Potential Therapeutic Significance of Laminin in Head and Neck Squamous Carcinomas
Abstract
:Simple Summary
Abstract
1. Introduction
2. Laminin and Squamous Cell Carcinomas
3. Oral Cavity Squamous Cell Carcinomas and Laminin
4. Pharyngeal Squamous Cell Carcinomas and Laminin
5. Laryngeal Squamous Cell Carcinoma and Laminin
6. Laminin as a Therapeutic Target for HNSCC—Future Perspectives
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
HNC | Head and Neck cancers |
SCC | squamous cell carcinomas |
HNSCC | Head and neck squamous cell carcinomas |
ECM | Extracellular matrix |
LN-111 | Laminin subtype 111 |
LN-332 | Laminin subtype 332 |
BM | Basement membrane |
EGF | Epidermal-growth factor |
EGFR | Epidermal-growth factor |
MAPK | Mitogen-activated protein kinase |
HPV | Human papiloma virus |
EBV | Epstein Barr Virus |
PI3K | Phosphoinositide 3-kinase |
OCSCC | Oral cavity squamous cell carcinomas |
MMP-2 | matrix metalloproteinase 2 |
MT1-MMP | membrane type 1 matrix metalloproteinase |
EMT | epithelial–mesenchymal transition |
DIII | γ2 chain fragment |
TSCC | tongue squamous cell carcinoma |
AKT | Protein kinase B |
RNA | Ribonucleic acid |
MMP-9 | matrix metalloproteinase 9 |
Src | Proto-oncogene tyrosine-protein kinase Src |
ERK 1/2 | Extracellular signal-regulated kinases 1 and 2 |
OPSCC | oropharyngeal squamous cell carcinomas |
NPSCC | nasopharyngeal squamous cell carcinomas |
LMP1, 2a and 2b | Latent membrane proteins 1, 2a and 2b |
LAMC2 | gene that encodes the γ2 chain |
HPSCC | hypopharyngeal squamous cell carcinomas |
IL-6 | Interleukin 6 |
LSCC | Laryngeal squamous cell carcinomas |
CIS | in situ squamous epithelial carcinomas |
LR | Laminin receptor |
SSCC | Skin squamous cell carcinomas |
LRP | Laminin receptor precursor |
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anantharaman, D.; Brennan, P.; Leemans, C.R. Head and Neck Cancers: New Etiological Insights. In World Cancer Report 2020, 1st ed.; Wild, C.P., Weiderpass, E., Stewart, B.W., Eds.; International Agency for Research on Cancer: Lyon, France, 2020; Volume 1, pp. 310–322. [Google Scholar]
- National Cancer Institute. Head and Neck Cancers. Available online: https://www.cancer.gov/types/head-and-neck/head-neck-fact-sheet#what-are-cancers-of-the-head-and-neck (accessed on 12 September 2020).
- Mishra, M.S.; Upadhyaya, N.; Dive, A.M.; Bodhade, A.S. Histological patterns of head and neck tumors: An insight to tumor histology. J. Oral Maxillofac. Pathol. 2014, 18, 58–68. [Google Scholar] [CrossRef] [Green Version]
- Bradford, C.R.; Ferlito, A.; Devaney, K.O.; Mäkitie, A.A.; Rinaldo, A. Prognostic factors in laryngeal squamous cell carcinoma. Laryngoscope Investig. Otolaryngol. 2020, 5, 74–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pezzuto, F.; Buonaguro, L.; Caponigro, F.; Ionna, F.; Starita, N.; Annunziata, C.; Buonaguro, F.M.; Tornesello, M.L. Update on Head and Neck Cancer: Current Knowledge on Epidemiology, Risk Factors, Molecular Features and Novel Therapies. Oncology 2015, 89, 125–136. [Google Scholar] [CrossRef]
- Pfister, D.G.; Spencer, S.; Brizel, D.M.; Burtness, B.; Busse, P.M.; Caudell, J.J.; Cmelak, A.J.; Colevas, A.D.; Dunphy, F.; Eisele, D.W. Head and neck cancers, version 2. 2014: Clinical practice guidelines in oncology. J. Natl. Compr. Cancer Netw. 2014, 12, 1454–1487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, L.Q.M. Head and Neck Cancer. N. Engl. J. Med. 2020, 382, 60–72. [Google Scholar] [CrossRef] [PubMed]
