lawler, S.E. BKM-120 (Buparlisib): A Phosphatidyl-Inositol-3 Kinase Inhibitor with Anti-Invasive Properties in Glioblastoma. Sci. Rep. 2016, 6, 20189. [Google Scholar] [CrossRef] [Green Version]
- Wen, P.Y.; Touat, M.; Alexander, B.M.; Mellinghoff, I.K.; Ramkissoon, S.; McCluskey, C.S.; Pelton, K.; Haidar, S.; Basu, S.S.; Gaffey, S.C.; et al. Buparlisib in Patients with Recurrent Glioblastoma Harboring Phosphatidylinositol 3-Kinase Pathway Activation: An Open-Label, Multicenter, Multi-Arm, Phase II Trial. J. Clin. Oncol. 2019, 37, 741–750. [Google Scholar] [CrossRef]
- Koul, D.; Shen, R.; Kim, Y.-W.; Kondo, Y.; Lu, Y.; Bankson, J.; Ronen, S.M.; Kirkpatrick, D.L.; Powis, G.; Yung, W.K.A. Cellular and in Vivo Activity of a Novel PI3K Inhibitor, PX-866, against Human Glioblastoma. Neuro-Oncology 2010, 12, 559–569. [Google Scholar] [CrossRef]
- Ramezani, S.; Vousooghi, N.; Ramezani Kapourchali, F.; Joghataei, M.T. Perifosine Enhances Bevacizumab-Induced Apoptosis and Therapeutic Efficacy by Targeting PI3K/AKT Pathway in a Glioblastoma Heterotopic Model. Apoptosis Int. J. Program. Cell Death 2017, 22, 1025–1034. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Basanta, M.; Fang, P.; Maity, A.; Hahn, S.M.; Lustig, R.A.; Dorsey, J.F. A Phase I Study of Nelfinavir Concurrent with Temozolomide and Radiotherapy in Patients with Glioblastoma Multiforme. J. Neurooncol. 2014, 116, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Narayan, R.S.; Fedrigo, C.A.; Brands, E.; Dik, R.; Stalpers, L.J.A.; Baumert, B.G.; Slotman, B.J.; Westerman, B.A.; Peters, G.J.; Sminia, P. The Allosteric AKT Inhibitor MK2206 Shows a Synergistic Interaction with Chemotherapy and Radiotherapy in Glioblastoma Spheroid Cultures. BMC Cancer 2017, 17, 204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mason, W.P.; Belanger, K.; Nicholas, G.; Vallières, I.; Mathieu, D.; Kavan, P.; Desjardins, A.; Omuro, A.; Reymond, D. A Phase II Study of the Ras-MAPK Signaling Pathway Inhibitor TLN-4601 in Patients with Glioblastoma at First Progression. J. Neurooncol. 2012, 107, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Hainsworth, J.D.; Ervin, T.; Friedman, E.; Priego, V.; Murphy, P.B.; Clark, B.L.; Lamar, R.E. Concurrent Radiotherapy and Temozolomide Followed by Temozolomide and Sorafenib in the First-Line Treatment of Patients with Glioblastoma Multiforme. Cancer 2010, 116, 3663–3669. [Google Scholar] [CrossRef] [PubMed]
- Reardon, D.A.; Vredenburgh, J.J.; Desjardins, A.; Peters, K.; Gururangan, S.; Sampson, J.H.; Marcello, J.; Herndon, J.E.; McLendon, R.E.; Janney, D.; et al. Effect of CYP3A-Inducing Anti-Epileptics on Sorafenib Exposure: Results of a Phase II Study of Sorafenib plus Daily Temozolomide in Adults with Recurrent Glioblastoma. J. Neurooncol. 2011, 101, 57–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galanis, E.; Anderson, S.K.; Lafky, J.M.; Uhm, J.H.; Giannini, C.; Kumar, S.K.; Kimlinger, T.K.; Northfelt, D.W.; Flynn, P.J.; Jaeckle, K.A.; et al. Phase II Study of Bevacizumab in Combination with Sorafenib in Recurrent Glioblastoma (N0776): A North Central Cancer Treatment Group Trial. Clin. Cancer Res. 2013, 19, 4816–4823. [Google Scholar] [CrossRef] [Green Version]
- Altwairgi, A.K.; Alghareeb, W.; Alnajjar, F.; Alsaeed, E.; Balbaid, A.; Alhussain, H.; Aldanan, S.; Orz, Y.; Lari, A.; Alsharm, A. Phase II Study of Atorvastatin in Combination with Radiotherapy and Temozolomide In Patients with Glioblastoma (ART): Interim Analysis Report. Ann. Oncol. 2016, 27, vi103–vi113. [Google Scholar] [CrossRef]
- Wilhelm, S.; Carter, C.; Lynch, M.; Lowinger, T.; Dumas, J.; Smith, R.A.; Schwartz, B.; Simantov, R.; Kelley, S. Discovery and Development of Sorafenib: A Multikinase Inhibitor for Treating Cancer. Nat. Rev. Drug Discov. 2006, 5, 835–844. [Google Scholar] [CrossRef] [PubMed]
- Jakubowicz-Gil, J.; Bądziul, D.; Langner, E.; Wertel, I.; Zając, A.; Rzeski, W. Temozolomide and Sorafenib as Programmed Cell Death Inducers of Human Glioma Cells. Pharmacol. Rep. PR 2017, 69, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Riedel, M.; Struve, N.; Müller-Goebel, J.; Köcher, S.; Petersen, C.; Dikomey, E.; Rothkamm, K.; Kriegs, M. Sorafenib Inhibits Cell Growth but Fails to Enhance Radio- and Chemosensitivity of Glioblastoma Cell Lines. Oncotarget 2016, 7, 61988–61995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zustovich, F.; Landi, L.; Lombardi, G.; Porta, C.; Galli, L.; Fontana, A.; Amoroso, D.; Galli, C.; Andreuccetti, M.; Falcone, A.; et al. Sorafenib plus Daily Low-Dose Temozolomide for Relapsed Glioblastoma: A Phase II Study. Anticancer Res. 2013, 33, 3487–3494. [Google Scholar] [CrossRef]
- Peng, P.; Wei, W.; Long, C.; Li, J. Atorvastatin Augments Temozolomide’s Efficacy in Glioblastoma via Prenylation-Dependent Inhibition of Ras Signaling. Biochem. Biophys. Res. Commun. 2017, 489, 293–298. [Google Scholar] [CrossRef]
- Azaro, A.; Plummer, E.R.; Urruticoechea, A.; Rodon, J.; Haris, N.R.M.; Veal, G.; Perier, A.; Tur, V.; Escriba, P.V.; Busquets, X.; et al. Final Report of a Phase I Study of 2-Hydroxyoleic Acid (2OHOA) a Novel Sphingomyelin Synthase Activator in Patients (Pt) with Advanced Solid Tumors (AST) Including Recurrent High Grade Gliomas (RHGG). J. Clin. Oncol. 2017, 35, 2554. [Google Scholar] [CrossRef]
- Escamilla-Ramírez, A.; Castillo-Rodríguez, R.A.; Zavala-Vega, S.; Jimenez-Farfan, D.; Anaya-Rubio, I.; Briseño, E.; Palencia, G.; Guevara, P.; Cruz-Salgado, A.; Sotelo, J.; et al. Autophagy as a Potential Therapy for Malignant Glioma. Pharmaceuticals 2020, 13, 156. [Google Scholar] [CrossRef]
- Kroemer, G.; Galluzzi, L.; Vandenabeele, P.; Abrams, J.; Alnemri, E.S.; Baehrecke, E.H.; Blagosklonny, M.V.; El-Deiry, W.S.; Golstein, P.; Green, D.R.; et al. Classification of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009, 16, 3–11. [Google Scholar] [CrossRef]
- Peter, M.E.; Krammer, P.H. The CD95(APO-1/Fas) DISC and Beyond. Cell Death Differ. 2003, 10, 26–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wick, W.; Fricke, H.; Junge, K.; Kobyakov, G.; Martens, T.; Heese, O.; Wiestler, B.; Schliesser, M.G.; von Deimling, A.; Pichler, J.; et al. A Phase II, Randomized, Study of Weekly APG101+reirradiation versus Reirradiation in Progressive Glioblastoma. Clin. Cancer Res. 2014, 20, 6304–6313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chi, A.S.; Tarapore, R.S.; Hall, M.D.; Shonka, N.; Gardner, S.; Umemura, Y.; Sumrall, A.; Khatib, Z.; Mueller, S.; Kline, C.; et al. Pediatric and Adult H3 K27M-Mutant Diffuse Midline Glioma Treated with the Selective DRD2 Antagonist ONC201. J. Neurooncol. 2019, 145, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Lustig, R.; Mikkelsen, T.; Lesser, G.; Grossman, S.; Ye, X.; Desideri, S.; Fisher, J.; Wright, J. Phase II Preradiation R115777 (Tipifarnib) in Newly Diagnosed GBM with Residual Enhancing Disease. Neuro-Oncology 2008, 10, 1004–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cloughesy, T.F.; Wen, P.Y.; Robins, H.I.; Chang, S.M.; Groves, M.D.; Fink, K.L.; Junck, L.; Schiff, D.; Abrey, L.; Gilbert, M.R.; et al. Phase II Trial of Tipifarnib in Patients with Recurrent Malignant Glioma Either Receiving or Not Receiving Enzyme-Inducing Antiepileptic Drugs: A North American Brain Tumor Consortium Study. J. Clin. Oncol. 2006, 24, 3651–3656. [Google Scholar] [CrossRef]
- Drachsler, M.; Kleber, S.; Mateos, A.; Volk, K.; Mohr, N.; Chen, S.; Cirovic, B.; Tüttenberg, J.; Gieffers, C.; Sykora, J.; et al. CD95 Maintains Stem Cell-like and Non-Classical EMT Programs in Primary Human Glioblastoma Cells. Cell Death Dis. 2016, 7, e2209. [Google Scholar] [CrossRef]
- Eisele, G.; Roth, P.; Hasenbach, K.; Aulwurm, S.; Wolpert, F.; Tabatabai, G.; Wick, W.; Weller, M. APO010, a Synthetic Hexameric CD95 Ligand, Induces Human Glioma Cell Death in Vitro and in Vivo. Neuro-Oncology 2011, 13, 155–164. [Google Scholar] [CrossRef]
- Ralff, M.D.; Lulla, A.R.; Wagner, J.; El-Deiry, W.S. ONC201: A New Treatment Option Being Tested Clinically for Recurrent Glioblastoma. Transl. Cancer Res. 2017, 6, S1239–S1243. [Google Scholar] [CrossRef]
- Kline, C.L.B.; Van den Heuvel, A.P.J.; Allen, J.E.; Prabhu, V.V.; Dicker, D.T.; El-Deiry, W.S. ONC201 Kills Solid Tumor Cells by Triggering an Integrated Stress Response Dependent on ATF4 Activation by Specific EIF2α Kinases. Sci. Signal. 2016, 9, ra18. [Google Scholar] [CrossRef] [Green Version]
- Arrillaga-Romany, I.; Chi, A.S.; Allen, J.E.; Oster, W.; Wen, P.Y.; Batchelor, T.T. A Phase 2 Study of the First Imipridone ONC201, a Selective DRD2 Antagonist for Oncology, Administered Every Three Weeks in Recurrent Glioblastoma. Oncotarget 2017, 8, 79298–79304. [Google Scholar] [CrossRef] [Green Version]
- Werry, E.L.; Barron, M.L.; Kassiou, M. TSPO as a Target for Glioblastoma Therapeutics. Biochem. Soc. Trans. 2015, 43, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Werry, E.L.; King, V.A.; Barron, M.L.; Banister, S.D.; Sokias, R.; Kassiou, M. Derivatives of the Pyrazolo[1,5-a]Pyrimidine Acetamide DPA-713 as Translocator Protein (TSPO) Ligands and pro-Apoptotic Agents in Human Glioblastoma. Eur. J. Pharm. Sci. 2017, 96, 186–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- England, B.; Huang, T.; Karsy, M. Current Understanding of the Role and Targeting of Tumor Suppressor P53 in Glioblastoma Multiforme. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2013, 34, 2063–2074. [Google Scholar] [CrossRef]
- Hong, B.; van den Heuvel, A.P.J.; Prabhu, V.V.; Zhang, S.; El-Deiry, W.S. Targeting Tumor Suppressor P53 for Cancer Therapy: Strategies, Challenges and Opportunities. Curr. Drug Targets 2014, 15, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-S.; Rait, A.; Kim, E.; Pirollo, K.F.; Chang, E.H. A Tumor-Targeting P53 Nanodelivery System Limits Chemoresistance to Temozolomide Prolonging Survival in a Mouse Model of Glioblastoma Multiforme. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 301–311. [Google Scholar] [CrossRef] [Green Version]
- Costa, B.; Bendinelli, S.; Gabelloni, P.; Da Pozzo, E.; Daniele, S.; Scatena, F.; Vanacore, R.; Campiglia, P.; Bertamino, A.; Gomez-Monterrey, I.; et al. Human Glioblastoma Multiforme: P53 Reactivation by a Novel MDM2 Inhibitor. PLoS ONE 2013, 8, e72281. [Google Scholar] [CrossRef]
- Villalonga-Planells, R.; Coll-Mulet, L.; Martínez-Soler, F.; Castaño, E.; Acebes, J.-J.; Giménez-Bonafé, P.; Gil, J.; Tortosa, A. Activation of P53 by Nutlin-3a Induces Apoptosis and Cellular Senescence in Human Glioblastoma Multiforme. PLoS ONE 2011, 6, e18588. [Google Scholar] [CrossRef] [Green Version]
- Renner, G.; Janouskova, H.; Noulet, F.; Koenig, V.; Guerin, E.; Bär, S.; Nuesch, J.; Rechenmacher, F.; Neubauer, S.; Kessler, H.; et al. Integrin A5β1 and P53 Convergent Pathways in the Control of Anti-Apoptotic Proteins PEA-15 and Survivin in High-Grade Glioma. Cell Death Differ. 2016, 23, 640–653. [Google Scholar] [CrossRef] [Green Version]
- Canon, J.; Osgood, T.; Olson, S.H.; Saiki, A.Y.; Robertson, R.; Yu, D.; Eksterowicz, J.; Ye, Q.; Jin, L.; Chen, A.; et al. The MDM2 Inhibitor AMG 232 Demonstrates Robust Antitumor Efficacy and Potentiates the Activity of P53-Inducing Cytotoxic Agents. Mol. Cancer Ther. 2015, 14, 649–658. [Google Scholar] [CrossRef] [Green Version]
- Lebowitz, P.F.; Sakamuro, D.; Prendergast, G.C. Farnesyl Transferase Inhibitors Induce Apoptosis of Ras-Transformed Cells Denied Substratum Attachment. Cancer Res. 1997, 57, 708–713. [Google Scholar]
- Basso, A.D.; Kirschmeier, P.; Bishop, W.R. Lipid Posttranslational Modifications. Farnesyl Transferase Inhibitors. J. Lipid Res. 2006, 47, 15–31. [Google Scholar] [CrossRef] [Green Version]
- Sebti, S.M.; Hamilton, A.D. Farnesyltransferase Inhibitors in Cancer Therapy. Available online: https://www.buecher.de/shop/mund/farnesyltransferase-inhibitors-in-cancer-therapy/sebti-sad-m-hamilton-andrew-d-eds-/products_products/detail/prod_id/20963971/ (accessed on 22 September 2020).