- The Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015, 517, 576–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickup, M.W.; Mouw, J.K.; Weaver, V.M. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 2014, 15, 1243–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, C.; Mojares, E.; Hernández, A.D.R. Role of Extracellular Matrix in Development and Cancer Progression. Int. J. Mol. Sci. 2018, 19, 3028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palumbo, A., Jr.; Meireles Da Costa, N.; Pontes, B.; Oliveira, F.L.; Codeço, M.L.; Ribeiro Pinto, L.F.; Nasciutti, L.E. Esophageal Cancer Development: Crucial Clues Arising from the Extracellular Matrix. Cells 2020, 9, 455–465. [Google Scholar] [CrossRef] [Green Version]
- Henke, E.; Nandigama, R.; Ergün, S. Extracellular Matrix in the Tumor Microenvironment and Its Impact on Cancer Therapy. Front. Mol. Biosci. 2020, 6, 160. [Google Scholar] [CrossRef] [Green Version]
- Theocharis, A.D.; Skandalis, S.S.; Gialeli, C.; Karamanos, N.K. Extracellular matrix structure. Adv. Drug Deliv. Rev. 2016, 97, 4–27. [Google Scholar] [CrossRef] [PubMed]
- Jayadev, R.; Sherwood, D.R. Basement membranes. Curr. Biol. 2017, 27, R207–R211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liotta, L.A.; Rao, C.N.; Wewer, U.M. Biochemical interactions of tumor cells with the basement membrane. Annu. Rev. Biochem. 1986, 55, 1037–1057. [Google Scholar] [CrossRef] [PubMed]
- Timpl, R.; Rohde, H.; Robey, P.G.; Rennard, S.I.; Foidart, J.M.; Martin, G.R. Laminin--a glycoprotein from basement membranes. J. Biol. Chem. 1979, 254, 9933–9937. [Google Scholar] [CrossRef]
- Jourquin, J.; Tripathi, M.; Guess, C.; Quaranta, V. Laminins and Cancer Progression. In Cell-Extracellular Matrix Interactions in Cancer; Zent, R., Pozzi, A., Eds.; Springer: New York, NY, USA, 2009; Volume 1, pp. 87–109. [Google Scholar]
- Ramovs, V.; Molder, L.T.; Sonnenberg, A. The opposing roles of laminin-binding integrins in cancer. Matrix Biol. 2017, 57–58, 213–243. [Google Scholar] [CrossRef] [PubMed]
- Garg, M.; Kanojia, D.; Okamoto, R.; Jain, S.; Madan, V.; Chien, W.; Sampath, A.; Ding, L.-W.; Xuan, M.; Said, J.W.; et al. Laminin-5 gamma-2 (LAMC2) is highly expressed in anaplastic thyroid carcinoma and is associated with tumor progression, migration and invasion by modulating signaling of EGFR. J. Clin. Endocrinol. Metab. 2014, 74, 5570. [Google Scholar] [CrossRef]
- Marinkovich, M.P. Tumour microenvironment: Laminin 332 in squamous-cell carcinoma. Nat. Rev. Cancer 2007, 7, 370–380. [Google Scholar] [CrossRef]
- Engel, J.; Odermatt, E.; Engel, A.; Madri, J.A.; Furthmayr, H.; Rohde, H.; Timpl, R. Shapes, domain organizations and flexibility of laminin and fibronectin, two multifunctional proteins of the extracellular matrix. J. Mol. Biol. 1981, 150, 97–120. [Google Scholar] [CrossRef]
- Odenthal, U.; Haehn, S.; Tunggal, P.; Merkl, B.; Schomburg, D.; Frie, C.; Paulsson, M.; Smyth, N. Molecular Analysis of Laminin N-terminal Domains Mediating Self-interactions. J. Biol. Chem. 2004, 279, 44504–44512. [Google Scholar] [CrossRef] [Green Version]
- Aumailley, M. The laminin family. Cell Adhes. Migr. 2013, 7, 48–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulsson, M.; Deutzmann, R.; Timpl, R.; Dalzoppo, D.; Odermatt, E.; Engel, J. Evidence for coiled-coil alpha-helical regions in the long arm of laminin. EMBO J. 1985, 4, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Nomizu, M.; Otaka, A.; Utani, A.; Roller, P.P.; Yamada, Y. Assembly of synthetic laminin peptides into a triple-stranded coiled-coil structure. J. Biol. Chem. 1994, 269, 30386–30392. [Google Scholar] [CrossRef]
- Timpl, R.; Tisi, D.; Talts, J.F.; Andac, Z.; Sasaki, T.; Hohenester, E. Structure and function of laminin LG modules. Matrix Biol. 2000, 19, 309–317. [Google Scholar] [CrossRef]
- Yamada, M.; Sekiguchi, K. Molecular Basis of Laminin–Integrin Interactions. Curr. Top. Membr. 2015, 76, 197–229. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.C.; Christiano, A.M.; Engvall, E.; Wewer, U.M.; Miner, J.H.; Sanes, J.R.; Burgeson, R.E. The functions of laminins: Lessons from in vivo studies. Matrix Biol. 1996, 15, 369–381. [Google Scholar] [CrossRef]