- Glass, T.L.; Liu, T.J.; Yung, W.K. Inhibition of Cell Growth in Human Glioblastoma Cell Lines by Farnesyltransferase Inhibitor SCH66336. Neuro-Oncology 2000, 2, 151–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaponis, D.; Barnes, J.W.; Dellagatta, J.L.; Kesari, S.; Fast, E.; Sauvageot, C.; Panagrahy, D.; Greene, E.R.; Ramakrishna, N.; Wen, P.Y.; et al. Lonafarnib (SCH66336) Improves the Activity of Temozolomide and Radiation for Orthotopic Malignant Gliomas. J. Neurooncol. 2011, 104, 179–189. [Google Scholar] [CrossRef] [Green Version]
- Daniele, S.; Taliani, S.; Da Pozzo, E.; Giacomelli, C.; Costa, B.; Trincavelli, M.L.; Rossi, L.; La Pietra, V.; Barresi, E.; Carotenuto, A.; et al. Apoptosis Therapy in Cancer: The First Single-Molecule Co-Activating P53 and the Translocator Protein in Glioblastoma. Sci. Rep. 2014, 4, 4749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniele, S.; Barresi, E.; Zappelli, E.; Marinelli, L.; Novellino, E.; Da Settimo, F.; Taliani, S.; Trincavelli, M.L.; Martini, C. Long Lasting MDM2/Translocator Protein Modulator: A New Strategy for Irreversible Apoptosis of Human Glioblastoma Cells. Oncotarget 2016, 7, 7866–7884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, J.; Levin, L.R.; Buck, J.; Reidenberg, M.M. Different Pathways of Cell Killing by Gossypol Enantiomers. Exp. Biol. Med. 2002, 227, 398–401. [Google Scholar] [CrossRef]
- Jarzabek, M.A.; Amberger-Murphy, V.; Callanan, J.J.; Gao, C.; Zagozdzon, A.M.; Shiels, L.; Wang, J.; Ligon, K.L.; Rich, B.E.; Dicker, P.; et al. Interrogation of Gossypol Therapy in Glioblastoma Implementing Cell Line and Patient-Derived Tumour Models. Br. J. Cancer 2014, 111, 2275–2286. [Google Scholar] [CrossRef] [Green Version]
- Jensen, S.A.; Day, E.S.; Ko, C.H.; Hurley, L.A.; Luciano, J.P.; Kouri, F.M.; Merkel, T.J.; Luthi, A.J.; Patel, P.C.; Cutler, J.I.; et al. Spherical Nucleic Acid Nanoparticle Conjugates as an RNAi-Based Therapy for Glioblastoma. Sci. Transl. Med. 2013, 5, 209ra152. [Google Scholar] [CrossRef] [Green Version]
- Würstle, S.; Schneider, F.; Ringel, F.; Gempt, J.; Lämmer, F.; Delbridge, C.; Wu, W.; Schlegel, J. Temozolomide Induces Autophagy in Primary and Established Glioblastoma Cells in an EGFR Independent Manner. Oncol. Lett. 2017, 14, 322–328. [Google Scholar] [CrossRef] [Green Version]
- Yuan, G.; Yan, S.-F.; Xue, H.; Zhang, P.; Sun, J.-T.; Li, G. Cucurbitacin I Induces Protective Autophagy in Glioblastoma in Vitro and in Vivo. J. Biol. Chem. 2014, 289, 10607–10619. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Li, J.; Zhang, T.; Zou, L.; Chen, Y.; Wang, K.; Lei, Y.; Yuan, K.; Li, Y.; Lan, J.; et al. Itraconazole Suppresses the Growth of Glioblastoma through Induction of Autophagy: Involvement of Abnormal Cholesterol Trafficking. Autophagy 2014, 10, 1241–1255. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Sun, S.; Li, N.; Ho, A.S.W.; Kiang, K.M.Y.; Zhang, X.; Cheng, Y.S.; Poon, M.W.; Lee, D.; Pu, J.K.S.; et al. Rutin Increases the Cytotoxicity of Temozolomide in Glioblastoma via Autophagy Inhibition. J. Neurooncol. 2017, 132, 393–400. [Google Scholar] [CrossRef]
- Angeletti, F.; Fossati, G.; Pattarozzi, A.; Würth, R.; Solari, A.; Daga, A.; Masiello, I.; Barbieri, F.; Florio, T.; Comincini, S. Inhibition of the Autophagy Pathway Synergistically Potentiates the Cytotoxic Activity of Givinostat (ITF2357) on Human Glioblastoma Cancer Stem Cells. Front. Mol. Neurosci. 2016, 9, 107. [Google Scholar] [CrossRef] [Green Version]
- Maycotte, P.; Aryal, S.; Cummings, C.T.; Thorburn, J.; Morgan, M.J.; Thorburn, A. Chloroquine Sensitizes Breast Cancer Cells to Chemotherapy Independent of Autophagy. Autophagy 2012, 8, 200–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Sun, K.; Wang, H.; Dai, Y. Inhibition of Autophagy by Chloroquine Enhances the Antitumor Efficacy of Sorafenib in Glioblastoma. Cell. Mol. Neurobiol. 2016, 36, 1197–1208. [Google Scholar] [CrossRef] [PubMed]
- Sotelo, J.; Briceño, E.; López-González, M.A. Adding Chloroquine to Conventional Treatment for Glioblastoma Multiforme: A Randomized, Double-Blind, Placebo-Controlled Trial. Ann. Intern. Med. 2006, 144, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, M.R.; Ye, X.; Supko, J.G.; Desideri, S.; Grossman, S.A.; Brem, S.; Mikkelson, T.; Wang, D.; Chang, Y.C.; Hu, J.; et al. A Phase I/II Trial of Hydroxychloroquine in Conjunction with Radiation Therapy and Concurrent and Adjuvant Temozolomide in Patients with Newly Diagnosed Glioblastoma Multiforme. Autophagy 2014, 10, 1359–1368. [Google Scholar] [CrossRef]
- Taylor, J.W.; Parikh, M.; Phillips, J.J.; James, C.D.; Molinaro, A.M.; Butowski, N.A.; Clarke, J.L.; Oberheim-Bush, N.A.; Chang, S.M.; Berger, M.S.; et al. Phase-2 Trial of Palbociclib in Adult Patients with Recurrent RB1-Positive Glioblastoma. J. Neurooncol. 2018, 140, 477–483. [Google Scholar] [CrossRef]
- Friday, B.B.; Anderson, S.K.; Buckner, J.; Yu, C.; Giannini, C.; Geoffroy, F.; Schwerkoske, J.; Mazurczak, M.; Gross, H.; Pajon, E.; et al. Phase II Trial of Vorinostat in Combination with Bortezomib in Recurrent Glioblastoma: A North Central Cancer Treatment Group Study. Neuro-Oncology 2012, 14, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Galanis, E.; Jaeckle, K.A.; Maurer, M.J.; Reid, J.M.; Ames, M.M.; Hardwick, J.S.; Reilly, J.F.; Loboda, A.; Nebozhyn, M.; Fantin, V.R.; et al. Phase II Trial of Vorinostat in Recurrent Glioblastoma Multiforme: A North Central Cancer Treatment Group Study. J. Clin. Oncol. 2009, 27, 2052–2058. [Google Scholar] [CrossRef] [Green Version]
- Iwamoto, F.M.; Lamborn, K.R.; Kuhn, J.G.; Wen, P.Y.; Yung, W.K.A.; Gilbert, M.R.; Chang, S.M.; Lieberman, F.S.; Prados, M.D.; Fine, H.A. A Phase I/II Trial of the Histone Deacetylase Inhibitor Romidepsin for Adults with Recurrent Malignant Glioma: North American Brain Tumor Consortium Study 03-03. Neuro-Oncology 2011, 13, 509–516. [Google Scholar] [CrossRef]
- Bogdahn, U.; Hau, P.; Stockhammer, G.; Venkataramana, N.K.; Mahapatra, A.K.; Suri, A.; Balasubramaniam, A.; Nair, S.; Oliushine, V.; Parfenov, V.; et al. Targeted Therapy for High-Grade Glioma with the TGF-Β2 Inhibitor Trabedersen: Results of a Randomized and Controlled Phase IIb Study. Neuro-Oncology 2011, 13, 132–142. [Google Scholar] [CrossRef] [Green Version]
- Wick, A.; Desjardins, A.; Suarez, C.; Forsyth, P.; Gueorguieva, I.; Burkholder, T.; Cleverly, A.L.; Estrem, S.T.; Wang, S.; Lahn, M.M.; et al. Phase 1b/2a Study of Galunisertib, a Small Molecule Inhibitor of Transforming Growth Factor-Beta Receptor I, in Combination with Standard Temozolomide-Based Radiochemotherapy in Patients with Newly Diagnosed Malignant Glioma. Investig. New Drugs 2020, 38, 1570–1579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blakeley, J.O.; Grossman, S.A.; Chi, A.S.; Mikkelsen, T.; Rosenfeld, M.R.; Ahluwalia, M.S.; Nabors, L.B.; Eichler, A.; Ribas, I.G.; Desideri, S.; et al. Phase II Study of Iniparib with Concurrent Chemoradiation in Patients with Newly Diagnosed Glioblastoma. Clin. Cancer Res. 2019, 25, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Robins, H.I.; Zhang, P.; Gilbert, M.R.; Chakravarti, A.; de Groot, J.F.; Grimm, S.A.; Wang, F.; Lieberman, F.S.; Krauze, A.; Trotti, A.M.; et al. A Randomized Phase I/II Study of ABT-888 in Combination with Temozolomide in Recurrent Temozolomide Resistant Glioblastoma: An NRG Oncology RTOG Group Study. J. Neurooncol. 2016, 126, 309–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Y.; Li, X.; Kong, S.; Shang, S.; Qi, Y. CDK4/6 Inhibition Suppresses Tumour Growth and Enhances the Effect of Temozolomide in Glioma Cells. J. Cell. Mol. Med. 2020, 24, 5135–5145. [Google Scholar] [CrossRef] [Green Version]
- Sobhani, N.; D’Angelo, A.; Pittacolo, M.; Roviello, G.; Miccoli, A.; Corona, S.P.; Bernocchi, O.; Generali, D.; Otto, T. Updates on the CDK4/6 Inhibitory Strategy and Combinations in Breast Cancer. Cells 2019, 8, 321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roeten, M.S.F.; Cloos, J.; Jansen, G. Positioning of Proteasome Inhibitors in Therapy of Solid Malignancies. Cancer Chemother. Pharmacol. 2018, 81, 227–243. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.-J.; Chen, W.-W.; Zhang, X. Proteasome Inhibitors in Glioblastoma. Oncol. Lett. 2017, 13, 1058–1062. [Google Scholar] [CrossRef] [Green Version]
- Di, K.; Lloyd, G.K.; Abraham, V.; MacLaren, A.; Burrows, F.J.; Desjardins, A.; Trikha, M.; Bota, D.A. Marizomib Activity as a Single Agent in Malignant Gliomas: Ability to Cross the Blood-Brain Barrier. Neuro-Oncology 2016, 18, 840–848. [Google Scholar] [CrossRef] [PubMed]
- Roth, P.; Mason, W.P.; Richardson, P.G.; Weller, M. Proteasome Inhibition for the Treatment of Glioblastoma. Expert Opin. Investig. Drugs 2020, 29, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Ceccacci, E.; Minucci, S. Inhibition of Histone Deacetylases in Cancer Therapy: Lessons from Leukaemia. Br. J. Cancer 2016, 114, 605–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, P.; Murphy, B.; Miller, R.; Menon, V.; Banik, N.L.; Giglio, P.; Lindhorst, S.M.; Varma, A.K.; Vandergrift, W.A.; Patel, S.J.; et al. Mechanisms and Clinical Significance of Histone Deacetylase Inhibitors: Epigenetic Glioblastoma Therapy. Anticancer Res. 2015, 35, 615–625. [Google Scholar]
- Chen, R.; Zhang, M.; Zhou, Y.; Guo, W.; Yi, M.; Zhang, Z.; Ding, Y.; Wang, Y. The Application of Histone Deacetylases Inhibitors in Glioblastoma. J. Exp. Clin. Cancer Res. CR 2020, 39, 138. [Google Scholar] [CrossRef]
- Han, J.; Alvarez-Breckenridge, C.A.; Wang, Q.-E.; Yu, J. TGF-β Signaling and Its Targeting for Glioma Treatment. Am. J. Cancer Res. 2015, 5, 945–955. [Google Scholar]
- Birch, J.L.; Coull, B.J.; Spender, L.C.; Watt, C.; Willison, A.; Syed, N.; Chalmers, A.J.; Hossain-Ibrahim, M.K.; Inman, G.J. Multifaceted Transforming Growth Factor-Beta (TGFβ) Signalling in Glioblastoma. Cell. Signal. 2020, 72, 109638. [Google Scholar] [CrossRef]
- Towner, R.A.; Zalles, M.; Saunders, D.; Smith, N. Novel Approaches to Combat Chemoresistance against Glioblastomas. Cancer Drug Resist. 2020, 3, 686–698. [Google Scholar] [CrossRef]
- Sawyer, J.S.; Anderson, B.D.; Beight, D.W.; Campbell, R.M.; Jones, M.L.; Herron, D.K.; Lampe, J.W.; McCowan, J.R.; McMillen, W.T.; Mort, N.; et al. Synthesis and Activity of New Aryl- and Heteroaryl-Substituted Pyrazole Inhibitors of the Transforming Growth Factor-Beta Type I Receptor Kinase Domain. J. Med. Chem. 2003, 46, 3953–3956. [Google Scholar] [CrossRef]
- Murnyák, B.; Kouhsari, M.C.; Hershkovitch, R.; Kálmán, B.; Marko-Varga, G.; Klekner, Á.; Hortobágyi, T. PARP1 Expression and Its Correlation with Survival Is Tumour Molecular Subtype Dependent in Glioblastoma. Oncotarget 2017, 8, 46348–46362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blakeley, J.O.; Grossman, S.A.; Mikkelsen, T.; Rosenfeld, M.R.; Peereboom, D.; Nabors, L.B.; Chi, A.S.; Emmons, G.; Ribas, I.G.; Supko, J.G.; et al. Phase I Study of Iniparib Concurrent with Monthly or Continuous Temozolomide Dosing Schedules in Patients with Newly Diagnosed Malignant Gliomas. J. Neurooncol. 2015, 125, 123–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onishi, M.; Kurozumi, K.; Ichikawa, T.; Date, I. Mechanisms of Tumor Development and Anti-Angiogenic Therapy in Glioblastoma Multiforme. Neurol. Med. Chir. 2013, 53, 755–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, H.S.; Prados, M.D.; Wen, P.Y.; Mikkelsen, T.; Schiff, D.; Abrey, L.E.; Yung, W.K.A.; Paleologos, N.; Nicholas, M.K.; Jensen, R.; et al. Bevacizumab Alone and in Combination with Irinotecan in Recurrent Glioblastoma. J. Clin. Oncol. 2009, 27, 4733–4740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vredenburgh, J.J.; Desjardins, A.; Herndon, J.E.; Marcello, J.; Reardon, D.A.; Quinn, J.A.; Rich, J.N.; Sathornsumetee, S.; Gururangan, S.; Sampson, J.; et al. Bevacizumab plus Irinotecan in Recurrent Glioblastoma Multiforme. J. Clin. Oncol. 2007, 25, 4722–4729. [Google Scholar] [CrossRef] [Green Version]
- Brandes, A.A.; Gil-Gil, M.; Saran, F.; Carpentier, A.F.; Nowak, A.K.; Mason, W.; Zagonel, V.; Dubois, F.; Finocchiaro, G.; Fountzilas, G.; et al. A Randomized Phase II Trial (TAMIGA) Evaluating the Efficacy and Safety of Continuous Bevacizumab Through Multiple Lines of Treatment for Recurrent Glioblastoma. Oncologist 2019, 24, 521–528. [Google Scholar] [CrossRef] [Green Version]
- Peters, K.B.; Lou, E.; Desjardins, A.; Reardon, D.A.; Lipp, E.S.; Miller, E.; Herndon, J.E.; McSherry, F.; Friedman, H.S.; Vredenburgh, J.J. Phase II Trial of Upfront Bevacizumab, Irinotecan, and Temozolomide for Unresectable Glioblastoma. Oncologist 2015, 20, 727–728. [Google Scholar] [CrossRef] [Green Version]
- Wirsching, H.-G.; Tabatabai, G.; Roelcke, U.; Hottinger, A.F.; Jörger, F.; Schmid, A.; Plasswilm, L.; Schrimpf, D.; Mancao, C.; Capper, D.; et al. Bevacizumab plus Hypofractionated Radiotherapy versus Radiotherapy Alone in Elderly Patients with Glioblastoma: The Randomized, Open-Label, Phase II ARTE Trial. Ann. Oncol. 2018, 29, 1423–1430. [Google Scholar] [CrossRef]
- Reyes-Botero, G.; Cartalat-Carel, S.; Chinot, O.L.; Barrie, M.; Taillandier, L.; Beauchesne, P.; Catry-Thomas, I.; Barrière, J.; Guillamo, J.-S.; Fabbro, M.; et al. Temozolomide Plus Bevacizumab in Elderly Patients with Newly Diagnosed Glioblastoma and Poor Performance Status: An ANOCEF Phase II Trial (ATAG). Oncologist 2018, 23, 524.e44. [Google Scholar] [CrossRef] [Green Version]
- Ghiaseddin, A.; Reardon, D.; Massey, W.; Mannerino, A.; Lipp, E.S.; Herndon, J.E.; McSherry, F.; Desjardins, A.; Randazzo, D.; Friedman, H.S.; et al. Phase II Study of Bevacizumab and Vorinostat for Patients with Recurrent World Health Organization Grade 4 Malignant Glioma. Oncologist 2018, 23, 157-e21. [Google Scholar] [CrossRef] [Green Version]
- Vredenburgh, J.J.; Desjardins, A.; Herndon, J.E.; Dowell, J.M.; Reardon, D.A.; Quinn, J.A.; Rich, J.N.; Sathornsumetee, S.; Gururangan, S.; Wagner, M.; et al. Phase II Trial of Bevacizumab and Irinotecan in Recurrent Malignant Glioma. Clin. Cancer Res. 2007, 13, 1253–1259. [Google Scholar] [CrossRef] [Green Version]
- Ney, D.E.; Carlson, J.A.; Damek, D.M.; Gaspar, L.E.; Kavanagh, B.D.; Kleinschmidt-DeMasters, B.K.; Waziri, A.E.; Lillehei, K.O.; Reddy, K.; Chen, C. Phase II Trial of Hypofractionated Intensity-Modulated Radiation Therapy Combined with Temozolomide and Bevacizumab for Patients with Newly Diagnosed Glioblastoma. J. Neurooncol. 2015, 122, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Balana, C.; De Las Penas, R.; Sepúlveda, J.M.; Gil-Gil, M.J.; Luque, R.; Gallego, O.; Carrato, C.; Sanz, C.; Reynes, G.; Herrero, A.; et al. Bevacizumab and Temozolomide versus Temozolomide Alone as Neoadjuvant Treatment in Unresected Glioblastoma: The GENOM 009 Randomized Phase II Trial. J. Neurooncol. 2016, 127, 569–579. [Google Scholar] [CrossRef] [PubMed]
- Chauffert, B.; Feuvret, L.; Bonnetain, F.; Taillandier, L.; Frappaz, D.; Taillia, H.; Schott, R.; Honnorat, J.; Fabbro, M.; Tennevet, I.; et al. Randomized Phase II Trial of Irinotecan and Bevacizumab as Neo-Adjuvant and Adjuvant to Temozolomide-Based Chemoradiation Compared with Temozolomide-Chemoradiation for Unresectable Glioblastoma: Final Results of the TEMAVIR Study from ANOCEF. Ann. Oncol. 2014, 25, 1442–1447. [Google Scholar] [CrossRef] [PubMed]
- Chinot, O.L.; Wick, W.; Mason, W.; Henriksson, R.; Saran, F.; Nishikawa, R.; Carpentier, A.F.; Hoang-Xuan, K.; Kavan, P.; Cernea, D.; et al. Bevacizumab plus Radiotherapy–Temozolomide for Newly Diagnosed Glioblastoma. N. Engl. J. Med. 2014, 370, 709–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weathers, S.-P.; Han, X.; Liu, D.D.; Conrad, C.A.; Gilbert, M.R.; Loghin, M.E.; O’Brien, B.J.; Penas-Prado, M.; Puduvalli, V.K.; Tremont-Lukats, I.; et al. A Randomized Phase II Trial of Standard Dose Bevacizumab versus Low Dose Bevacizumab plus Lomustine (CCNU) in Adults with Recurrent Glioblastoma. J. Neurooncol. 2016, 129, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Badruddoja, M.A.; Pazzi, M.; Sanan, A.; Schroeder, K.; Kuzma, K.; Norton, T.; Scully, T.; Mahadevan, D.; Ahmadi, M.M. Phase II Study of Bi-Weekly Temozolomide plus Bevacizumab for Adult Patients with Recurrent Glioblastoma. Cancer Chemother. Pharmacol. 2017, 80, 715–721. [Google Scholar] [CrossRef]
- Brandes, A.A.; Finocchiaro, G.; Zagonel, V.; Reni, M.; Caserta, C.; Fabi, A.; Clavarezza, M.; Maiello, E.; Eoli, M.; Lombardi, G.; et al. AVAREG: A Phase II, Randomized, Noncomparative Study of Fotemustine or Bevacizumab for Patients with Recurrent Glioblastoma. Neuro-Oncology 2016, 18, 1304–1312. [Google Scholar] [CrossRef]
- Herrlinger, U.; Schäfer, N.; Steinbach, J.P.; Weyerbrock, A.; Hau, P.; Goldbrunner, R.; Friedrich, F.; Rohde, V.; Ringel, F.; Schlegel, U.; et al. Bevacizumab Plus Irinotecan Versus Temozolomide in Newly Diagnosed O6-Methylguanine-DNA Methyltransferase Nonmethylated Glioblastoma: The Randomized GLARIUS Trial. J. Clin. Oncol. 2016, 34, 1611–1619. [Google Scholar] [CrossRef] [PubMed]
- Wick, W.; Gorlia, T.; Bendszus, M.; Taphoorn, M.; Sahm, F.; Harting, I.; Brandes, A.A.; Taal, W.; Domont, J.; Idbaih, A.; et al. Lomustine and Bevacizumab in Progressive Glioblastoma. N. Engl. J. Med. 2017, 377, 1954–1963. [Google Scholar] [CrossRef]
- Cloughesy, T.F.; Brenner, A.; de Groot, J.F.; Butowski, N.A.; Zach, L.; Campian, J.L.; Ellingson, B.M.; Freedman, L.S.; Cohen, Y.C.; Lowenton-Spier, N.; et al. A Randomized Controlled Phase III Study of VB-111 Combined with Bevacizumab vs Bevacizumab Monotherapy in Patients with Recurrent Glioblastoma (GLOBE). Neuro-Oncology 2020, 22, 705–717. [Google Scholar] [CrossRef]
- Desjardins, A.; Reardon, D.A.; Coan, A.; Marcello, J.; Herndon, J.E.; Bailey, L.; Peters, K.B.; Friedman, H.S.; Vredenburgh, J.J. Bevacizumab and Daily Temozolomide for Recurrent Glioblastoma. Cancer 2012, 118, 1302–1312. [Google Scholar] [CrossRef]
- Vredenburgh, J.J.; Desjardins, A.; Reardon, D.A.; Peters, K.B.; Herndon, J.E.; Marcello, J.; Kirkpatrick, J.P.; Sampson, J.H.; Bailey, L.; Threatt, S.; et al. The Addition of Bevacizumab to Standard Radiation Therapy and Temozolomide Followed by Bevacizumab, Temozolomide and Irinotecan for Newly Diagnosed Glioblastoma. Clin. Cancer Res. 2011, 17, 4119–4124. [Google Scholar] [CrossRef] [Green Version]
- Reardon, D.A.; Desjardins, A.; Vredenburgh, J.J.; Gururangan, S.; Sampson, J.H.; Sathornsumetee, S.; McLendon, R.E.; Herndon, J.E.; Marcello, J.E.; Norfleet, J.; et al. Metronomic Chemotherapy with Daily, Oral Etoposide plus Bevacizumab for Recurrent Malignant Glioma: A Phase II Study. Br. J. Cancer 2009, 101, 1986–1994. [Google Scholar] [CrossRef]
- Gilbert, M.R.; Dignam, J.J.; Armstrong, T.S.; Wefel, J.S.; Blumenthal, D.T.; Vogelbaum, M.A.; Colman, H.; Chakravarti, A.; Pugh, S.; Won, M.; et al. A Randomized Trial of Bevacizumab for Newly Diagnosed Glioblastoma. N. Engl. J. Med. 2014, 370, 699–708. [Google Scholar] [CrossRef] [Green Version]
- Iwamoto, F.M.; Lamborn, K.R.; Robins, H.I.; Mehta, M.P.; Chang, S.M.; Butowski, N.A.; Deangelis, L.M.; Abrey, L.E.; Zhang, W.-T.; Prados, M.D.; et al. Phase II Trial of Pazopanib (GW786034), an Oral Multi-Targeted Angiogenesis Inhibitor, for Adults with Recurrent Glioblastoma (North American Brain Tumor Consortium Study 06-02). Neuro-Oncology 2010, 12, 855–861. [Google Scholar] [CrossRef] [Green Version]
- Brown, N.; McBain, C.; Nash, S.; Hopkins, K.; Sanghera, P.; Saran, F.; Phillips, M.; Dungey, F.; Clifton-Hadley, L.; Wanek, K.; et al. Multi-Center Randomized Phase II Study Comparing Cediranib plus Gefitinib with Cediranib plus Placebo in Subjects with Recurrent/Progressive Glioblastoma. PLoS ONE 2016, 11, e0156369. [Google Scholar] [CrossRef]
- Batchelor, T.T.; Mulholland, P.; Neyns, B.; Nabors, L.B.; Campone, M.; Wick, A.; Mason, W.; Mikkelsen, T.; Phuphanich, S.; Ashby, L.S.; et al. Phase III Randomized Trial Comparing the Efficacy of Cediranib as Monotherapy, and in Combination with Lomustine, versus Lomustine Alone in Patients with Recurrent Glioblastoma. J. Clin. Oncol. 2013, 31, 3212–3218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batchelor, T.T.; Duda, D.G.; di Tomaso, E.; Ancukiewicz, M.; Plotkin, S.R.; Gerstner, E.; Eichler, A.F.; Drappatz, J.; Hochberg, F.H.; Benner, T.; et al. Phase II Study of Cediranib, an Oral Pan-Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitor, in Patients with Recurrent Glioblastoma. J. Clin. Oncol. 2010, 28, 2817–2823. [Google Scholar] [CrossRef] [PubMed]
- Muhic, A.; Poulsen, H.S.; Sorensen, M.; Grunnet, K.; Lassen, U. Phase II Open-Label Study of Nintedanib in Patients with Recurrent Glioblastoma Multiforme. J. Neurooncol. 2013, 111, 205–212. [Google Scholar] [CrossRef]
- Norden, A.D.; Schiff, D.; Ahluwalia, M.S.; Lesser, G.J.; Nayak, L.; Lee, E.Q.; Rinne, M.L.; Muzikansky, A.; Dietrich, J.; Purow, B.; et al. Phase II Trial of Triple Tyrosine Kinase Receptor Inhibitor Nintedanib in Recurrent High-Grade Gliomas. J. Neurooncol. 2015, 121, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Gerstner, E.R.; Eichler, A.F.; Plotkin, S.R.; Drappatz, J.; Doyle, C.L.; Xu, L.; Duda, D.G.; Wen, P.Y.; Jain, R.K.; Batchelor, T.T. Phase I Trial with Biomarker Studies of Vatalanib (PTK787) in Patients with Newly Diagnosed Glioblastoma Treated with Enzyme Inducing Anti-Epileptic Drugs and Standard Radiation and Temozolomide. J. Neurooncol. 2011, 103, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Kalpathy-Cramer, J.; Chandra, V.; Da, X.; Ou, Y.; Emblem, K.E.; Muzikansky, A.; Cai, X.; Douw, L.; Evans, J.G.; Dietrich, J.; et al. Phase II Study of Tivozanib, an Oral VEGFR Inhibitor, in Patients with Recurrent Glioblastoma. J. Neurooncol. 2017, 131, 603–610. [Google Scholar] [CrossRef]
- Reardon, D.A.; Desjardins, A.; Peters, K.B.; Gururangan, S.; Sampson, J.H.; McLendon, R.E.; Herndon, J.E.; Bulusu, A.; Threatt, S.; Friedman, A.H.; et al. Phase II Study of Carboplatin, Irinotecan, and Bevacizumab for Bevacizumab Naïve, Recurrent Glioblastoma. J. Neurooncol. 2012, 107, 155–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dirven, L.; van den Bent, M.J.; Bottomley, A.; van der Meer, N.; van der Holt, B.; Vos, M.J.; Walenkamp, A.M.E.; Beerepoot, L.V.; Hanse, M.C.J.; Reijneveld, J.C.; et al. The Impact of Bevacizumab on Health-Related Quality of Life in Patients Treated for Recurrent Glioblastoma: Results of the Randomised Controlled Phase 2 BELOB Trial. Eur. J. Cancer 2015, 51, 1321–1330. [Google Scholar] [CrossRef]
- Taal, W.; Oosterkamp, H.M.; Walenkamp, A.M.E.; Dubbink, H.J.; Beerepoot, L.V.; Hanse, M.C.J.; Buter, J.; Honkoop, A.H.; Boerman, D.; de Vos, F.Y.F.; et al. Single-Agent Bevacizumab or Lomustine versus a Combination of Bevacizumab plus Lomustine in Patients with Recurrent Glioblastoma (BELOB Trial): A Randomised Controlled Phase 2 Trial. Lancet Oncol. 2014, 15, 943–953. [Google Scholar] [CrossRef]
- Schnell, O.; Thorsteinsdottir, J.; Fleischmann, D.F.; Lenski, M.; Abenhardt, W.; Giese, A.; Tonn, J.-C.; Belka, C.; Kreth, F.W.; Niyazi, M. Re-Irradiation Strategies in Combination with Bevacizumab for Recurrent Malignant Glioma. J. Neurooncol. 2016, 130, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Niyazi, M.; Harter, P.N.; Hattingen, E.; Rottler, M.; von Baumgarten, L.; Proescholdt, M.; Belka, C.; Lauber, K.; Mittelbronn, M. Bevacizumab and Radiotherapy for the Treatment of Glioblastoma: Brothers in Arms or Unholy Alliance? Oncotarget 2016, 7, 2313–2328. [Google Scholar] [CrossRef] [PubMed]
- Chinot, O.L.; de La Motte Rouge, T.; Moore, N.; Zeaiter, A.; Das, A.; Phillips, H.; Modrusan, Z.; Cloughesy, T. AVAglio: Phase 3 Trial of Bevacizumab plus Temozolomide and Radiotherapy in Newly Diagnosed Glioblastoma Multiforme. Adv. Ther. 2011, 28, 334–340. [Google Scholar] [CrossRef] [Green Version]
- van Linde, M.E.; Verhoeff, J.J.C.; Richel, D.J.; van Furth, W.R.; Reijneveld, J.C.; Verheul, H.M.W.; Stalpers, L.J.A. Bevacizumab in Combination with Radiotherapy and Temozolomide for Patients with Newly Diagnosed Glioblastoma Multiforme. Oncologist 2015, 20, 107–108. [Google Scholar] [CrossRef] [Green Version]
- Sandmann, T.; Bourgon, R.; Garcia, J.; Li, C.; Cloughesy, T.; Chinot, O.L.; Wick, W.; Nishikawa, R.; Mason, W.; Henriksson, R.; et al. Patients with Proneural Glioblastoma May Derive Overall Survival Benefit From the Addition of Bevacizumab to First-Line Radiotherapy and Temozolomide: Retrospective Analysis of the AVAglio Trial. J. Clin. Oncol. 2015, 33, 2735–2744. [Google Scholar] [CrossRef]
- Brave, S.R.; Ratcliffe, K.; Wilson, Z.; James, N.H.; Ashton, S.; Wainwright, A.; Kendrew, J.; Dudley, P.; Broadbent, N.; Sproat, G.; et al. Assessing the Activity of Cediranib, a VEGFR-2/3 Tyrosine Kinase Inhibitor, against VEGFR-1 and Members of the Structurally Related PDGFR Family. Mol. Cancer Ther. 2011, 10, 861–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schäfer, N.; Gielen, G.H.; Kebir, S.; Wieland, A.; Till, A.; Mack, F.; Schaub, C.; Tzaridis, T.; Reinartz, R.; Niessen, M.; et al. Phase I Trial of Dovitinib (TKI258) in Recurrent Glioblastoma. J. Cancer Res. Clin. Oncol. 2016, 142, 1581–1589. [Google Scholar] [CrossRef] [PubMed]
- Thanasupawat, T.; Natarajan, S.; Rommel, A.; Glogowska, A.; Bergen, H.; Krcek, J.; Pitz, M.; Beiko, J.; Krawitz, S.; Verma, I.M.; et al. Dovitinib Enhances Temozolomide Efficacy in Glioblastoma Cells. Mol. Oncol. 2017, 11, 1078–1098. [Google Scholar] [CrossRef] [Green Version]
- Reardon, D.A.; Egorin, M.J.; Desjardins, A.; Vredenburgh, J.J.; Beumer, J.H.; Lagattuta, T.F.; Gururangan, S.; Herndon, J.E.; Salvado, A.J.; Friedman, H.S. Phase I Pharmacokinetic Study of the Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitor Vatalanib (PTK787) plus Imatinib and Hydroxyurea for Malignant Glioma. Cancer 2009, 115, 2188–2198. [Google Scholar] [CrossRef] [PubMed]
- Cloughesy, T.; Finocchiaro, G.; Belda-Iniesta, C.; Recht, L.; Brandes, A.A.; Pineda, E.; Mikkelsen, T.; Chinot, O.L.; Balana, C.; Macdonald, D.R.; et al. Randomized, Double-Blind, Placebo-Controlled, Multicenter Phase II Study of Onartuzumab Plus Bevacizumab Versus Placebo Plus Bevacizumab in Patients with Recurrent Glioblastoma: Efficacy, Safety, and Hepatocyte Growth Factor and O6-Methylguanine-DNA Methyltransferase Biomarker Analyses. J. Clin. Oncol. 2017, 35, 343–351. [Google Scholar] [CrossRef] [Green Version]
- Wen, P.Y.; Drappatz, J.; de Groot, J.; Prados, M.D.; Reardon, D.A.; Schiff, D.; Chamberlain, M.; Mikkelsen, T.; Desjardins, A.; Holland, J.; et al. Phase II Study of Cabozantinib in Patients with Progressive Glioblastoma: Subset Analysis of Patients Naive to Antiangiogenic Therapy. Neuro-Oncology 2018, 20, 249–258. [Google Scholar] [CrossRef]
- Wen, P.Y.; Schiff, D.; Cloughesy, T.F.; Raizer, J.J.; Laterra, J.; Smitt, M.; Wolf, M.; Oliner, K.S.; Anderson, A.; Zhu, M.; et al. A Phase II Study Evaluating the Efficacy and Safety of AMG 102 (Rilotumumab) in Patients with Recurrent Glioblastoma. Neuro-Oncology 2011, 13, 437–446. [Google Scholar] [CrossRef] [Green Version]
- de Groot, J.F.; Lamborn, K.R.; Chang, S.M.; Gilbert, M.R.; Cloughesy, T.F.; Aldape, K.; Yao, J.; Jackson, E.F.; Lieberman, F.; Robins, H.I.; et al. Phase II Study of Aflibercept in Recurrent Malignant Glioma: A North American Brain Tumor Consortium Study. J. Clin. Oncol. 2011, 29, 2689–2695. [Google Scholar] [CrossRef]
- Blumenschein, G.R.; Mills, G.B.; Gonzalez-Angulo, A.M. Targeting the Hepatocyte Growth Factor-CMET Axis in Cancer Therapy. J. Clin. Oncol. 2012, 30, 3287–3296. [Google Scholar] [CrossRef] [Green Version]
- Garnett, J.; Chumbalkar, V.; Vaillant, B.; Gururaj, A.E.; Hill, K.S.; Latha, K.; Yao, J.; Priebe, W.; Colman, H.; Elferink, L.A.; et al. Regulation of HGF Expression by ΔEGFR-Mediated c-Met Activation in Glioblastoma Cells. Neoplasia 2013, 15, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Liu, T.; Ma, P.; Mitteer, R.A.; Zhang, Z.; Kim, H.J.; Yeo, E.; Zhang, D.; Cai, P.; Li, C.; et al. C-Met-Mediated Endothelial Plasticity Drives Aberrant Vascularization and Chemoresistance in Glioblastoma. J. Clin. Investig. 2016, 126, 1801–1814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahangiri, A.; De Lay, M.; Miller, L.M.; Carbonell, W.S.; Hu, Y.-L.; Lu, K.; Tom, M.W.; Paquette, J.; Tokuyasu, T.A.; Tsao, S.; et al. Gene Expression Profile Identifies Tyrosine Kinase C-Met as a Targetable Mediator of Antiangiogenic Therapy Resistance. Clin. Cancer Res. 2013, 19, 1773–1783. [Google Scholar] [CrossRef] [Green Version]
- Lu, K.V.; Bergers, G. Mechanisms of Evasive Resistance to Anti-VEGF Therapy in Glioblastoma. CNS Oncol. 2013, 2, 49–65. [Google Scholar] [CrossRef]