- Berndt, A.; Hyckel, P.; Könneker, A.; Katenkamp, D.; Kosmehl, H. Oral squamous cell carcinoma invasion is associated with a laminin-5 matrix re-organization but independent of basement membrane and hemidesmosome formation. clues from an in vitro invasion model. Invasion Metastasis 1997, 17, 251–258. [Google Scholar]
- Ono, Y.; Nakanishi, Y.; Ino, Y.; Niki, T.; Yamada, T.; Yoshimura, K.; Saikawa, M.; Nakajima, T.; Hirohashi, S. Clinocopathologic significance of laminin-5 γ2 chain expression in squamous cell carcinoma of the tongue: Immunohistochemical analysis of 67 lesions. Cancer 1999, 85, 2315–2321. [Google Scholar] [CrossRef]
- Nordemar, S.; Kronenwett, U.; Auer, G.; Högmo, A.; Lindholm, J.; Edström, S.; Tryggvasson, K.; Linder, S.; Munck-Wikland, E. Laminin-5 as a predictor of invasiveness in cancer in situ lesions of the larynx. Anticancer Res. 2001, 21, 509–512. [Google Scholar]
- Savoia, P.; Trusolino, L.; Pepino, E.; Cremona, O.; Marchisio, P.C. Expression and Topography of Integrins and Basement Membrane Proteins in Epidermal Carcinomas: Basal but not Squamous Cell Carcinomas Display Loss of α6β4 and BM-600/Nicein. J. Investig. Dermatol. 1993, 101, 352–358. [Google Scholar] [CrossRef]
- Holler, E. Laminin isoform expression in breast tumors. Breast Cancer Res. 2005, 7, 166–167. [Google Scholar] [CrossRef] [Green Version]
- Hao, J.; Jackson, L.; Calaluce, R.; McDaniel, K.; Dalkin, B.L.; Nagle, R.B. Investigation into the mechanism of the loss of laminin 5 (α3β3γ2) expression in prostate cancer. Am. J. Pathol. 2001, 158, 1129–1135. [Google Scholar] [CrossRef]
- Carter, W.G.; Ryan, M.C.; Gahr, P.J. Epiligrin, a new cell adhesion ligand for integrin α3β1 in epithelial basement membranes. Cell 1991, 65, 599–610. [Google Scholar] [CrossRef]
- Litjens, S.H.; de Pereda, J.M.; Sonnenberg, A. Current insights into the formation and breakdown of hemidesmosomes. Trends Cell Biol. 2006, 16, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Schenk, S.; Hintermann, E.; Bilban, M.; Koshikawa, N.; Hojilla, C.; Khokha, R.; Quaranta, V. Binding to EGF receptor of a laminin-5 EGF-like fragment liberated during MMP-dependent mammary gland involution. J. Cell Biol. 2003, 161, 197–209. [Google Scholar] [CrossRef] [Green Version]
- Waterman, E.A.; Sakai, N.; Nguyen, N.T.; Horst, B.A.J.; Veitch, D.P.; Dey, C.N.; Ortiz-Urda, S.; Khavari, P.A.; Marinkovich, M.P. A Laminin-Collagen Complex Drives Human Epidermal Carcinogenesis through Phosphoinositol-3-Kinase Activation. Cancer Res. 2007, 67, 4264–4270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guess, C.M.; Quaranta, V. Defining the role of laminin-332 in carcinoma. Matrix Biol. 2009, 28, 445–455. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, T.; Tsubota, Y.; Hashimoto, J.; Kariya, Y.; Miyazaki, K. The short arm of laminin gamma2 chain of laminin-5 (laminin-332) binds syndecan-1 and regulates cellular adhesion and migration by suppressing phosphorylation of integrin beta4 chain. Mol. Biol. Cell. 2007, 18, 1621–1633. [Google Scholar] [CrossRef] [Green Version]
- Montero, P.H.; Patel, S.G. Cancer of the Oral Cavity. Surg. Oncol. Clin. North Am. 2015, 24, 491–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blot, W.J. Alcohol and cancer. Cancer Res. 1992, 52 (Suppl. 7), 2119s–2123s. [Google Scholar] [PubMed]
- Blot, W.J.; McLaughlin, J.K.; Winn, D.M.; Austin, D.F.; Greenberg, R.S.; Preston-Martin, S.; Bernstein, L.; Schoenberg, J.B.; Stemhagen, A.; Fraumeni, J.F., Jr. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res. 1988, 48, 3282–3287. [Google Scholar] [PubMed]