- Das, A.; Cheng, R.R.; Hilbert, M.L.T.; Dixon-Moh, Y.N.; Decandio, M.; Vandergrift, W.A.; Banik, N.L.; Lindhorst, S.M.; Cachia, D.; Varma, A.K.; et al. Synergistic Effects of Crizotinib and Temozolomide in Experimental FIG-ROS1 Fusion-Positive Glioblastoma. Cancer Growth Metastasis 2015, 8, 51–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiff, D.; Desjardins, A.; Cloughesy, T.; Mikkelsen, T.; Glantz, M.; Chamberlain, M.C.; Reardon, D.A.; Wen, P.Y. Phase 1 Dose Escalation Trial of the Safety and Pharmacokinetics of Cabozantinib Concurrent with Temozolomide and Radiotherapy or Temozolomide after Radiotherapy in Newly Diagnosed Patients with High-Grade Gliomas. Cancer 2016, 122, 582–587. [Google Scholar] [CrossRef]
- Schneider, K.; Weyerbrock, A.; Doostkam, S.; Plate, K.; Machein, M.R. Lack of Evidence for PlGF Mediating the Tumor Resistance after Anti-Angiogenic Therapy in Malignant Gliomas. J. Neurooncol. 2015, 121, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Lassen, U.; Chinot, O.L.; McBain, C.; Mau-Sørensen, M.; Larsen, V.A.; Barrie, M.; Roth, P.; Krieter, O.; Wang, K.; Habben, K.; et al. Phase 1 Dose-Escalation Study of the Antiplacental Growth Factor Monoclonal Antibody RO5323441 Combined with Bevacizumab in Patients with Recurrent Glioblastoma. Neuro-Oncology 2015, 17, 1007–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabouret, E.; Denicolai, E.; Delfino, C.; Graillon, T.; Boucard, C.; Nanni, I.; Padovani, L.; Figarella-Branger, D.; Chinot, O. Changes in PlGF and MET-HGF Expressions in Paired Initial and Recurrent Glioblastoma. J. Neurooncol. 2016, 130, 431–437. [Google Scholar] [CrossRef]
- Rosen, L.S.; Gordon, M.S.; Robert, F.; Matei, D.E. Endoglin for Targeted Cancer Treatment. Curr. Oncol. Rep. 2014, 16, 365. [Google Scholar] [CrossRef] [PubMed]
- Ahluwalia, M.S.; Rogers, L.R.; Chaudhary, R.T.; Newton, H.B.; Seon, B.K.; Jivani, M.A.; Adams, B.J.; Shazer, R.L.; Theuer, C.P. A Phase 2 Trial of TRC105 with Bevacizumab for Bevacizumab Refractory Glioblastoma. J. Clin. Oncol. 2016, 34, 2035. [Google Scholar] [CrossRef]
- Galanis, E.; Anderson, S.K.; Butowski, N.A.; Hormigo, A.; Schiff, D.; Tran, D.D.; Omuro, A.M.P.; Jaeckle, K.A.; Kumar, S.; Kaufmann, T.J.; et al. NCCTG N1174: Phase I/Comparative Randomized Phase (Ph) II Trial of TRC105 plus Bevacizumab versus Bevacizumab in Recurrent Glioblastoma (GBM) (Alliance). J. Clin. Oncol. 2017, 35, 2023. [Google Scholar] [CrossRef]
- Afshar Moghaddam, N.; Mahsuni, P.; Taheri, D. Evaluation of Endoglin as an Angiogenesis Marker in Glioblastoma. Iran. J. Pathol. 2015, 10, 89–96. [Google Scholar]
- Puduvalli, V.K.; Giglio, P.; Groves, M.D.; Hess, K.R.; Gilbert, M.R.; Mahankali, S.; Jackson, E.F.; Levin, V.A.; Conrad, C.A.; Hsu, S.H.; et al. Phase II Trial of Irinotecan and Thalidomide in Adults with Recurrent Glioblastoma Multiforme. Neuro-Oncology 2008, 10, 216–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fadul, C.E.; Kingman, L.S.; Meyer, L.P.; Cole, B.F.; Eskey, C.J.; Rhodes, C.H.; Roberts, D.W.; Newton, H.B.; Pipas, J.M. A Phase II Study of Thalidomide and Irinotecan for Treatment of Glioblastoma Multiforme. J. Neurooncol. 2008, 90, 229–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kesari, S.; Schiff, D.; Henson, J.W.; Muzikansky, A.; Gigas, D.C.; Doherty, L.; Batchelor, T.T.; Longtine, J.A.; Ligon, K.L.; Weaver, S.; et al. Phase II Study of Temozolomide, Thalidomide, and Celecoxib for Newly Diagnosed Glioblastoma in Adults. Neuro-Oncology 2008, 10, 300–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groves, M.D.; Puduvalli, V.K.; Chang, S.M.; Conrad, C.A.; Gilbert, M.R.; Tremont-Lukats, I.W.; Liu, T.-J.; Peterson, P.; Schiff, D.; Cloughesy, T.F.; et al. A North American Brain Tumor Consortium (NABTC 99-04) Phase II Trial of Temozolomide plus Thalidomide for Recurrent Glioblastoma Multiforme. J. Neurooncol. 2007, 81, 271–277. [Google Scholar] [CrossRef]
- Stupp, R.; Hegi, M.E.; Gorlia, T.; Erridge, S.C.; Perry, J.; Hong, Y.-K.; Aldape, K.D.; Lhermitte, B.; Pietsch, T.; Grujicic, D.; et al. Cilengitide Combined with Standard Treatment for Patients with Newly Diagnosed Glioblastoma with Methylated MGMT Promoter (CENTRIC EORTC 26071-22072 Study): A Multicentre, Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2014, 15, 1100–1108. [Google Scholar] [CrossRef] [Green Version]
- Nabors, L.B.; Fink, K.L.; Mikkelsen, T.; Grujicic, D.; Tarnawski, R.; Nam, D.H.; Mazurkiewicz, M.; Salacz, M.; Ashby, L.; Zagonel, V.; et al. Two Cilengitide Regimens in Combination with Standard Treatment for Patients with Newly Diagnosed Glioblastoma and Unmethylated MGMT Gene Promoter: Results of the Open-Label, Controlled, Randomized Phase II CORE Study. Neuro-Oncology 2015, 17, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Nabors, L.B.; Mikkelsen, T.; Hegi, M.E.; Ye, X.; Batchelor, T.; Lesser, G.; Peereboom, D.; Rosenfeld, M.R.; Olsen, J.; Brem, S.; et al. A Safety Run-in and Randomized Phase 2 Study of Cilengitide Combined with Chemoradiation for Newly Diagnosed Glioblastoma (NABTT 0306). Cancer 2012, 118, 5601–5607. [Google Scholar] [CrossRef]
- Reardon, D.A.; Fink, K.L.; Mikkelsen, T.; Cloughesy, T.F.; O’Neill, A.; Plotkin, S.; Glantz, M.; Ravin, P.; Raizer, J.J.; Rich, K.M.; et al. Randomized Phase II Study of Cilengitide, an Integrin-Targeting Arginine-Glycine-Aspartic Acid Peptide, in Recurrent Glioblastoma Multiforme. J. Clin. Oncol. 2008, 26, 5610–5617. [Google Scholar] [CrossRef]
- Elinzano, H.; Hebda, N.; Luppe, D.; Turchetti, W.; Rosati, K.; Sikov, W.M.; Safran, H. PSMA ADC for Progressive Glioblastoma: Phase II Brown University Oncology Research Group Study. J. Clin. Oncol. 2016, 34, 2065. [Google Scholar] [CrossRef]
- Riva, M.; Imbesi, F.; Beghi, E.; Galli, C.; Citterio, A.; Trapani, P.; Sterzi, R.; Collice, M. Temozolomide and Thalidomide in the Treatment of Glioblastoma Multiforme. Anticancer Res. 2007, 27, 1067–1071. [Google Scholar]
- Alexander, B.M.; Wang, M.; Yung, W.K.A.; Fine, H.A.; Donahue, B.A.; Tremont, I.W.; Richards, R.S.; Kerlin, K.J.; Hartford, A.C.; Curran, W.J.; et al. A Phase II Study of Conventional Radiation Therapy and Thalidomide for Supratentorial, Newly-Diagnosed Glioblastoma (RTOG 9806). J. Neurooncol. 2013, 111, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Hegi, M.E.; Neyns, B.; Goldbrunner, R.; Schlegel, U.; Clement, P.M.J.; Grabenbauer, G.G.; Ochsenbein, A.F.; Simon, M.; Dietrich, P.-Y.; et al. Phase I/IIa Study of Cilengitide and Temozolomide with Concomitant Radiotherapy Followed by Cilengitide and Temozolomide Maintenance Therapy in Patients with Newly Diagnosed Glioblastoma. J. Clin. Oncol. 2010, 28, 2712–2718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cianfrocca, M.E.; Kimmel, K.A.; Gallo, J.; Cardoso, T.; Brown, M.M.; Hudes, G.; Lewis, N.; Weiner, L.; Lam, G.N.; Brown, S.C.; et al. Phase 1 Trial of the Antiangiogenic Peptide ATN-161 (Ac-PHSCN-NH(2)), a Beta Integrin Antagonist, in Patients with Solid Tumours. Br. J. Cancer 2006, 94, 1621–1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neal, J.; Wakelee, H. AMG-386, a Selective Angiopoietin-1/-2-Neutralizing Peptibody for the Potential Treatment of Cancer. Curr. Opin. Mol. Ther. 2010, 12, 487–495. [Google Scholar] [PubMed]
- Walia, A.; Yang, J.F.; Huang, Y.-H.; Rosenblatt, M.I.; Chang, J.-H.; Azar, D.T. Endostatin’s Emerging Roles in Angiogenesis, Lymphangiogenesis, Disease, and Clinical Applications. Biochim. Biophys. Acta 2015, 1850, 2422–2438. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Yao, Q.; Li, D.; Zhang, J.; Wang, T.; Yu, M.; Zhou, X.; Huan, Y.; Wang, J.; Wang, L. Neoadjuvant Rh-Endostatin, Docetaxel and Epirubicin for Breast Cancer: Efficacy and Safety in a Prospective, Randomized, Phase II Study. BMC Cancer 2013, 13, 248. [Google Scholar] [CrossRef] [Green Version]
- Cui, C.; Mao, L.; Chi, Z.; Si, L.; Sheng, X.; Kong, Y.; Li, S.; Lian, B.; Gu, K.; Tao, M.; et al. A Phase II, Randomized, Double-Blind, Placebo-Controlled Multicenter Trial of Endostar in Patients with Metastatic Melanoma. Mol. Ther. 2013, 21, 1456–1463. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Su, Y.; You, J.; Gong, L.; Zhang, Z.; Wang, M.; Zhao, Z.; Zhang, Z.; Li, X.; Wang, C. Combining Antiangiogenic Therapy with Neoadjuvant Chemotherapy Increases Treatment Efficacy in Stage IIIA (N2) Non-Small Cell Lung Cancer without Increasing Adverse Effects. Oncotarget 2016, 7, 62619–62626. [Google Scholar] [CrossRef] [Green Version]
- Saffar, H.; Noohi, M.; Tavangar, S.M.; Saffar, H.; Azimi, S. Expression of Prostate-Specific Membrane Antigen (PSMA) in Brain Glioma and Its Correlation with Tumor Grade. Iran. J. Pathol. 2018, 13, 45–53. [Google Scholar] [PubMed] [Green Version]
- Anilkumar, G.; Barwe, S.P.; Christiansen, J.J.; Rajasekaran, S.A.; Kohn, D.B.; Rajasekaran, A.K. Association of Prostate-Specific Membrane Antigen with Caveolin-1 and Its Caveolae-Dependent Internalization in Microvascular Endothelial Cells: Implications for Targeting to Tumor Vasculature. Microvasc. Res. 2006, 72, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Hatoum, A.; Mohammed, R.; Zakieh, O. The Unique Invasiveness of Glioblastoma and Possible Drug Targets on Extracellular Matrix. Available online: https://www.dovepress.com/the-unique-invasiveness-of-glioblastoma-and-possible-drug-targets-on-e-peer-reviewed-fulltext-article-CMAR (accessed on 19 June 2020).
- Rempe, R.G.; Hartz, A.M.; Bauer, B. Matrix Metalloproteinases in the Brain and Blood–Brain Barrier: Versatile Breakers and Makers. J. Cereb. Blood Flow Metab. 2016, 36, 1481–1507. [Google Scholar] [CrossRef] [Green Version]
- Mandel, J.J.; Yust-Katz, S.; Patel, A.J.; Cachia, D.; Liu, D.; Park, M.; Yuan, Y.; Kent, T.A.; de Groot, J.F. Inability of Positive Phase II Clinical Trials of Investigational Treatments to Subsequently Predict Positive Phase III Clinical Trials in Glioblastoma. Neuro-Oncology 2018, 20, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Ventz, S.; Lai, A.; Cloughesy, T.F.; Wen, P.Y.; Trippa, L.; Alexander, B.M. Design and Evaluation of an External Control Arm Using Prior Clinical Trials and Real-World Data. Clin. Cancer Res. 2019, 25, 4993–5001. [Google Scholar] [CrossRef]
- Lee, E.Q.; Chukwueke, U.N.; Hervey-Jumper, S.L.; de Groot, J.F.; Leone, J.P.; Armstrong, T.S.; Chang, S.M.; Arons, D.; Oliver, K.; Verble, K.; et al. Barriers to Accrual and Enrollment in Brain Tumor Trials. Neuro-Oncology 2019, 21, 1100–1117. [Google Scholar] [CrossRef]
- Parker, J.L.; Kuzulugil, S.S.; Pereverzev, K.; Mac, S.; Lopes, G.; Shah, Z.; Weerasinghe, A.; Rubinger, D.; Falconi, A.; Bener, A.; et al. Does Biomarker Use in Oncology Improve Clinical Trial Failure Risk? A Large-Scale Analysis. Cancer Med. 2021, 10, 1955–1963. [Google Scholar] [CrossRef]
- Weller, M.; van den Bent, M.; Preusser, M.; Le Rhun, E.; Tonn, J.C.; Minniti, G.; Bendszus, M.; Balana, C.; Chinot, O.; Dirven, L.; et al. EANO Guidelines on the Diagnosis and Treatment of Diffuse Gliomas of Adulthood. Nat. Rev. Clin. Oncol. 2021, 18, 170–186. [Google Scholar] [CrossRef]
- Sestito, S.; Runfola, M.; Tonelli, M.; Chiellini, G.; Rapposelli, S. New Multitarget Approaches in the War Against Glioblastoma: A Mini-Perspective. Front. Pharmacol. 2018, 9, 874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolbers, J.G. Novel Strategies in Glioblastoma Surgery Aim at Safe, Supra-Maximum Resection in Conjunction with Local Therapies. Chin. J. Cancer 2014, 33, 8–15. [Google Scholar] [CrossRef]
- Sanai, N.; Polley, M.-Y.; McDermott, M.W.; Parsa, A.T.; Berger, M.S. An Extent of Resection Threshold for Newly Diagnosed Glioblastomas: Clinical Article. J. Neurosurg. 2011, 115, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Trifiletti, D.M.; Alonso, C.; Grover, S.; Fadul, C.E.; Sheehan, J.P.; Showalter, T.N. Prognostic Implications of Extent of Resection in Glioblastoma: Analysis from a Large Database. World Neurosurg. 2017, 103, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Jena, L.; McErlean, E.; McCarthy, H. Delivery across the Blood-Brain Barrier: Nanomedicine for Glioblastoma Multiforme. Drug Deliv. Transl. Res. 2020, 10, 304–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, M.; Sanche, L. Convection-Enhanced Delivery in Malignant Gliomas: A Review of Toxicity and Efficacy. J. Oncol. 2019, 2019, 9342796. [Google Scholar] [CrossRef]
- van den Bent, M.J.; Gao, Y.; Kerkhof, M.; Kros, J.M.; Gorlia, T.; van Zwieten, K.; Prince, J.; van Duinen, S.; Sillevis Smitt, P.A.; Taphoorn, M.; et al. Changes in the EGFR Amplification and EGFRvIII Expression between Paired Primary and Recurrent Glioblastomas. Neuro-Oncology 2015, 17, 935–941. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Cazzato, E.; Ladewig, E.; Frattini, V.; Rosenbloom, D.I.S.; Zairis, S.; Abate, F.; Liu, Z.; Elliott, O.; Shin, Y.-J.; et al. Clonal Evolution of Glioblastoma under Therapy. Nat. Genet. 2016, 48, 768–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nathanson, D.A.; Gini, B.; Mottahedeh, J.; Visnyei, K.; Koga, T.; Gomez, G.; Eskin, A.; Hwang, K.; Wang, J.; Masui, K.; et al. Targeted Therapy Resistance Mediated by Dynamic Regulation of Extrachromosomal Mutant EGFR DNA. Science 2014, 343, 72–76. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Fu, L. Mechanisms of Resistance to EGFR Tyrosine Kinase Inhibitors. Acta Pharm. Sin. B 2015, 5, 390–401. [Google Scholar] [CrossRef] [Green Version]
- An, Z.; Aksoy, O.; Zheng, T.; Fan, Q.-W.; Weiss, W.A. Epidermal Growth Factor Receptor and EGFRvIII in Glioblastoma: Signaling Pathways and Targeted Therapies. Oncogene 2018, 37, 1561–1575. [Google Scholar] [CrossRef]
- Goodwin, C.R.; Rath, P.; Oyinlade, O.; Lopez, H.; Mughal, S.; Xia, S.; Li, Y.; Kaur, H.; Zhou, X.; Ahmed, A.K.; et al. Crizotinib and Erlotinib Inhibits Growth of C-Met+/EGFRvIII+ Primary Human Glioblastoma Xenografts. Clin. Neurol. Neurosurg. 2018, 171, 26–33. [Google Scholar] [CrossRef]
- Akhavan, D.; Pourzia, A.L.; Nourian, A.A.; Williams, K.J.; Nathanson, D.; Babic, I.; Villa, G.R.; Tanaka, K.; Nael, A.; Yang, H.; et al. De-Repression of PDGFRβ Transcription Promotes Acquired Resistance to EGFR Tyrosine Kinase Inhibitors in Glioblastoma Patients. Cancer Discov. 2013, 3, 534–547. [Google Scholar] [CrossRef] [Green Version]
- Mellinghoff, I.K.; Wang, M.Y.; Vivanco, I.; Haas-Kogan, D.A.; Zhu, S.; Dia, E.Q.; Lu, K.V.; Yoshimoto, K.; Huang, J.H.Y.; Chute, D.J.; et al. Molecular Determinants of the Response of Glioblastomas to EGFR Kinase Inhibitors. N. Engl. J. Med. 2005, 353, 2012–2024. [Google Scholar] [CrossRef] [Green Version]
- Bhat, K.P.L.; Balasubramaniyan, V.; Vaillant, B.; Ezhilarasan, R.; Hummelink, K.; Hollingsworth, F.; Wani, K.; Heathcock, L.; James, J.D.; Goodman, L.D.; et al. Mesenchymal Differentiation Mediated by NF-ΚB Promotes Radiation Resistance in Glioblastoma. Cancer Cell 2013, 24, 331–346. [Google Scholar] [CrossRef] [Green Version]
- Halliday, J.; Helmy, K.; Pattwell, S.S.; Pitter, K.L.; LaPlant, Q.; Ozawa, T.; Holland, E.C. In Vivo Radiation Response of Proneural Glioma Characterized by Protective P53 Transcriptional Program and Proneural-Mesenchymal Shift. Proc. Natl. Acad. Sci. USA 2014, 111, 5248–5253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, D.; Nandi, S.; Bhattacharjee, S. Combination Therapy to Checkmate Glioblastoma: Clinical Challenges and Advances. Clin. Transl. Med. 2018, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Eskilsson, E.; Røsland, G.V.; Solecki, G.; Wang, Q.; Harter, P.N.; Graziani, G.; Verhaak, R.G.W.; Winkler, F.; Bjerkvig, R.; Miletic, H. EGFR Heterogeneity and Implications for Therapeutic Intervention in Glioblastoma. Neuro-Oncology 2018, 20, 743–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burkhardt, J.-K.; Riina, H.; Shin, B.J.; Christos, P.; Kesavabhotla, K.; Hofstetter, C.P.; Tsiouris, A.J.; Boockvar, J.A. Intra-Arterial Delivery of Bevacizumab after Blood-Brain Barrier Disruption for the Treatment of Recurrent Glioblastoma: Progression-Free Survival and Overall Survival. World Neurosurg. 2012, 77, 130–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boockvar, J.A.; Tsiouris, A.J.; Hofstetter, C.P.; Kovanlikaya, I.; Fralin, S.; Kesavabhotla, K.; Seedial, S.M.; Pannullo, S.C.; Schwartz, T.H.; Stieg, P.; et al. Safety and Maximum Tolerated Dose of Superselective Intraarterial Cerebral Infusion of Bevacizumab after Osmotic Blood-Brain Barrier Disruption for Recurrent Malignant Glioma. Clinical Article. J. Neurosurg. 2011, 114, 624–632. [Google Scholar] [CrossRef] [PubMed]
- Alter, R.A.; White, T.G.; Fanous, A.A.; Chakraborty, S.; Filippi, C.G.; Pisapia, D.J.; Tsiouris, A.J.; Boockvar, J.A. Long-Term Benefit of Intra-Arterial Bevacizumab for Recurrent Glioblastoma. J. Exp. Ther. Oncol. 2017, 12, 67–71. [Google Scholar]
- Chakraborty, S.; Filippi, C.G.; Burkhardt, J.-K.; Fralin, S.; Ray, A.; Wong, T.; Ortiz, R.; Langer, D.J.; Boockvar, J.A. Durability of Single Dose Intra-Arterial Bevacizumab after Blood/Brain Barrier Disruption for Recurrent Glioblastoma. J. Exp. Ther. Oncol. 2016, 11, 261–267. [Google Scholar] [PubMed]
- Heiland, D.H.; Masalha, W.; Franco, P.; Machein, M.R.; Weyerbrock, A. Progression-Free and Overall Survival in Patients with Recurrent Glioblastoma Multiforme Treated with Last-Line Bevacizumab versus Bevacizumab/Lomustine. J. Neurooncol. 2016, 126, 567–575. [Google Scholar] [CrossRef]
- Chinot, O.L. Cilengitide in Glioblastoma: When Did It Fail? Lancet Oncol. 2014, 15, 1044–1045. [Google Scholar] [CrossRef]
- Stupp, R.; Picard, M.; Weller, M. Does Cilengitide Deserve Another Chance?-Authors’ Reply. Lancet Oncol. 2014, 15, e585–e586. [Google Scholar] [CrossRef]
- Tucci, M.; Stucci, S.; Silvestris, F. Does Cilengitide Deserve Another Chance? Lancet Oncol. 2014, 15, e584–e585. [Google Scholar] [CrossRef]
- Reynolds, A.R.; Hart, I.R.; Watson, A.R.; Welti, J.C.; Silva, R.G.; Robinson, S.D.; Da Violante, G.; Gourlaouen, M.; Salih, M.; Jones, M.C.; et al. Stimulation of Tumor Growth and Angiogenesis by Low Concentrations of RGD-Mimetic Integrin Inhibitors. Nat. Med. 2009, 15, 392–400. [Google Scholar] [CrossRef]
- Eisele, G.; Wick, A.; Eisele, A.-C.; Clément, P.M.; Tonn, J.; Tabatabai, G.; Ochsenbein, A.; Schlegel, U.; Neyns, B.; Krex, D.; et al. Cilengitide Treatment of Newly Diagnosed Glioblastoma Patients Does Not Alter Patterns of Progression. J. Neurooncol. 2014, 117, 141–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weller, M.; Nabors, L.B.; Gorlia, T.; Leske, H.; Rushing, E.; Bady, P.; Hicking, C.; Perry, J.; Hong, Y.-K.; Roth, P.; et al. Cilengitide in Newly Diagnosed Glioblastoma: Biomarker Expression and Outcome. Oncotarget 2016, 7, 15018–15032. [Google Scholar] [CrossRef]
- Cosset, É.; Weis, S.M.; Cheresh, D.A. Re-Thinking the Preclinical Development of GBM Therapeutics. Oncoscience 2018, 5, 11–12. [Google Scholar] [CrossRef] [PubMed]
- Cosset, É.; Ilmjärv, S.; Dutoit, V.; Elliott, K.; von Schalscha, T.; Camargo, M.F.; Reiss, A.; Moroishi, T.; Seguin, L.; Gomez, G.; et al. Glut3 Addiction Is a Druggable Vulnerability for a Molecularly Defined Subpopulation of Glioblastoma. Cancer Cell 2017, 32, 856–868.e5. [Google Scholar] [CrossRef] [Green Version]
- Uneda, A.; Kurozumi, K.; Fujimura, A.; Fujii, K.; Ishida, J.; Shimazu, Y.; Otani, Y.; Tomita, Y.; Hattori, Y.; Matsumoto, Y.; et al. Differentiated Glioblastoma Cells Accelerate Tumor Progression by Shaping the Tumor Microenvironment via CCN1-Mediated Macrophage Infiltration. Acta Neuropathol. Commun. 2021, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Prager, B.C.; Wu, Q.; Kim, L.J.Y.; Gimple, R.C.; Shi, Y.; Yang, K.; Morton, A.R.; Zhou, W.; Zhu, Z.; et al. Reciprocal Signaling between Glioblastoma Stem Cells and Differentiated Tumor Cells Promotes Malignant Progression. Cell Stem Cell 2018, 22, 514–528.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petroni, G.; Buqué, A.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Immunomodulation by Targeted Anticancer Agents. Cancer Cell 2021, 39, 310–345. [Google Scholar] [CrossRef] [PubMed]
- Martins, T.A.; Schmassmann, P.; Shekarian, T.; Boulay, J.-L.; Ritz, M.-F.; Zanganeh, S.; Vom Berg, J.; Hutter, G. Microglia-Centered Combinatorial Strategies Against Glioblastoma. Front. Immunol. 2020, 11, 571951. [Google Scholar] [CrossRef]
- Fukumura, D.; Kloepper, J.; Amoozgar, Z.; Duda, D.G.; Jain, R.K. Enhancing Cancer Immunotherapy Using Antiangiogenics: Opportunities and Challenges. Nat. Rev. Clin. Oncol. 2018, 15, 325–340. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Fu, Y.; Xie, Q.; Zhu, B.; Wang, J.; Zhang, B. Anti-Angiogenic Agents in Combination with Immune Checkpoint Inhibitors: A Promising Strategy for Cancer Treatment. Front. Immunol. 2020, 11, 1956. [Google Scholar] [CrossRef]
Target | Molecule | Date | Protocol | Phase | Patients |
---|---|---|---|---|---|
Wnt pathway | Celecoxib | ||||
NCT00112502 | 06/2005–09/2014 | Combined with TMZ | II | N | |
Results (43 patients): PFS 10.5 months vs. 13.4 months; TMZ vs. TMZ + celecoxib (p = 0.97) [69] | |||||
NCT00047281 | 01/2003–07/2017 | Combined with thalidomide, etoposide and Cyclophosphamide. Unpublished data | II | R | |
NCT02770378 | 05/2016–10/2019 | Combined with TMZ and eight repurposed drugs | I/II | R | |
Results: ongoing studies (no recruitment) | |||||
NCT00068770 | 09/2003–03/2015 | Combined with RT and anticonvulsant drugs (p450 inhibitor) | II | N undergoing RT and anticonvulsant treatment | |
Results (35 patients): OS 11.5 months vs. 16 months (p = 0.11; HR = 2.7); p450 inhibitor vs. no p450 inhibitor [70] | |||||
NCT00047294 | 10/2002–06/2017 | Thalidomide combined with the Stupp protocol and celecoxib | II | N | |
See Thalidomide | |||||
Notch pathway | RO4929097 | ||||
NCT01122901 | 11/2010–03/2017 | Monotherapy | II | R | |
Results (47 patients): PFS 1.7 vs. 1.7 months; OS 6.6 months vs. 6.7 months; RO4929097 after vs. before resection (No statistical data) | |||||
Hedgehog pathway | Vismodegib GDC-0449 | ||||
NCT00980343 | 09/2009–08/2017 | Monotherapy | II | R resectable | |
Results (44 patients): PFS-6 0% vs. 0%; OS 7.8 vs. 7.6 months. Before surgical resection vs. without surgery (No statistical data) | |||||
NCT03158389 | 05/2017–02/2020 | Molecularly Matched Targeted Therapies (APG101, alectinib, idasanutlin, atezolizumab, vismodegib, temsirolimus, palbociclib) combined with RT [71] | I/II | N without MGMT promoter methylation | |
Results (350 patients): ongoing studies (recruitment) | |||||
Glasdegib (PF-04449913) | |||||
NCT03466450 | 03/2018–04/2020 | Combined with TMZ | I/II | N | |
Results: ongoing studies (recruitment) | |||||
STAT3 pathway | Napabucasin (BBI608) | ||||
NCT02315534 | 12/2014–10/2019 | Combined with TMZ | I/II | R | |
Unpublished data |
Target | Molecule | Date | Protocol | Phase | Patients |
---|---|---|---|---|---|
EGFR | Cetuximab | ||||
NCT01044225 | 01/2010–03/2012 | Combined with RT/TMZ and cilengitide (non-comparative) | II | N with MGMT-promoter unmethylated | |
Unpublished data | |||||
NCT00311857 | 04/2006–09/2006 | Combined with RT/TMZ | I/II | N | |
Results (77 patients): PFS6 = 81%; PFS12 = 37%; OS12 = 87%; [109] | |||||
NCT00463073 | 04/2007–12/2008 | Combined with bevacizumab and irinotecan | II | R | |
Results (43 patients): PFS 16 weeks; OS 30 weeks [110] | |||||
NCT02800486 | 05/2016–01/2017 | Intracranial monotherapy | II | N | |
Results: ongoing studies (recruitment) | |||||
NCT01884740 | 06/2013–01/2017 | Combined with bevacizumab and intracranial administration | I/II | N aged under 22 | |
Results: ongoing studies (recruitment) | |||||
NCT02861898 | 08/2016–05/2019 | Intra-arterial combined with STUPP protocol | I/II | N | |
Results: ongoing studies (recruitment) | |||||
Panitumumab | |||||
NCT01017653 | 11/2009–07/2016 | Combined with irinotecan | II | R | |
Results (16 patients): PFS-6 12.5%; OS 4.6 months | |||||
Nimotuzumab | |||||
NCT00753246 | 11/2007–11/2012 | Combined with RT/TMZ vs. RT/TMZ | III | N | |
Results (142 patients): PFS = 7.7 months vs. 5.8 months (p = 0.7989); OS = 22.3 months vs. 19.6 months (p = 0.485) Nimotuzumab + RT/TMZ vs. RT/TMZ [111] | |||||
NCT03388372 | 08/2010–01/2018 | Combined with RT/TMZ | II | N | |
Unpublished data | |||||
Depatuxizumab-mafodotin | |||||
NCT03419403 | 02/2018–04/2020 | Combined with RT/TMZ and ophthalmologic prophylactic treatment | III | ||
Unpublished data | |||||
NCT02573324 | 10/2015–04/2020 | Combined with RT/TMZ | II/III | N with EGFR amplification | |
Results: ongoing studies (no recruitment) | |||||
NCT02590263 | 10/2015–05/2019 | Monotherapy or combined with RT/TMZ | I/II | N/R | |
Results: ongoing studies (no recruitment) | |||||
NCT02343406 | 01/2015–05/2020 | Monotherapy or combined with TMZ | II | R | |
Results (260 patients): PFS = 2.7 vs. 1.9 vs. 1.9 months; OS = 9.6 vs. 7.9 vs. 8.2 months Depatux-M + TMZ vs. Depatux-M vs. Lomustine or TMZ | |||||
GC1118 | |||||
NCT03618667 | 08/2018–08/2018 | Monotherapy | II | R with high EGFR amplification | |
Results: ongoing studies (recruitment) | |||||
Sym004 | |||||
NCT02540161 | 09/2015–08/2019 | Monotherapy | II | R | |
Results: ongoing studies (no recruitment) | |||||
Erlotinib | |||||
NCT00337883 | 06/2006–03/2014 | Monotherapy | II | R first | |
Unpublished data | |||||
NCT00039494 | 01/2003–08/2013 | Combined with TMZ/RT | I/II | N | |
Results (100 patients): PFS 7.2 months; OS 15.3 months [112] | |||||
NCT00445588 | 03/2007–03/2016 | Combined with sorafenib | II | R | |
Results (56 patients): PFS 2.5 months; OS 5.7 months [113] | |||||
NCT00525525 | 09/2007–05/2014 | Combined with bevacizumab. TMZ in adjuvant therapy | II | N | |
Results (150 patients): PFS 9.2 months; OS 13.6 months [114] | |||||
NCT00187486 | 09/2005–08/2012 | Combined with TMZ during the Stupp protocol | II | N | |
Results (28 patients): PFS 2.8 months; OS 8.6 months [115] | |||||
NCT00720356 | 06/2008–10/2018 | Combined with bevacizumab. in adjuvant therapy after RT/TMZ | II | N | |
Results (48 patients): PFS-12 32%; OS 13.2 months | |||||
NCT00672243 | 01/2008–08/2013 | Combined with sirolimus | II | R | |
Results (32 patients): PFS 6.9 weeks; OS 33.8 weeks [116] | |||||
NCT00671970 | 01/2008–03/2013 | Combined with bevacizumab | II | R | |
Results (25 patients): PFS-6 28%; OS = 42 weeks [117] | |||||
NCT00086879 | 06/2004–09/2017 | Monotherapy compared to TMZ or BCNU | II | R | |
Results (110 patients): PFS 1.8 months vs. 2.4 months; OS 7.7 months vs. 7.3 months (No statistical data); Erlotinib vs. BCNU/TMZ [118] | |||||
NCT00301418 | 03/2006–02/2016 | Monotherapy | I/II | R | |
Results (11 patients): PFS 1.9 months; OS 6.9 months [119] | |||||
NCT00274833 | 01/2006–12/2012 | Combined with TMZ/RT | II | N | |
Unpublished data | |||||
NCT00387894 | 10/2006–06/2013 | Monotherapy | II | R | |
Results (6 patients): Terminated because ongoing literature at the time confirmed that the selection process was not likely to enrich for a patient population expected to benefit, and rapid disease progression in the first 6 patients. | |||||
NCT00054496 | 02/2003–01/2014 | Monotherapy | II | R | |
Results: ongoing studies (recruitment unknown) | |||||
NCT00112736 | 06/2005–06/2015 | Combined with temsirolimus | I/II | R | |
Results (47 patients): PFS-6 13% [120] | |||||
NCT01110876 | 04/2010–11/2014 | Combined with vorinostat and TMZ | I/II | R | |
Unpublished data | |||||
NCT00045110 | 01/2003–08/2017 | Monotherapy | I/II | R/N | |
Results (96 patients): PFS 2 months GBM R; OS 14 months GBM N Post RT [121] | |||||
NCT00335764 | 04/2006–07/2018 | Sorafenib combined with erlotinib. tipifarnib or temsirolimus | I/II | R | |
See Sorafenib | |||||
Gefitinib | |||||
NCT00238797 | 10/2005–01/2011 | Combined with RT | II | - | |
Unpublished data | |||||
NCT00250887 | 11/2005–10/2007 | Pre- and post-surgery (second surgery) | II | R | |
Results (22 patients): OS 8.8 months [122] | |||||
NCT00014170 | 04/2001–07/2013 | Monotherapy | II | N | |
Unpublished data | |||||
NCT00016991 | 06/2001–06/2013 | Monotherapy | II | R first | |
Results (53 patients): PFS 8.1 weeks; OS 39.4 weeks [123] | |||||
HER2 | NCT00052208 | 01/2003–06/2013 | Combined with RT | I/II | N |
Results (147 patients): PFS 4.9 months; OS 11.0 months [124] | |||||
NCT00025675 | 01/2003–06/2018 | Monotherapy | II | R | |
No results posted | |||||
NCT01310855 | 03/2011–05/2017 | Cediranib combined with gefitinib, compared to cediranib and placebo | II | R | |
See Cediranib | |||||
Afatinib | |||||
NCT00727506 | 06/2008–06/2017 | Monotherapy ± TMZ and compared with TMZ | II | R | |
Results (119 patients): PFS 0.99 months vs. 1.53 months (p = 0.032) vs. 1.87 months (p = 0.204); 9.8 months vs. 8 months (p = 0.386) vs. 10.6 months (p = 0.119); Afatinib vs. Afatinib + TMZ vs. TMZ [125] | |||||
Dacomitinib | |||||
NCT01520870 | 01/2012–03/2018 | Monotherapy | II | R with EGFR Amplification or EGFRvIII Mutation | |
Results (49 patients): PFS-6 s 10.6%; PFS 2.7 months; OS 7.4 months [126] | |||||
NCT01112527 | 04/2010–08/2018 | Monotherapy | II | R | |
Unpublished data | |||||