- Meyer, J.R.; Silverman, S.; Daniels, T.E.; Kramer, R.H.; Greenspan, J.S. Distribution of fibronectin and laminin in oral leukoplakia and carcinoma. J. Oral Pathol. Med. 1985, 14, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, M.; Kohama, G.; Hiratsuka, H.; Sekiguchi, T. Clinical significance of laminin deposition and T-cell infiltration in oral cancer. Head Neck 1993, 15, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, S.; Kojima, S.; Imai, K.; Nakagawa, K.; Yamamoto, E.; Kawahara, E.; Nakanishi, I. Immunohistologic distribution of basement membrane in oral squamous cell carcinoma. Head Neck 1994, 16, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Harada, T.; Shinohara, M.; Nakamura, S.; Oka, M. An immunohistochemical study of the extracellular matrix in oral squamous cell carcinoma and its association with invasive and metastatic potential. Virchows Arch. Pathol. Anat. Physiol. Klin. Med. 1994, 424, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Kannan, S.; Balaram, P.; Chandran, G.J.; Pillai, M.R.; Mathew, B.; Nalinakumari, K.R.; Nair, M.K. Alterations in expression of basement membrane proteins during tumour progression in oral mucosa. Histopathology 2007, 24, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Kainulainen, T.; Autio-Harmainen, H.; Oikarinen, A.; Salo, S.; Tryggvason, K.; Salo, T. Altered distribution and synthesis of laminin-5 (kalinin) in oral lichen planus, epithelial dysplasias and squamous cell carcinomas. Br. J. Dermatol. 1997, 136, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Kosmehl, H.; Berndt, A.; Strassburger, S.; Borsi, L.; Rousselle, P.; Mandel, U.; Hyckel, P.; Zardi, L.; Katenkamp, D. Distribution of laminin and fibronectin isoforms in oral mucosa and oral squamous cell carcinoma. Br. J. Cancer 1999, 81, 1071–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berndt, A.; Borsi, L.; Hyckel, P.; Kosmehl, H. Fibrillary co-deposition of laminin-5 and large unspliced tenascin-C in the invasive front of oral squamous cell carcinoma in vivo and in vitro. J. Cancer Res. Clin. Oncol. 2001, 127, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Haas, M.K.; Berndt, A.; Stiller, K.J.; Hyckel, P.; Kosmehl, H. A Comparative Quantitative Analysis of Laminin-5 in the Basement Membrane of Normal, Hyperplastic, and Malignant Oral Mucosa by Confocal Immunofluorescence Imaging. J. Histochem. Cytochem. 2001, 49, 1261–1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawano, K.; Yanagisawa, S. Predictive value of laminin-5 and membrane type 1-matrix metalloproteinase expression for cervical lymph node metastasis in T1 and T2 squamous cell carcinomas of the tongue and floor of the mouth. Head Neck 2006, 28, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Stoltzfus, P.; Högmo, A.; Lindholm, J.; Aspenblad, U.; Auer, G.; Munck-Wikland, E. The gamma2 chain of laminin-5 as an indicator of increased risk for recurrence in T1 stage tongue cancer. Anticancer Res. 2004, 24, 3109–3114. [Google Scholar] [PubMed]
- Lindberg, P.; Larsson, A.; Nielsen, B.S. Expression of plasminogen activator inhibitor-1, urokinase receptor and laminin gamma-2 chain is an early coordinated event in incipient oral squamous cell carcinoma. Int. J. Cancer 2006, 118, 2948–2956. [Google Scholar] [CrossRef] [PubMed]
- Kuratomi, Y.; Kumamoto, M.; Kidera, K.; Toh, S.; Masuda, M.; Nakashima, T.; Inokuchi, A. Diffuse expression of laminin gamma2 chain in disseminating and infiltrating cancer cells indicates a highly malignant state in advanced tongue cancer. Oral Oncol. 2006, 42, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Junior, H.M.; Rocha, V.N.; Leite, C.F.; De Aguiar, M.C.F.; Souza, P.E.A.; Horta, M.C.R. Laminin-5 gamma 2 chain expression is associated with intensity of tumor budding and density of stromal myofibroblasts in oral squamous cell carcinoma. J. Oral Pathol. Med. 2013, 43, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Gasparoni, A.; Della Casa, M.; Milillo, L.; Lorenzini, G.; Rubini, C.; Urso, R.; Muzio, L.L. Prognostic value of differential expression of Laminin-5 gamma2 in oral squamous cell carcinomas: Correlation with survival. Oncol. Rep. 2007, 18, 793–800. [Google Scholar] [PubMed]