Lapatinib | |||||
NCT01591577 | 05/2012–09/2016 | Combined with or non- combined with RT/TMZ. Unpublished data | II | N | |
NCT00099060 | 12/2004–01/2014 | Monotherapy. Unpublished data | I/II | R | |
NCT00107003 | 04/2005–07/22018 | Pre-operatory monotherapy. | II | R | |
Unpublished data | |||||
NCT00350727 | 07/2006–04/2013 | Combined with pazopanib | II | R | |
Results (41 patients): PFS 62 vs. 56 days; PFS-6 0 vs. 15%; Patients positive vs. negative for EGFRvIII and/or PTEN [127] | |||||
Neratinib | |||||
NCT02977780 | 11/2016–02/2020 | Combined with TMZ vs. TMZ | II | N | |
Results: ongoing studies (recruitment) |
Molecule | Date | Protocol | Phase | Patients |
---|---|---|---|---|
Anlotinib | ||||
NCT04157478 | 11/2019–11/2019 | Combined with Stupp protocol compared to Stupp protocol alone | II | N |
Not yet recruiting | ||||
NCT04004975 | 07/2019–07/2019 | Monotherapy | I/II | R |
Results: ongoing studies (recruitment) | ||||
NCT04119674 | 10/2019–10/2019 | Combined with Stupp protocol | I/II | N |
Results: ongoing studies (recruitment) | ||||
Tesevatinib | ||||
NCT02844439 | 07/2016–02/2020 | Monotherapy | II | R |
Unpublished data | ||||
Dacomitinib/Afatinib (see EGFR) | ||||
Cabozantinib | ||||
NCT01068782 | 02/2010–07/2014 | Monotherapy | II | R first or second |
Unpublished data | ||||
TG02 | ||||
NCT02942264 | 10/2016–01/2020 | Combined with TMZ and compared with TMW alone | I/II | R |
Results: ongoing studies (recruitment) | ||||
Vandetamib | ||||
NCT00441142 | 02/2007–03/2019 | Combined with TMZ during Stupp protocol compared to Stupp protocol (non- comparative) | I/II | N |
Results (106 patients): OS 15.9 months vs. 16.6 months (p = 0.75); PFS 6.2 vs. 7.7 months; RT/TMZ vs. vandetanib + RT/TMZ (p = 0.61) [147] | ||||
NCT00995007 | 10/2009–03/2016 | Combined with carboplatin and then monotherapy compared to carboplatin alone | II | R |
Results (64 patients): PFS-6 1.7% vs. 0.9%s; OS 5.6 months vs. 5.2 months carboplatin + vandetanib vs. carboplatin (No statistical data) [148] | ||||
Bosutinib | ||||
NCT01331291 | 04/2011–07/2016 | Monotherapy | II | R |
Results (9 patients): PFS 7.71 weeks; OS 50 weeks [149] |
Target | Molecule | Date | Protocol | Phase | Patients |
---|---|---|---|---|---|
PDGFR | Imatinib | ||||
NCT00290771 | 04/2006–04/2011 | Combined with hydroxyurea | II | R | |
Results (231 patients): PFS 5.6 weeks; OS 26 weeks [151] | |||||
NCT00171938 | 09/2005–02/2017 | Monotherapy in case of impossible re-operation | II | R | |
Unresectable with PDGFR positive | |||||
Unpublished data | |||||
NCT00154375 | 09/2005–04/2011 | Combined with hydroxyurea compared with hydroxyurea alone | III | R | |
Results (240 patients): PFS 6 weeks vs. 6 weeks (HR = 0.93); OS 21 weeks vs. 19 weeks (HR = 0.92); imatinib + hydroxyurea vs. hydroxyurea alone [155] | |||||
NCT00010049 | 01/2003–06/2018 | Monotherapy | I/II | R | |
Results (34 patients): PFS-6 3% [156] | |||||
NCT00039364 | 01/2003–07/2012 | Monotherapy | II | R | |
Results (51 patients): PFS-6 16% [157] | |||||
Dasatinib | |||||
NCT00892177 | 05/2009–10/2019 | Combined with bevacizumab and compared with bevacizumab alone | II | R | |
Results (121 patients): PFS 3.3 months vs. 3.5 months (p = 0.52; HR = 1.14); OS 7.3 months vs. 7.9 months (p = 0.7; HR = 0.92) bevacizumab + dasatinib vs. bevacizumab + placebo [158] | |||||
NCT00423735 | 01/2007–04/2017 | Monotherapy | II | R | |
Results (77 patients): PFS 1.7 vs. 1.8 months; OS = 6.5 vs. 8.9 months; 200 mg/j vs. 400 mg/j (No statistical data) [152] | |||||
NCT00948389 | 06/2008–08/2012 | Combined with lomustine | I/II | R | |
Results (28 patients): PFS 1.35 months; OS 6.4 months [159] | |||||
NCT00869401 | 03/2009–02/2020 | Combined with RT/TMZ compared to placebo | I/II | N | |
Results (196 patients): OS 15.6 vs. 19.3 months; PFS: 6.2 vs. 7.8 months; dasatinib vs. placebo | |||||
Tandutinib | |||||
NCT00379080 | 09/2006–04/2017 | Monotherapy | I/II | R | |
Results (31 patients): PFS-6 16%; OS 8.8 months [154] | |||||
NCT00667394 | 04/2008–10/2015 | Combined with bevacizumab | II | R | |
Results (41 patients): PFS 4.1 months; OS 11 months [153] | |||||
Crenolanib | |||||
NCT02626364 | 11/2015–06/2017 | Monotherapy | II | R PDGFRA Gene Amplification | |
Results: ongoing studies (recruitment) | |||||
Sunitinib | |||||
NCT01100177 | 04/2010–03/2013 | Monotherapy before and during RT | II | N unresectable | |
Results:(12 patients): PFS 7.7 weeks; OS 12.8 weeks [160] | |||||
NCT00923117 | 07/2009–09/2015 | Monotherapy with or without bevacizumab | II | R | |
Results (87 patients): PFS-6 0.92 vs. 1.08 months Bevacizumab resistant vs. naïve patients | |||||
NCT00535379 | 09/2007–08/2010 | Monotherapy | II | R | |
Results (40 patients): PFS 2.2 months; OS 9.2 months [161] | |||||
NCT02928575 | 01/2016–10/2016 | Combined with TMZ/RT | II | N | |
Results: ongoing studies (recruitment unknown) | |||||
NCT00606008 | 01/2008–11/2012 | Monotherapy | II | R | |
Results (16 patients): PFS 1.4 months; OS 12.6 months [162] | |||||
NCT03025893 | 01/2017–06/2017 | Monotherapy (high dose) | II/III | R | |
Results: ongoing studies (recruitment) | |||||
NCT00499473 | 07/2007–02/2016 | Monotherapy | II | R | |
Results (25 patients): OS 5.7 vs. 12.3 months; Patients non-EIAC (enzyme-inducing anticonvulsants) vs. EIAC | |||||
Regorafenib | |||||
NCT03970447 | 05/2019–03/2020 | Combined with RT/TMZ | II/III | N/R | |
Results: ongoing studies (recruitment) | |||||
NCT04051606 | 08/2019–02/2020 | Monotherapy | II | R | |
Results: ongoing studies (recruitment) | |||||
NCT02926222 | 10/2016–09/2018 | Monotherapy | II | R | |
Results: ongoing studies (recruitment) | |||||
MEDI-575 | |||||
NCT01268566 | 12/2010–04/2017 | Monotherapy | II | R | |
Results (56 patients): PFS-6 15.4%; PFS 1.4 months; OS 9.7 months [163] | |||||
Olaratumab (IMC-3G3) | |||||
NCT00895180 | 05/2009–12/2017 | Monotherapy compared to ramucirumab | II | R | |
Results (80 patients): PFS-6 12.5% vs. 7.5%; OS 49.5 vs. 34.3 weeks; ramucirumab vs. olaratumab | |||||
Ponatinib | |||||
NCT02478164 | 06/2015–07/2018 | Monotherapy | II | R Bevacizumab-Refractory | |
Results (15 patients): PFS 28 days; OS 98 days [164] | |||||
Leflunomide | |||||
NCT00003293 | 06/2004–09/2012 | Monotherapy compared to procarbazine | III | R | |
Unpublished data | |||||
IGFR | Axl1717 | ||||
NCT01721577 | 11/2012–01/2015 | Monotherapy | I/II | R | |
Results (8 patients): PFS 8 weeks; OS 15 weeks [165] | |||||
FGFR | BGJ398 | ||||
NCT01975701 | 11/2013–12/2019 | Monotherapy | II | R | |
Results (26 patients): PFS 1.7 months; OS 6.74 months | |||||
ALK | Alectinib | ||||
NCT03158389 | 05/2017–02/2020 | Molecularly Matched Targeted Therapies (APG101, alectinib, idasanutlin, atezolizumab, vismodegib, temsirolimus, palbociclib) combined with RT [71] | I/II | N without MGMT promoter methylation | |
See Vismodegib |
Target | Molecule | Date | Protocol | Phase | Patients |
---|---|---|---|---|---|
mTOR | Temsirolimus | ||||
NCT00800917 | 12/2008–01/2010 | Combined with bevacizumab | II | R | |
Results (13 patients): PFS 8 weeks; OS 15 weeks [175] | |||||
NCT00016328 | 05/2001–07/2013 | Monotherapy | II | R | |
Results (65 patients): PFS 2.3 weeks; OS 4.4 months [176] | |||||
NCT00329719 | 05/2006–10/2018 | Combined with sorafenib ± surgery | I/II | R | |
Results (102 patients): PFS 2.71 vs. 4.34 vs. 1.87 months; OS 6.55 vs. 6.74 vs. 3.93 months. Temsirolimus + sorafenib vs. temsirolimus + sorafenib + surgery vs. temsirolimus + sorafenib in patients treated with anti-VEGF (No statistical data) [177] | |||||
NCT01019434 | 11/2009–10/2016 | Combined with RT, compared with RT/TMZ | II | N. unmethylated MGMT | |
Results (111 patients): PFS 5.4 months vs. 6.0 months (p = 0.24; HR = 1.26); OS 14.8 months vs. 16.0 months (p = 0.47; HR = 1.2) temsirolimus/RT vs. TMZ/RT [178] | |||||
NCT00022724 | 01/2003–06/2018 | Monotherapy | I/II | R | |
Results (43 patients): 9 weeks [179] | |||||
NCT00112736 | 06/2005–06/2015 | Combined with erlotinib | I/II | R | |
See Erlotinib | |||||
NCT00335764 | 04/2006–07/2018 | Sorafenib combined with erlotinib, tipifarnib or temsirolimus | I/II | R | |
See Sorafenib | |||||
NCT03158389 | 05/2017–02/2020 | Molecularly Matched Targeted Therapies (APG101, alectinib, idasanutlin, atezolizumab, vismodegib, temsirolimus, palbociclib) combined with RT [71] | I/II | N without MGMT promoter methylation | |
See Vismodegib | |||||
Sirolimus | |||||
NCT00672243 | 01/2008–02/2013 | Combined with erlotinib | II | R | |
See Erlotinib | |||||
Everolimus | |||||
NCT00515086 | 08/2007–09/2011 | Monotherapy | II | R | |
Unpublished data | |||||
NCT00107237 | 04/2005–06/2013 | Combined with AEE788 (inhibitor of the EGFR, HER-2, VEGFR family) | II | R | |
Unpublished data | |||||
NCT01434602 | 09/2011–07/2017 | Combined with sorafenib | II | R | |
Results: ongoing studies | |||||
NCT00805961 | 12/2008–08/2013 | Combined with Bevacizumab in adjuvant therapy after RT/TMZ | II | N | |
Results (68 patients): PFS 11.3 months; OS 13.9 months [180] | |||||
NCT00553150 | 11/2007–02/2020 | Combination of RT/TMZ then TMZ/everolimus | II | N | |
Results (100 patients): PFS-12 6.4 months; OS-12 15.8 months [181] | |||||
NCT01062399 | 02/2010–05/2019 | Combined with RT/TMZ | I/II | N | |
Results (171 patients): PFS: 8.2 vs. 10.2 months (p = 0.79); OS: 16.5 vs. 21.2 months (p = 0.008); Patients with or without everolimus [182] | |||||
ABI-009 (nab-Rapamycin) | |||||
NCT03463265 | 08/2018–12/2020 | Monotherapy or in combination with bevacuzimab or RT/TMZ or marizomib, or lomustine | II | R/N | |
Results: ongoing studies (recruitment) | |||||
PI3K | Pictilisib | ||||
NCT02430363 | 03/2013–01/2016 | Monotherapy compared with pembrolizumab | I/II | R | |
Unpublished data | |||||
Buparlisib (BKM120) | |||||
NCT01349660 | 04/2011–01/2017 | Combined with bevacizumab | I/II | R | |
Preliminary data (76 patients): PFS 2.8 vs. 5.3 months; OS 6.5 vs. 10.8 months; buparlisib + bevacizumab vs. bevacizumab alone (No statistical data) | |||||
NCT01339052 | 04/2011–03/2019 | Monotherapy combined or not combined with surgery | II | R | |
Results (65 patients): PFS 1.7 months; OS 9.8 months; Patients not submitted to surgery [165] | |||||
Sonolisib (PX-866) | |||||
NCT01259869 | 04/2015–02/2015 | Monotherapy | II | R first | |
Results (17 patients): PFS6 = 17% [183] | |||||
Paxalisib (GDC-0084) | |||||
NCT03522298 | 05/2018–03/2020 | Monotherapy | II | N | |
Results: ongoing studies (no recruitment) | |||||
PI3K/mTOR | Bimiralisib (PQR309) | ||||
NCT02850744 | 08/2016–10/2018 | Monotherapy | II | N | |
Unpublished data | |||||
Akt & protein kinase c | Enzastaurin | ||||
NCT00295815 | 02/2006–11/2016 | Compared with lomustine | III | R | |
Results (293 patients): PFS 1.51 months vs. 1.64 months (p = 0.08; HR = 1.28); OS 6.60 months vs. 7.13 months (p = 0.25; HR = 1.20) enzastaurin vs. lomustine [184] | |||||
NCT00509821 | 06/2007–04/2016 | Combined with RT (before, during, after) | II | N | |
Results (60 patients): PFS 6.6 months; OS 15.0 months [185] | |||||
NCT00402116 | 11/2006–10/2010 | Combined with the Stupp protocol | I/II | N | |
Unpublished Phase II results | |||||
NCT00586508 | 12/2007–10/2013 | Combined with bevacizumab | II | N | |
Results (40 patients): PFS 2.0 months; OS = 7.5 months [186] | |||||
NCT03776071 | 12/2018–05/2019 | Combined with RT/TMZ | II | N | |
Results: ongoing studies (recruitment) |
Target | Molecule | Date | Protocol | Phase | Patients |
---|---|---|---|---|---|
Ras/MAPK | TLN-4601 | ||||
NCT00730262 | 08/2008–12/2017 | Monotherapy | II | R | |
Results (20 patients): PFS-6 0%; OS 130 days [201] | |||||
Sorafenib | |||||
NCT00544817 | 10/2007–06/2016 | Combined with the Stupp protocol in adjuvant therapy | II | N | |
Results (47 patients): PFS 6 months; OS 12 months [202] | |||||
NCT00597493 | 01/2008–03/2013 | Combined with TMZ | II | R | |
Results (32 patients): PFS 6.4 weeks; OS 41.5 weeks [203] | |||||
NCT00329719 | 05/2006–11/2016 | Combined with temsirolimus | II | R | |
See Temsirolimus | |||||
NCT00335764 | 04/2006–07/2018 | Combined with erlotinib. tipifarnib or temsirolimus | I/II | R | |
Results not fully available | |||||
NCT00445588 | 03/2007–03/2016 | Combined with erlotinib | II | R | |
See Erlotinib | |||||
NCT00621686 | 02/2008–01/2017 | Combined with bevacizumab | II | R | |
Results (54 patients): PFS 2.9 months; OS 5.6 months [204] | |||||
NCT01434602 | 09/2011–06/2017 | Combined with everolimus | II | R | |
See Everolimus | |||||
NCT01817751 | 03/2013–05/2017 | Combined with valproic acid and sildenafil | II | R | |
Results: ongoing studies (recruitment) | |||||
LY2228820 | |||||
NCT02364206 | 02/2015–08/2019 | Combined with the Stupp protocol | II | N | |
Unpublished data | |||||
Atorvastatin | |||||
NCT02029573 | 01/2014–08/2017 | Combined with RT/TMZ | II | / | |
Results (20 patients): PFS 9.1 months [205] | |||||
Dabrafenib | |||||
NCT03919071 | 04/2019–03/2020 | Combined with trametinib (MEK inhibitor) post-RT | II | N | |
Results: ongoing studies (recruitment) | |||||
2-OHOA | |||||
NCT04250922 | 01/2020–01/2020 | Combined with RT/TMZ | II | R | |
Results: ongoing studies (recruitment) | |||||
MEK | Binimetinib | ||||
NCT03973918 | 06/2019–03/2020 | Combined with encorafenib | II | R BRAF V600-Mutated HGG | |
Results: ongoing studies (recruitment) | |||||
Trametinib | |||||
NCT03919071 | 04/2019–03/2020 | Combined with dabrafenib post-RT | II | N | |
See Dabrafenib |
Target | Molecule | Date | Protocol | Phase | Patients |
---|---|---|---|---|---|
CD95 | APG101 | ||||
NCT01071837 | 02/2010–06/2015 | Combined with re-irradiation compared to re-irradiation alone | II | R | |
Results (91 patients): PFS 2.5 months vs. 4.5 months (p = 0.0162; HR = 0.49); OS 11.5 months vs. 11.5 months; reirradation vs. reirradiation + APG101 [215] | |||||
NCT03158389 | 05/2017–02/2020 | Molecularly Matched Targeted Therapies (APG101, alectinib, idasanutlin, atezolizumab, vismodegib, temsirolimus, palbociclib) combined with RT [71] | I/II | N without MGMT promoter methylation | |
See Vismodegib | |||||
DRD2/3 | ONC201 | ||||
NCT02525692 | 08/2015–01/2020 | Monotherapy | II | R H3 K27M positive | |
Results: (14 patients): OS 17 weeks; PFS 14 weeks [216] | |||||
p53 | Gene therapy (SGT-53) | ||||
NCT02340156 | 12/2014–03/2020 | Combined with TMZ | II | R | |
Unpublished data | |||||
p53-MDM2 | Idasanutlin (RG7388) | ||||