- Méndez, E.; Houck, J.R.; Doody, D.R.; Fan, W.; Lohavanichbutr, P.; Rue, T.C.; Yueh, B.; Futran, N.D.; Upton, M.P.; Farwell, D.G.; et al. A Genetic Expression Profile Associated with Oral Cancer Identifies a Group of Patients at High Risk of Poor Survival. Clin. Cancer Res. 2009, 15, 1353–1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Driemel, O.; Dahse, R.; Hakim, S.G.; Tsioutsias, T.; Pistner, H.; Reichert, T.E.; Kosmehl, H. Laminin-5 immunocytochemistry: A new tool for identifying dysplastic cells in oral brush biopsies. Cytopathology 2007, 18, 348–355. [Google Scholar] [CrossRef]
- Chen, C.; Méndez, E.; Houck, J.; Fan, W.; Lohavanichbutr, P.; Doody, D.; Yueh, B.; Futran, N.D.; Upton, M.; Farwell, D.G.; et al. Gene Expression Profiling Identifies Genes Predictive of Oral Squamous Cell Carcinoma. Cancer Epidemiol. Biomark. Prev. 2008, 17, 2152–2162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuen, H.-W.; Ziober, A.F.; Gopal, P.; Nasrallah, I.; Falls, E.M.; Meneguzzi, G.; Ang, H.-Q.; Ziober, B.L. Suppression of laminin-5 expression leads to increased motility, tumorigenicity, and invasion. Exp. Cell Res. 2005, 309, 198–210. [Google Scholar] [CrossRef] [PubMed]
- Oku, N.; Sasabe, E.; Ueta, E.; Yamamoto, T.; Osaki, T. Tight junction protein claudin-1 enhances the invasive activity of oral squamous cell carcinoma cells by promoting cleavage of laminin-5 gamma2 chain via matrix metalloproteinase (MMP)-2 and membrane-type MMP-1. Cancer Res. 2006, 66, 5251–5257. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, H.; Nakagawa, M.; Kiyokawa, H.; Yoshida, E.; Yoshimura, T.; Koshikawa, N.; Itoh, F.; Seiki, M. Unique Biological Activity and Potential Role of Monomeric Laminin-γ2 as a Novel Biomarker for Hepatocellular Carcinoma: A Review. Int. J. Mol. Sci. 2019, 20, 226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, M.C.; Lee, K.; Miyashita, Y.; Carter, W.G. Targeted Disruption of the LAMA3 Gene in Mice Reveals Abnormalities in Survival and Late Stage Differentiation of Epithelial Cells. J. Cell Biol. 1999, 145, 1309–1324. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Symons, J.M.; Goldstein, S.L.; McDonald, A.; Miner, J.H.; Kreidberg, J.A. (Alpha)3(beta)1 integrin regulates epithelial cytoskeletal organization. J. Cell Sci. 1999, 112, 2925–2935. [Google Scholar]
- Richter, P.; Umbreit, C.; Franz, M.; Berndt, A.; Grimm, S.; Uecker, A.; Böhmer, F.D.; Kosmehl, H.; Berndt, A. EGF/TGFβ1 co-stimulation of oral squamous cell carcinoma cells causes an epithelial-mesenchymal transition cell phenotype expressing laminin 332. J. Oral Pathol. Med. 2010, 40, 46–54. [Google Scholar] [CrossRef]
- Ikenouchi, J.; Matsuda, M.; Furuse, M.; Tsukita, S. Regulation of tight junctions during the epithelium-mesenchyme transition: Direct repression of the gene expression of claudins/occludin by Snail. J. Cell Sci. 2003, 116, 1959–1967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Degen, M.; Natarajan, E.; Barron, P.; Widlund, H.R.; Rheinwald, J.G. MAPK/ERK-Dependent Translation Factor Hyperactivation and Dysregulated Laminin γ2 Expression in Oral Dysplasia and Squamous Cell Carcinoma. Am. J. Pathol. 2012, 180, 2462–2478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ono, Y.; Nakanishi, Y.; Gotoh, M.; Sakamoto, M.; Hirohashi, S. Epidermal growth factor receptor gene amplification is correlated with laminin-5 gamma2 chain expression in oral squamous cell carcinoma cell lines. Cancer Lett. 2002, 175, 197–204. [Google Scholar] [CrossRef]
- Esquela-Kerscher, A.; Slack, F.J. Oncomirs—MicroRNAs with a role in cancer. Nat. Rev. Cancer 2006, 6, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, T.; Nohata, N.; Hanazawa, T.; Kikkawa, N.; Yamamoto, N.; Yoshino, H.; Itesako, T.; Enokida, H.; Nakagawa, E.M.; Okamoto, Y.; et al. Tumour-suppressive microRNA-29s inhibit cancer cell migration and invasion by targeting laminin–integrin signalling in head and neck squamous cell carcinoma. Br. J. Cancer 2013, 109, 2636–2645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.-M.; Yao, Y.-L.; Liu, W.; Shen, X.-M.; Shi, L.-J.; Wu, L. MicroRNA-134 inhibits tumor stem cell migration and invasion in oral squamous cell carcinomas via downregulation of PI3K-Akt signaling pathway by inhibiting LAMC2 expression. Cancer Biomark. 2020, 29, 51–67. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Yang, C.; Yang, S. LINC00511 interacts with miR-765 and modulates tongue squamous cell carcinoma progression by targeting LAMC2. J. Oral Pathol. Med. 2018, 47, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.H.; Liou, G.G.; Liu, S.H.; Chang, J.S.; Hsiao, J.R.; Yen, Y.C.; Chen, Y.L.; Wu, W.L.; Chang, J.Y.; Chen, Y.W. Laminin γ2-enriched extracellular vesicles of oral squamous cell carcinoma cells enhance in vitro lymphangiogenesis via integrin α3-dependent uptake by lymphatic endothelial cells. Int. J. Cancer 2019, 144, 2795–2810. [Google Scholar] [CrossRef]
- Snijders, A.M.; Schmidt, B.L.; Fridlyand, J.; Dekker, N.; Pinkel, D.; Jordan, R.C.K.; Albertson, D.G. Rare amplicons implicate frequent deregulation of cell fate specification pathways in oral squamous cell carcinoma. Oncogene 2005, 24, 4232–4242. [Google Scholar] [CrossRef] [Green Version]
- Tanis, T.; Cincin, Z.B.; Gökçen-Röhlıg, B.; Bireller, E.S.; Ulusan, M.; Tanyel, C.R.; Cakmakoglu, B.; Gokcen-Rohlig, B. The role of components of the extracellular matrix and inflammation on oral squamous cell carcinoma metastasis. Arch. Oral Biol. 2014, 59, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, A.S.; Gama-de-Souza, L.N.; Arnaud, M.C.V.; Pinheiro, J.J.V.; Jaeger, R.G. Laminin-derived peptide AG73 regulates migration, invasion, and protease activity of human oral squamous cell carcinoma cells through syndecan-1 and beta1 integrin. Tumour Biol. 2010, 31, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, A.S.; Pinto, M.P.; Cruz, M.C.; Smuczek, B.; Cruz, K.S.P.; Barbuto, J.M.M.; Hoshino, D.; Weaver, A.M.; Freitas, V.M.; Jaeger, R.G. Laminin-111 peptide C16 regulates invadopodia activity of malignant cells through β1 integrin, Src and ERK ½. Oncotarget 2016, 7, 47904–47917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garneau, J.C.; Bakst, R.L.; Miles, B.A. Hypopharyngeal cancer: A state of the art review. Oral Oncol. 2018, 86, 244–250. [Google Scholar] [CrossRef]
- Johnson, D.E.; Burtness, B.; Leemans, R.C.; Lui, V.W.Y.; Bauman, J.E.; Grandis, J.R. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers 2020, 6, 92–100. [Google Scholar] [CrossRef]
- Chen, Y.-P.; Chan, A.T.C.; Le, Q.-T.; Blanchard, P.; Sun, Y.; Ma, J. Nasopharyngeal carcinoma. Lancet 2019, 394, 64–80. [Google Scholar] [CrossRef]
- Sinha, S.; Gajra, A. Nasopharyngeal Cancer. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020; Volume 1, pp. 1–20. [Google Scholar]
- De Schryver, A.; Friberg, S., Jr.; Klein, G.; Henle, W.; Henle, G.; De-Thé, G.; Clifford, P.; Ho, H.C. Epstein–Barr virus-associated antibody patterns in carcinoma of the post-nasal space. Clin. Exp. Immunol. 1969, 5, 443–459. [Google Scholar] [PubMed]
- Nakanishi, Y.; Wakisaka, N.; Kondo, S.; Endo, K.; Sugimoto, H.; Hatano, M.; Ueno, T.; Ishikawa, K.; Yoshizaki, T. Progression of understanding for the role of Epstein-Barr virus and management of nasopharyngeal carcinoma. Cancer Metastasis Rev. 2017, 36, 435–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldman, J.M.; Goodman, M.L.; Miller, D. Antibody to Epstein-Barr virus in American patients with carcinoma of the nasopharynx. JAMA 1971, 216, 1618–1622. [Google Scholar] [CrossRef] [PubMed]