NCT03158389 | 05/2017–02/2020 | Molecularly Matched Targeted Therapies (APG101, alectinib, idasanutlin, atezolizumab, vismodegib, temsirolimus, palbociclib) combined with RT [71] | I/II | N without MGMT promoter methylation | |
See Vismodegib | |||||
Bcl-2 | Gossypol | ||||
NCT00540722 | 10/2007–03/2017 | Monotherapy | II | R | |
Results (56 patients): PFS 1.87 months; OS = 5.9 months | |||||
Farnesyl transferase | Tipifarnib | ||||
NCT00050986 | 01/2003–08/2012 | Combined with TMZ | I/II | R | |
No published results | |||||
NCT00058097 | 04/2003–04/2013 | Combined with RT | II | N | |
Results (28 patients): PFS 42 days; OS 234.5 days [217] | |||||
NCT00005859 | 01/2003–06/2018 | Monotherapy | I/II | R | |
Results (67 patients): PFS 8 vs. 6 weeks (p = 0.01) patients non- EIAED vs. patients EIAED [218] | |||||
NCT00335764 | 04/2006–07/2018 | Sorafenib combined with erlotinib. tipifarnib or temsirolimus | I/II | R | |
See Sorafenib | |||||
Lonafarnib | |||||
NCT00038493 | 06/2002–10/2018 | Combined with TMZ | II | R | |
Unpublished data |
Target | Molecule | Date | Protocol | Phase | Patients |
---|---|---|---|---|---|
Autophagy | Chloroquine | ||||
NCT02432417 | 04/2015–06/2019 | Combined with the Stupp protocol | II | N | |
Results: ongoing studies | |||||
NCT00224978 | 09/2005–11/2009 | Monotherapy | III | N | |
Results (30 patients): OS 24 vs. 11 months; chloroquine-treated patients vs. controls [250] | |||||
NCT00486603 | 06/2007–07/2019 | Combined with RT/TMZ | I/II | N | |
Results (76 patients): OS 15.6 months [251] |
Target | Molecule | Date | Protocol | Phase | Patients |
---|---|---|---|---|---|
CDK4/6 | Palbociclib (PD 0332991) | ||||
NCT01227434 | 10/2010–07/2015 | Monotherapy combined or not combined to surgery | II | R | |
Rb positif | |||||
Results (22 patients): PFS 5.14 weeks; OS 15.4 weeks [252] | |||||
NCT03158389 | 05/2017–02/2020 | Molecularly Matched Targeted Therapies (APG101, alectinib, idasanutlin, atezolizumab, vismodegib, temsirolimus, palbociclib) combined with RT [71] | I/II | N without MGMT promoter methylation | |
See Vismodegib | |||||
Abemaciclib | |||||
NCT02981940 | 12/2016–03/2020 | Monotherapy combined or not combined to surgery | II | R | |
Results: ongoing studies (no recruitment) | |||||
Proteasome | Bortezomib | ||||
NCT03643549 | 08/2018–02/2020 | Combined with TMZ | I/II | R | |
MGMT unmethylated | |||||
Results: ongoing studies (recruitment) | |||||
NCT00641706 | 03/2008–05/2014 | Combined with vorinostat | II | R | |
Results (37 patients): PFS 1.5 mois; OS 3.2 mois [253] | |||||
NCT00998010 | 10/2009–05/2019 | Combined with TMZ/RT | II | N | |
Unpublished data | |||||
NCT00611325 | 02/2008–03/2014 | Combined with bevacizumab | II | R | |
See Bevacizumab | |||||
Marizomib | |||||
NCT03345095 | 11/2017–06/2019 | Combined with TMZ/RT | III | N | |
Results (749 patients): ongoing studies (recruitment) | |||||
NCT03463265 | 08/2018–12/2020 | Monotherapy (ABI-009) or in combination with bevacuzimab or RT/TMZ or ABI-009, or lomustine | II | R/N | |
See ABI-009 | |||||
NCT02330562 | 01/2015–03/2020 | Combined with bevacuzimab | I/II | R | |
See Bevacizumab | |||||
Histone desacetylase | Vorinostat | ||||
NCT00555399 | 11/2007–12/2019 | Combined with Isotretinoin and temozolomide | I/II | R | |
Results: ongoing studies (no recruitment) | |||||
NCT00731731 | 08/2008–03/2020 | Combined with TMZ/RT | II | N | |
Preliminary results (107 patients): OS-15 months 54.6%; PFS 8.05 months | |||||
NCT00238303 | 10/2005–05/2014 | Combined with surgery | II | R | |
Results (68 patients): PFS 1.9 months; OS 5.7 months [254] | |||||
NCT01110876 | 04/2010–11/2014 | Combined with erlotinib and TMZ | I/II | R | |
See Erlotinib | |||||
NCT00641706 | 03/2008–05/2014 | Combined with bortezomib | II | R | |
See Bortezomib | |||||
NCT01266031 | 12/2010–07/2018 | Bevacizumab in monotherapy vs. combined with vorinostat | I/II | R | |
See Bevacizumab | |||||
NCT01738646 | 11/2012–02/2017 | Combined with bevacizumab | II | R | |
See Bevacizumab | |||||
NCT00939991 | 07/2009–06/2013 | Combined with bevacizumab and TMZ | I/II | R | |
See Bevacizumab | |||||
Panobinostat (LBH589) | |||||
NCT00848523 | 02/2009–07/2010 | Monotherapy | II | R | |
Unpublished data | |||||
FR901228 | |||||
NCT00085540 | 06/2004–01/2017 | Monotherapy | I/II | R | |
Results (35 patients): PFS 8 weeks [255] | |||||
TGFβ & TGFβR | Trabedersen (AP12009) | ||||
NCT00431561 | 02/2007–12/2013 | Monotherapy vs. TMZ or PVC (procarbazine/lomustine/vincristine) | IIb | R | |
Results (145 patients): In GBM patients, response and survival results were comparable among the 3 arms [256] | |||||
Galunisertib (LY2157299) | |||||
NCT01582269 | 04/2012–12/2019 | Monotherapy or combined with lomustine | II | R | |
Results: ongoing studies (no recruitment) | |||||
NCT01220271 | 10/2010–02/2017 | Combined with TMZ/RT vs. TMZ/RT | I/II | N | |
Results (56 patients): OS 18.2 vs. 17.9 months (HR = 1.2), PFS 7.6 vs. 11.5 months (HR = 1.8), patients treated with galunisertib combined with TMZ/RT vs. TMZ/RT [257] | |||||
OKN-007 | |||||
NCT03649464 | 08/2018–03/2020 | Monotherapy | I/II | R | |
Not yet recruiting | |||||
PARP | Iniparib (BSI-201) | ||||
NCT00687765 | 06/2008–07/2015 | Combined with TMZ | I/II | N | |
Results (81 patients): OS 22 months [258] | |||||
Veliparib | |||||
NCT02152982 | 06/2014–03/2020 | Combined with TMZ | II/III | N | |
Results: ongoing studies (no recruitment) | |||||
NCT03581292 | 07/2018–03/2020 | Combined with RT/TMZ | II | N | |
Negative H3 K27M or BRAFV600 | |||||
Results: ongoing studies (recruitment) | |||||
NCT01026493 | 12/2009-/07/2017 | Combined with TMZ | I/II | R | |
Results (215 patients): OS 10.3 vs. 10.7 months (p = 0.95; HR = 0.99) patients BEV-naïve low vs. high TMZ dose; OS 4.7 vs. 4.7 months (p = 0.93; HR = 0.93) patients BEV-failure low vs. high TMZ dose; PFS-6 17 vs. 4.4% patients BEV-naïve vs. BEV-failure [259] | |||||
Olaparib | |||||
NCT03212274 | 07/2017–03/2020 | Monotherapy | II | IDH1/2 mutations | |
Results: ongoing studies (recruitment) | |||||
NCT02974621 | 11/2016–03/2020 | Cediranib combined with olaparib and compared to bevacizumab | II | R | |
See Cediranib | |||||
Pamiparib | |||||
NCT03150862 | 05/2017–11/2019 | Combined with RT/TMZ | I/II | R/N | |
Results: ongoing studies (no recruitment) | |||||
NCT03914742 | 04/2019-/2020 | Combined with TMZ | I/II | R IDH1/2 mutations | |
Results: ongoing studies (recruitment) |
Target | Molecule | Date | Protocol | Phase | Patients |
---|---|---|---|---|---|
VEGF | Bevacizumab | ||||
NCT01609790 | 06/2012–03/2020 | Combined with trebananib | II | R | |
Preliminary results (116 patients): OS 11.5 vs. 7.5 months (p = 0.09; HR = 1.46); PFS 4.8 vs. 4.2% (p = 0.04; HR = 1.51) | |||||
NCT00817284 | 01/2009–11/2011 | Combined with RT/TMZ or RT/irinotecan | II | N | |
Unpublished data | |||||
NCT01860638 | 05/2013–04/2018 | Continuous treatment with Stupp, followed with Lomustine in first disease progression (PD1) and with chemotherapy in second progression (PD2) | II | R | |
Results (296 patients): OS 6.4 vs. 5.5 months (HR = 1.04); PFS 2.3 vs. 1.8 months (HR = 0.70) PD1 lomustine bevacizumab vs. lomustine alone; PFS 2 vs. 2.2 months (HR = 0.70) PD2 bevacizumab chemotherapy vs. chemotherapy alone. No p values were reported [278] | |||||
NCT01115491 | 05/2010–12/2014 | Combined with TMZ | II | R | |
Results (32 patients): PFS 18.29 weeks; OS 31.43 weeks | |||||
NCT00590681 | 01/2008–09/2015 | Combined with TMZ | II | N | |
Unpublished data | |||||
NCT00979017 | 09/2009–03/2014 | Combined with TMZ and irinotecan | II | N unresectable and multifocal | |
Results (41 patients): OS 12 months; PFS 8.6 months [279] | |||||
NCT01186406 | 08/2010–02/2019 | Combined with gliadel, TMZ and RT | II | N | |
Results (41 patients): OS 19.4 months; PFS 11.3 months | |||||
NCT01903330 | 07/2013–11/2019 | Combined with ERC1671 (vaccine) and granulocyte-macrophage colony-stimulating factor (GM-CSF) compared to combination with placebo | II | R | |
Results: ongoing studies (recruitment) | |||||
NCT01443676 | 09/2011–11/2016 | Combined with RT compared to RT alone | II | N in elderly | |
Results (75 patients): PFS 7.6 vs. 4.8 months (p = 0.003); OS 12.1 vs. 12.2 months (p = 0.77); bevacizumab + RT vs. RT [280] | |||||
NCT02898012 | 09/2016–09/2016 | Combined with TMZ | II | N age over 70 | |
Results (66 patients): OS 23.9 weeks; PFS 15.3 weeks [281] | |||||
NCT01149850 | 06/2010–02/2020 | Combined with TMZ | II | N in elderly | |
Results: ongoing studies (no recruitment) | |||||
NCT01004874 | 10/2009–02/2020 | Combined with RT/TMZ followed by combination with TMZ/popotecan | II | / | |
Preliminary results (80 patients): OS 17.2 months; PFS 11.1 months | |||||
NCT00735436 | 08/2008–02/2013 | Combined with gliadel and irinotecan | II | N | |
Results (18 patients): PFS 8 months; OS 13.5 months | |||||
NCT02698280 | 03/2016–07/2018 | Combined with nimustine | II | R | |
Unpublished data | |||||
NCT01266031 | 12/2010–07/2018 | Monotherapy vs. combined with vorinostat | I/II | R | |
Results (patients): OS 9.24 vs. 7.8 months; bevacizumab vs. bevacizumab + vorinostat | |||||
NCT01013285 | 11/2009–01/2016 | Combined with TMZ and RT | II | N | |
Results: ongoing studies (recruitment unknown) | |||||
NCT01738646 | 11/2012–02/2017 | Combined with vorinostat | II | R | |
Results (38 patients): PFS 3.7 months; OS 10.4 months; PFS-6 30% [282] | |||||
NCT00939991 | 07/2009–06/2013 | Combined with vorinostat and TMZ | I/II | R | |
Results (39 patients): PFS 6.7 months; OS 12.5 months; PFS-6 53.8% | |||||
NCT00337207 | 06/2006–02/2020 | Monotherapy | II | R | |
Results (54 patients): PFS-6 24% | |||||
NCT00268359 | 12/2005–07/2014 | Combined with irinotecan | II | R | |
Results (32 patients): PFS 23 weeks; PFS-6 38% OS-6 72% [283] | |||||
NCT00795665 | 11/2008–03/2020 | Combined with carmustine | II | R | |
Unpublished data | |||||
NCT02330562 | 01/2015–03/2020 | Combined with marizomib | I/II | R | |
Results: ongoing studies (no recruitment) | |||||
NCT00921167 | 06/2009–12/2013 | Combined with irinotecan | II | R | |
Results: completed, no results posted | |||||
NCT02157103 | 06/2014–05/2018 | Subcutaneous monotherapy | II | R | |
Results (3 patients): 66.7% decrease in radiation-related edema | |||||
NCT01209442 | 09/2010–04/2019 | Combined with hypofractionated RT and TMZ | II | N | |
Results (30 patients): PFS 14.3 months; OS 16.3 months [284] | |||||
NCT02120287 | 04/2014–05/2019 | Combined with radiosurgery | II | R | |
Results (16 patients): OS 11.73 months | |||||
NCT01102595 | 04/2010–08/2015 | Combined with TMZ in neoadjuvant therapy of the Stupp protocol compared to the Stupp protocol | II | N, unresectable | |
Results (102 patients): PFS 2.2 vs. 4.8 months (p = 0.10; HR = 0.70); OS 7.7 vs. 10.6 months (p = 0.07; HR = 0.68); TMZ vs. TMZ + bevacizumab [285] | |||||
NCT01022918 | 12/2009–09/2012 | Combined with irinotecan in neoadjuvant and adjuvant therapy with TMZ, compared to neoadjuvant TMZ and Stupp | II | N, unresectable | |
Results: (120 patients): PFS = 7.1 vs. 5.2 months (HR = 0.82); OS = 11.1 vs. 11.1 months; bevacizumab/Irinotecan vs. ctrl [286] | |||||
NCT00943826 | 07/2009–09/2017 | Combined with TMZ during the Stupp protocol, compared to the Stupp protocol | III | N | |
Results (921 patients): PFS 10.6 vs. 6.2 months (p < 0.001; HR = 0.64); OS 16.8 vs. 16.7 months (p = 0.1; HR = 0.88); bevacizumab + Stupp vs. Stupp [287] | |||||
NCT01067469 | 02/2010–03/2020 | Low dose and combined with lomustine, compared to high dose bevacizumab alone | II | R | |
Results (69 patients): PFS 4.34 vs. 4.11 months (p = 0.19); OS 9.6 vs. 8.3 months (p = 0.75); bevacizumab + lomustine vs. bevacizumab [288] | |||||
NCT00883298 | 04/2009–03/2017 | Combined with TMZ twice a week | II | R | |
Results (30 patients): PFS 5.5 months; OS 51 weeks [289] | |||||
NCT00345163 | 06/2006–05/2017 | Combined with or not combined with irinotecan | II | R | |
Results (167 patients): PFS-6 42.6% vs. 50.3% (p < 0.0001); PFS 4.2 vs. 5.6 months; OS 9.2 months vs. 8.7 months; bevacizumab alone vs. bevacizumab + irinotecan [276] | |||||
NCT01474239 | 11/2011–03/2016 | Compared with fotemustine | II | R | |
Results (91 patients): PFS 3.38 vs. 3.45 months; OS 7.3 vs. 8.7 months; bevacizumab vs. fotemustine (no statistical data) [290] | |||||
NCT02761070 | 05/2016–02/2019 | Combined with high-dose TMZ compared to bevacizumab alone | III | R | |
Results: ongoing studies (recruitment) | |||||
NCT02743078 | 04/2016–11/2019 | Combined with Optune® | II | R Beva refractory or resistant to Beva | |
Unpublished data | |||||
NCT01894061 | 07/2013–03/2020 | Combined with NovoTTF | II | R | |
Unpublished data | |||||
NCT01814813 | 03/2013–06/2019 | Combined with vaccination (HSPPC-96) compared to bevacizumab alone | II | R | |
Preliminary results (90 patients): PFS 3.7 vs. 2.5 vs. 5.3 months (p < 0.01); OS 6.6 vs. 9.2 vs. 10.7 months (p = 0.16); HSPPC-96 + Bevacizumab concomitant vs. HSPPC-96 + bevacizumab on progression vs. bevacizumab alone | |||||
NCT01730950 | 11/2012–03/2020 | Combined with re-irradiation, compared to bevacizumab alone | II | R | |
Preliminary results (170 patients): PFS 8.9 vs. 7.9% (p = 0.05; HR = 0.73); OS 25.1 vs. 21.6% (p = 0.46; HR = 0.98); bevacizumab alone vs. bevacizumab + RT | |||||
NCT00967330 | 08/2009–11/2015 | Combined with RT, then in adjuvant therapy combined with Irinotecan compared to the Stupp protocol | II | N. MGMT non methylated | |
Results (182 patients): PFS 5.99 vs. 9.7 months (HR = 0.57; p < 0.001); OS 16.6 vs. 17.5 months (HR = 1.02; p = 0.55); TMZ vs. bevacizumab + irinotecan [291] | |||||
NCT02343549 | 01/2015–07/2019 | Combined with Optune® and TMZ | II | N | |
Results: ongoing studies (recruitment) | |||||
NCT01290939 | 02/2011–02/2018 | Combined with lomustine | III | R | |
Results (437 patients): PFS 4.2 vs. 1.5 months (HR = 0.49; p < 0.001); OS 9.1 vs. 8.6 months (HR = 0.95; p = 0.65); bevacizumab + lomustine vs. lomustine alone [292] | |||||
NCT00611325 | 02/2008–03/2014 | Combined with bortezomib | II | R | |
Results (56 patients): PFS 2 vs. 2.5 months; OS 8 vs. 6 moonths; PFS-6 25 vs. 28.6%; EIAED vs. non-EIAED | |||||
NCT01269853 | 01/2011–05/2019 | Intracerebral administration | I/II | R | |
Results: ongoing studies (recruitment) | |||||
NCT01811498 | 03/2013–05/2019 | Intracerebral administration | I/II | N | |