- Lo, A.K.; Liu, Y.; Wang, X.; Wong, Y.C.; Lee, C.K.F.; Huang, D.P.; Tsao, S.W. Identification of downstream target genes of latent membrane protein 1 in nasopharyngeal carcinoma cells by suppression subtractive hybridization. Biochim. Biophys. Acta Gene Struct. Expr. 2001, 1520, 131–140. [Google Scholar] [CrossRef]
- Farwell, D.G.; McDougall, J.K.; Coltrera, M.D. Expression of Epstein-Barr Virus Latent Membrane Proteins Leads to Changes in Keratinocyte Cell Adhesion. Ann. Otol. Rhinol. Laryngol. 1999, 108, 851–859. [Google Scholar] [CrossRef]
- Sengupta, S.; den Boon, J.A.; Chen, I.-H.; Newton, M.A.; Stanhope, S.A.; Cheng, Y.-J.; Chen, C.-J.; Hildesheim, A.; Sugden, B.; Ahlquist, P. MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc. Natl. Acad. Sci. USA 2008, 105, 5874–5878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricci, E.; Cavalot, A.L.; Sanvito, F.; Bussi, M.; Albera, R.; Staffieri, A.; Cortesina, G.; Marchisio, P.C. Differential Expression and Topography of Adhesion Molecules in Laryngeal and Oropharyngeal Carcinomas. Acta Oto-Laryngol. 2002, 122, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Frenette, G.P.; Carey, T.E.; Varani, J.; Schwartz, D.R.; Fligiel, S.E.; Ruddon, R.W.; Peters, B.P. Biosynthesis and secretion of laminin and laminin-associated glycoproteins by nonmalignant and malignant human keratinocytes: Comparison of cell lines from primary and secondary tumors in the same patient. Cancer Res. 1988, 48, 5193–5202. [Google Scholar] [PubMed]
- Nakayama, M.; Sato, Y.; Okamoto, M.; Hirohashi, S. Increased Expression of Laminin-5 and Its Prognostic Significance in Hypopharyngeal Cancer. Laryngoscope 2004, 114, 1259–1263. [Google Scholar] [CrossRef] [PubMed]
- Dündar, R.; Aslan, H.; Özbay, C.; Basoglu, S.; Güvenç, I.A.; Ögredik, E.A.; Öztürkcan, S.; Tayfun, M.A.; Katilmis, H. The necessity of dissection of level IIb in laryngeal squamous cell carcinoma: A clinical study. Otolaryngol. Head Neck Surg. 2012, 146, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Maurya, S.S.; Katiyar, T.; Dhawan, A.; Singh, S.; Jain, S.K.; Pant, M.C.; Parmar, D. Gene-environment interactions in determining differences in genetic susceptibility to cancer in subsites of the head and neck. Environ. Mol. Mutagen. 2014, 56, 313–321. [Google Scholar] [CrossRef]
- Qiu, X.; You, Y.; Huang, J.; Wang, X.; Zhu, H.; Wang, Z. LAMP3 and TP53 overexpression predicts poor outcome in laryngeal squamous cell carcinoma. Int. J. Clin. Exp. Pathol. 2015, 8, 5519–5527. [Google Scholar] [PubMed]
- Rodrigo, J.P.; Martínez, P.; Allonca, E.; Alonso-Durán, L.; Suárez, C.; Astudillo, A.; García-Pedrero, J.M. Immunohistochemical markers of distant metastasis in laryngeal and hypopharyngeal squamous cell carcinomas. Clin. Exp. Metastasis 2014, 31, 317–325. [Google Scholar] [CrossRef]
- Peltanova, B.; Raudenska, M.; Masarik, M. Effect of tumor microenvironment on pathogenesis of the head and neck squamous cell carcinoma: A systematic review. Mol. Cancer 2019, 18, 1–24. [Google Scholar] [CrossRef]
- Nerlich, A.; Haraida, S.; Hagedorn, H.; Wiest, I.; Schreiner, M.; Schleicher, E. Morphological aspects of basement-membranes and their receptors in benign and malignant neoplasms (review). Int. J. Oncol. 1995, 6, 1193–1202. [Google Scholar] [CrossRef] [PubMed]
- Hagedorn, H.G.; Tübel, J.; Wiest, I.; Schleicher, E.D.; Nerlich, A.G. Prognostic aspects of the loss of epithelial basement membrane components in preinvasive and invasive laryngeal carcinomas. Anticancer Res. 1998, 18, 201–207. [Google Scholar] [PubMed]
- Hagedorn, H.; Schreiner, M.; Wiest, I.; Tubel, J.; Schleicher, E.D.; Nerlich, A.G. Defective basement membrane in laryngeal carcinomas with heterogeneous loss of distinct components. Hum. Pathol. 1998, 29, 447–454. [Google Scholar] [CrossRef]
- Hagedorn, H.G.; Sauer, U.; Schleicher, E.D.; Nerlich, A.G. Divergence in distribution and prognostic significance of major basement components in laryngeal carcinomas. Int. J. Oncol. 2001, 18, 1045–1051. [Google Scholar] [CrossRef] [PubMed]