Results: ongoing studies (recruitment) | |||||
NCT02511405 | 07/2015–10/2018 | Combined with VB-111 (antiangiogenic), compared to bevacizumab alone | III | R | |
Results (256 patients): OS 6.8 vs. 7.9 months (p = 0.19; HR = 1.20) combined vs. bevacizumab alone [293] | |||||
NCT00612339 | 02/2008–05/2013 | Combined with TMZ | II | Non resectable | |
Results (41 patients): RR 24.4% | |||||
NCT03149003 | 05/2017–01/2020 | Combined with DSP-7888 (peptide vaccine) compared to bevacizumab alone | II | R | |
Results: ongoing studies (no recruitment) | |||||
NCT00501891 | 07/2007–05/2013 | Combined with TMZ | II | R | |
Results (32 patients): PFS 15.8 weeks; OS 37.1 weeks [294] | |||||
NCT00597402 | 01/2008–05/2014 | Combined with RT/TMZ, then combined with irinotecan | II | N | |
Results (75 patients): PFS 14.2 months; OS 21.2 months [295] | |||||
NCT00433381 | 02/2007–09/2018 | Combined with irinotecan or combined with TMZ | II | R | |
Unpublished data | |||||
NCT00613028 | 02/2008–06/2013 | Combined with etoposide or TMZ | II | R Resistant to Beva/Irinotecan | |
Results (22 patients): PFS 4.1 vs. 8.1 weeks; OS 12.6 vs. 19 weeks; PFS-6 0 vs. 7.7%; bevacizumab + TMZ vs. bevacizumab + etoposide | |||||
NCT00612430 | 02/2008–08/2013 | Combined with etoposide | II | R | |
Results (27 GBM et 32 grade III glioma patients): PFS6 40.6% & 44,4%; OS 63.1 & 44.4 weeks [296] | |||||
NCT00884741 | 04/2009–07/2019 | Combined with adjuvant TMZ compared to the Stupp protocol | III | N | |
Results (621 patients): PFS 10.7 months vs. 7.3 months (HR 0.79; p 0.007); OS 15.7 months vs. 16.1 months (HR 1.13; p 0.21) (bevacizumab + Stupp vs. Stupp + placebo) [297] | |||||
NCT00463073 | 04/2007–12/2008 | Combined with cetuximab and irinotecan | II | R | |
See Cetuximab | |||||
NCT01884740 | 06/2013–01/2017 | Combined with cetuximab and intracranial administration | I/II | N aged under 22 | |
See Cetuximab | |||||
NCT00525525 | 09/2007–05/2014 | Combined with erlotinib, TMZ in adjuvant therapy | II | N | |
See Erlotinib | |||||
NCT00720356 | 06/2008–10/2018 | Combined with erlotinib, in adjuvant therapy after RT/TMZ | II | N | |
See Erlotinib | |||||
NCT00671970 | 01/2008–03/2013 | Combined with erlotinib | II | R | |
See Erlotinib | |||||
NCT00892177 | 05/2009–10/2019 | Combined with dasatinib and compared with bevacizumab alone | II | R | |
See Dasatinib | |||||
NCT00667394 | 04/2008–10/2015 | Combined with tandutinib | II | R | |
See Tandutinib | |||||
NCT00923117 | 07/2009–09/2015 | Sunitinib in monotherapy with or without bevacizumab | II | R | |
See Sunitinib | |||||
NCT00800917 | 12/2008–01/2010 | Combined with temsirolimus | II | R | |
See Temsirolimus | |||||
NCT00805961 | 12/2008–08/2013 | Combined with everolimus in adjuvant therapy after RT/TMZ | II | N | |
See Everolimus | |||||
NCT03463265 | 08/2018–12/2020 | Monotherapy (ABI-009) or in combination with bevacuzimab or RT/TMZ or marizomib, or lomustine | II | R/N | |
See ABI-009 | |||||
NCT01349660 | 04/2011–01/2017 | Combined with buparlisib | I/II | R | |
See Buparlisib | |||||
NCT00586508 | 12/2007–10/2013 | Combined with enzastaurin | II | N | |
See Enzastaurin | |||||
NCT00621686 | 02/2008–01/2017 | Combined with sorafenib | II | R | |
See Sorafenib | |||||
NCT01632228 | 06/2012–02/2018 | Onartuzumab combined or not with bevacizumab, compared to bevacizumab alone | II | R | |
See Onartuzumab | |||||
NCT01113398 | 04/2010–12/2015 | Rilotumumab combined with bevacizumab | II | R | |
See Rilotumumab | |||||
NCT01648348 | 06/2012–05/2018 | TRC105 combined with bevacizumab, compared to bevacizumab alone | II | R | |
See TRC105 | |||||
NCT01564914 | 03/2012–06/2019 | TRC105 combined with bevacizumab | II | R treated with Bevacizumab | |
See TRC105 | |||||
NCT01290263 | 02/2011–07/2017 | Trebananib combined or not with bevacizumab | I/II | R | |
See Trebananib | |||||
VEGFR | Pazopanib | ||||
NCT02331498 | 11/2014–07/2019 | Combined with the Stupp protocol | I/II | N | |
Results: ongoing studies (recruitment) | |||||
NCT00459381 | 04/2007–03/2017 | Monotherapy | II | R | |
Results (35 patients): PFS 12 weeks; OS 35 weeks; PFS-6 3% [298] | |||||
NCT01931098 | 08/2013–03/2020 | Combined with topotecan | II | R | |
Results (35 patients): OS 42 weeks; PFS 24 weeks; PFS-6 46%; OS-6 77% [277] | |||||
NCT00350727 | 07/2006–04/2013 | Combined with lapatinib | II | R | |
See Lapatinib | |||||
Cediranib | |||||
NCT01310855 | 03/2011–05/2017 | Combined with Gefitinib, compared to cediranib and placebo | II | R | |
Results (97 patients): PFS 3.6 vs. 2.8 months (p = 0.17; HR = 0.72); OS 7.2 months vs. 5.5 months (HR = 0.68); cediranib + gefetinib vs. cediranib + placebo [299] | |||||
NCT00777153 | 10/2008–12/2016 | Monotherapy or combination with lomustine, compared with lomustine alone | III | R | |
Results (325 patients): PFS 92 vs. 125 vs. 44 days (p = 0.90; 0.16; HR = 1.05; 0.76); OS 8 vs. 9.4 vs. 9.8 months (p = 0.10; 0.50; HR = 1.43; 1.15); cediranib vs. cediranib + lomustine vs. lomustine + placebo [300] | |||||
NCT02974621 | 11/2016–03/2020 | Combined with olaparib and compared to bevacizumab | II | R | |
Results: ongoing studies (no recruitment) | |||||
NCT01062425 | 02/2010–03/2020 | Combined with TMZ in the Stupp protocol, compared to the Stupp protocol | II | N | |
Preliminary data (149 patients): PFS 2.7 vs. 6.2 months (p = 0.03; HR = 0.67); OS 13.8 vs. 14.5 months (p = 0.44; HR = 0.87); Stupp vs. cediranib + Stupp | |||||
NCT00662506 | 04/2008–09/2017 | Combined with TMZ/RT | II | N | |
Unpublished data | |||||
NCT00305656 | 03/2006–08/2013 | Monotherapy | II | R | |
Results (31 patients): PFS 117 days; OS 227 days [301] | |||||
Nintedanib | |||||
NCT01251484 | 12/2010–10/2012 | Monotherapy (after treatment with the Stupp protocol or with bevacizumab) | II | R | |
Results (25 patients): PFS 1 vs. 1 month; OS 10 vs. 2 months (p < 0.02); previous treatment with Stupp vs. bevacizumab [302] | |||||
NCT01666600 | 06/2012–11/2017 | Combined with RT, compared to RT alone | I/II | R | |
Unpublished data | |||||
NCT01380782 | 06/2011–08/2014 | Monotherapy | II | R whether or not treated with Bevacizumab | |
Results (36 patients): PFS 28 vs. 28 days; OS 6.9 vs. 2.6 months; not treated with bevacizumab vs. 1st line with bevacizumab (No statistical data) [303] | |||||
Dovitinib | |||||
NCT01753713 | 12/2012–12/2017 | Monotherapy | II | R whether or not treated with Bevacizumab | |
Results (33 patients): PFS 2 vs. 1.8 months; OS 8 vs. 4.3 months; bevacizumab-naive vs. 1st line with bevacizumab | |||||
Vandetanib (see Multikinase inhibitors) | |||||
NCT00441142 | 02/2007–04/2017 | Combined with the TMZ of the Stupp protocol | I/II | N | |
See Multikinase inhibitors | |||||
NCT00995007 | 10/2009–02/2016 | Combined with carpoblatin and compared to carboplatin alone | II | R | |
See Multikinase inhibitors | |||||
Vatalanib | |||||
NCT00128700 | 08/2005–09/2012 | Combined with TMZ/RT | I/II | N | |
Results (20 patients): PFS 7.2 months; OS 16.2 months [304] | |||||
Tivozanib | |||||
NCT01846871 | 03/2013–01/2019 | Monotherapy | II | R | |
Results (10 patients): PFS-6 10%; PFS 2.3 months; OS 8.1 months [305] | |||||
Axitinib | |||||
NCT01562197 | 03/2012–01/2019 | Monotherapy or combined with lomustine | II | R | |
Unpublished data | |||||
NCT01508117 | 01/2012–09/2017 | Combined with RT | II | N elderly | |
Results (1 patient): OS 0.2 years | |||||
NCT03660761 | 09/2018–04/2019 | Combined with TMZ | II | R | |
Unpublished data | |||||
CT-322 | |||||
NCT00562419 | 11/2007–10/2010 | Combined with irinotecan | II | R | |
Results: ongoing studies (recruitment unknown) | |||||
Semaxanib (SU5416) | |||||
NCT00004868 | 03/2003–06/2018 | Monotherapy | I/II | R RT non-responder | |
Unpublished data | |||||
Tanibirumab | |||||
NCT03856099 | 02/2019–03/2020 | Monotherapy | II | R | |
Results: ongoing studies (recruitment) | |||||
NCT03033524 | 01/2017–01/2017 | Monotherapy | II | R | |
Results: ongoing studies (recruitment unknown) |
Target | Molecule | Date | Protocol | Phase | Patients |
---|---|---|---|---|---|
c-MET | Onartuzumab | ||||
NCT01632228 | 06/2012–02/2018 | Combined or not with bevacizumab, compared to bevacizumab alone | II | R | |
Results (129 patients): PFS 3.9 months vs. 2.9 months (p = 0.7444; HR = 1.06); OS 8.8 months vs. 12.9 months (p = 0.1389; HR = 1.45); ornatuzumab + bevacizumab vs. placebo + bevacizumab [318] | |||||
Cabozantinib | |||||
NCT00704288 | 06/2008–06/2014 | Monotherapy | II | R | |
Results (152 patients): PFS 3.7 vs. 3.7 months; OS 7.7 months vs. 10.4 months; 140 mg/j vs. 100 mg/j (No statistical data) [319] | |||||
HGF | Rilotumumab | ||||
NCT01113398 | 04/2010–12/2015 | Combined with bevacizumab | II | R | |
Results (60 patients): | |||||
PFS 4 weeks vs. 4.1 weeks (10 mg/kg vs. 20 mg/kg); OS = 3.6 months vs. 3.4 months in patients previously treated with bevacizumab | |||||
PFS 4.1 weeks vs. 4.7 weeks; OS 10.9 months vs. 11.4 months in patients previously untreated with bevacizumab [320] | |||||
PIGF | Aflibercept | ||||
NCT00369590 | 08/2006–08/2015 | Monotherapy | II | R | |
Results (42 patients): PFS 12 weeks; OS 39 weeks [321] | |||||
CD105 | TRC105 | ||||
NCT01648348 | 06/2012–05/2018 | Combined with bevacizumab, compared to bevacizumab alone | II | R | |
Results (101 patients): OS 9.7 vs. 7.4 months (HR = 1.06; p = 0.82); PFS-6 25 vs. 30.2% | |||||
NCT01564914 | 03/2012–06/2019 | Combined with bevacizumab | II | R treated with Bevacizumab | |
Results (22 patients): OS 5.75 months; PFS 1.81 vs. 1.30 patients receiving or not simultaneously bevacizumab |
Target | Molecule | Date | Protocol | Phase | Patients |
---|---|---|---|---|---|
β-FGF & TN | Thalidomide | ||||
NCT00412542 | 12/2006–02/2012 | Combined with irinotecan | II | R | |
Results (33 patients): PFS-6 25%; PFS 13 weeks; OS 36 weeks [336] | |||||
NCT00039468 | 06/2002–10/2011 | Combined with irinotecan and RT | II | - | |
Results (26 patients): PFS6 19% vs. 40%; recurrent vs. new (No statistical data) [337] | |||||
NCT00047294 | 10/2002–06/2017 | Combined with the Stupp protocol and celecoxib | II | N | |
Results (50 patients): PFS 5.9 months; OS 12.6 months [338] | |||||
NCT00521482 | 08/2007–08/2007 | Combined with TMZ and compared TMZ alone | II | R | |
Results: ongoing studies (recruitment unknown) | |||||
NCT00079092 | 03/2004–04/2017 | Combined with procarbazine | II | R | |
Unpublished data | |||||
NCT00006358 | 05/2004–06/2018 | Combined with TMZ | II | R | |
Results (44 patients): PFS 15 weeks [339] | |||||
NCT00047281 | 01/2003–07/2017 | combined with celecoxib, etoposide and cyclophosphamide | II | R | |
See Celecoxib | |||||
Integrins | Cilengitide | ||||
NCT00689221 | 06/2008–11/2014 | Combined with the Stupp protocol | III | N methylated MGMT status | |
Results (926 patients): PFS 13.5 months vs. 10.7 months; Investigator (p = 0.46; HR = 0.93); PFS 10.6 months vs. 7.9 months (p = 0.41; HR = 0.92); Independent; OS 26.3 months vs. 26.3 months; cilengitide + Stupp vs. Stupp (p = 0.86; HR = 1.02) [340] | |||||
NCT00813943 | 12/2008–01/2017 | Combined with the Stupp protocol | II | N non-methylated MGMT status | |
Results (265 patients): PFS 5.6 vs. 5.9 (HR = 0.822) vs. 4.1 months (HR = 0.794); Independent PFS 6.4 vs. 7.5 (HR = 0.772) vs. 6.0 months (HR = 0.720) Investigator | |||||
OS 16.3 vs. 14.5 (p = 0.32; HR = 0.686) vs. 13.4 months (p = 0.3771; HR = 0.822); | |||||
cilengitide 2x/week vs. cilengitide 5x/week vs. Stupp [341] | |||||
NCT01044225 | 01/2010–03/2012 | Combined with the Stupp protocol | II | N non-methylated MGMT status | |
See Cetuximab | |||||
NCT00085254 | 06/2004–02/2016 | Combined with RT/TMZ | II | N | |
Results (112 patients): OS 19.7 months; OS 17.4 months (cilengitide 500 mg); OS 20.7 months (cilengitide 2000 mg); | |||||
OS 30 months (methylated MGMT); OS 17.4 months (non-methylated MGMT) [342] | |||||
NCT00112866 | 10/2004–10/2017 | Monotherapy | II | R | |
Results (26 patients): PFS-6 12%; PFS 8 weeks | |||||
NCT01124240 | 05/2010–07/2011 | Combined with TMZ, RT and procarbazine | II | N Non Methylated | |
Results: ongoing studies (recruitment unknown) | |||||
NCT00093964 | 10/2004–04/2019 | Monotherapy | II | R | |
Results (81 patients): PFS-6 7.5 vs. 15%; PFS 1.81 vs. 1.91 months; OS 6.54 vs. 9.91 months; Patients receiving 500 mg vs. 2000 mg [343] | |||||
NCT00006093 | 01/2003–06/2013 | Monotherapy | I/II | R | |
Unpublished data | |||||
ATN-161 | |||||
NCT00352313 | 07/2006–05/2012 | Combined with carboplatin | I/II | R | |
Unpublished data | |||||
Angiopoietin | Trebananib (AMG-386) | ||||
NCT01290263 | 02/2011–07/2017 | Combined or not with bevacizumab | I/II | R | |
Results (48 patients): OS 285 vs. 341 days; PFS 108 vs. 21 days; AMG-386 + bevacizumab vs. AMG-386 alone | |||||
NCT01609790 | 06/2012–03/2020 | Combined with bevacizumab | II | R | |
See Bevacizumab | |||||
Target not clearly identified | Recombinant Human Endostatin | ||||
NCT04267978 | 02/2020–03/2020 | Combined with TMZ and irinotecan | II | R | |
Results: ongoing studies (recruitment) | |||||
PSMA | Prostate Specific Membrane Antigen (PSMA) ADC | ||||
NCT01856933 | 05/2013–04/2019 | Monotherapy | II | R | |
Results (6 patients): No objective responses noted [344] | |||||
MMP | Prinomastat | ||||
NCT00004200 | 05/2004–08/2012 | Combined with TMZ/RT | II | N | |
Unpublished data |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz Da Silva, E.; Mercier, M.-C.; Etienne-Selloum, N.; Dontenwill, M.; Choulier, L. A Systematic Review of Glioblastoma-Targeted Therapies in Phases II, III, IV Clinical Trials. Cancers 2021, 13, 1795. https://doi.org/10.3390/cancers13081795
Cruz Da Silva E, Mercier M-C, Etienne-Selloum N, Dontenwill M, Choulier L. A Systematic Review of Glioblastoma-Targeted Therapies in Phases II, III, IV Clinical Trials. Cancers. 2021; 13(8):1795. https://doi.org/10.3390/cancers13081795
Chicago/Turabian StyleCruz Da Silva, Elisabete, Marie-Cécile Mercier, Nelly Etienne-Selloum, Monique Dontenwill, and Laurence Choulier. 2021. "A Systematic Review of Glioblastoma-Targeted Therapies in Phases II, III, IV Clinical Trials" Cancers 13, no. 8: 1795. https://doi.org/10.3390/cancers13081795
APA StyleCruz Da Silva, E., Mercier, M. -C., Etienne-Selloum, N., Dontenwill, M., & Choulier, L. (2021). A Systematic Review of Glioblastoma-Targeted Therapies in Phases II, III, IV Clinical Trials. Cancers, 13(8), 1795. https://doi.org/10.3390/cancers13081795