- Nordemar, S.; Högmo, A.; Lindholm, J.; Auer, G.; Munck-Wikland, E. Laminin-5 gamma 2: A marker to identify oral mucosal lesions at risk for tumor development? Anticancer Res. 2003, 23, 4985–4989. [Google Scholar]
- Matsui, C.; Nelson, C.F.; Hernandez, G.T.; Herron, G.S.; Bauer, E.A.; Hoeffler, W.K. gamma 2 chain of laminin-5 is recognized by monoclonal antibody GB3. J. Investig. Dermatol. 1995, 105, 648–652. [Google Scholar] [CrossRef] [Green Version]
- Wewer, U.M.; Taraboletti, G.; Sobel, M.E.; Albrechtsen, R.A.; Liotta, L.A. Role of laminin receptor in tumor cell migration. Cancer Res. 1987, 47, 5691–5698. [Google Scholar] [PubMed]
- Pyke, C.; Salo, S.; Ralfkiaer, E.; Rømer, J.; Danø, K.; Tryggvason, K. Laminin-5 is a marker of invading cancer cells in some human carcinomas and is coexpressed with the receptor for urokinase plasminogen activator in budding cancer cells in colon adenocarcinomas. Cancer Res. 1995, 55, 4132–4139. [Google Scholar] [PubMed]
- Fülöp, T.; Larbi, A. Putative role of 67 kDa elastin-laminin receptor in tumor invasion. Semin. Cancer Biol. 2002, 12, 219–229. [Google Scholar] [CrossRef]
- Zhou, L.; Xie, M.; Zhou, J.Q.; Tao, L. 67-kDa Laminin Receptor in Human Laryngeal Squamous Cell Carcinoma. Laryngoscope 2006, 116, 28–32. [Google Scholar] [CrossRef]
- Castronovo, V.; Sobel, M.E. Laminin and fibronectin increase the steady state level of the 67 kD high affinity metastasis-associated laminin receptor mRNA in human cancer cells. Biochem. Biophys. Res. Commun. 1990, 168, 1110–1117. [Google Scholar] [CrossRef]
- Turpeenniemi-Hujanen, T.; Thorgeirsson, U.P.; Rao, C.N.; Liotta, L.A. Laminin increases the release of type IV collagenase from malignant cells. J. Biol. Chem. 1986, 261, 1883–1889. [Google Scholar] [CrossRef]
- Berno, V.; Porrini, D.; Castiglioni, F.; Campiglio, M.; Casalini, P.; Pupa, S.M.; Balsari, A.; Ménard, S.; Tagliabue, E. The 67 kDa laminin receptor increases tumor aggressiveness by remodeling laminin-1. Endocr. Relat. Cancer. 2005, 12, 393–406. [Google Scholar] [CrossRef]
- Mielcarek-Kuchta, D.; Olofsson, J.; Golusinski, W. Laminin expression in advanced laryngeal squamous cell carcinoma does not correlate to neck metastases. Eur. Arch. Oto-Rhino-Laryngol. 2008, 265, 1257–1261. [Google Scholar] [CrossRef]
- Tran, M.; Rousselle, P.; Nokelainen, P.; Tallapragada, S.; Nguyen, N.T.; Fincher, E.F.; Marinkovich, M.P. Targeting a Tumor-Specific Laminin Domain Critical for Human Carcinogenesis. Cancer Res. 2008, 68, 2885–2894. [Google Scholar] [CrossRef] [Green Version]
- Seftor, R.E.; Seftor, E.A.; Kirschmann, D.A.; Hendrix, M.J. Targeting the tumor microenvironment with chemically modified tetracyclines: Inhibition of laminin 5 gamma2 chain promigratory fragments and vasculogenic mimicry. Mol. Cancer Ther. 2002, 1, 1173–1179. [Google Scholar]
- Sroka, T.C.; Pennington, M.E.; Cress, A.E. Synthetic D-amino acid peptide inhibits tumor cell motility on laminin-5. Carcinogenesis 2006, 27, 1748–1757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akita, N.; Maruta, F.; Seymour, L.W.; Kerr, D.J.; Parker, A.L.; Asai, T.; Oku, N.; Nakayama, J.; Miyagawa, S. Identification of oligopeptides binding to peritoneal tumors of gastric cancer. Cancer Sci. 2006, 97, 1075–1081. [Google Scholar] [CrossRef]
- Nelson, J.; McFerran, N.V.; Pivato, G.; Chambers, E.; Doherty, C.; Steele, D.; Timson, D.J. The 67 kDa laminin receptor: Structure, function and role in disease. Biosci. Rep. 2008, 28, 33–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanahan, D.; Weinberg, R.A. The Hallmarks of Cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Vania, L.; Morris, G.; Otgaar, T.C.; Bignoux, M.J.; Bernert, M.; Burns, J.; Gabathuse, A.; Singh, E.; Ferreira, E.; Weiss, S.F.T. Patented therapeutic approaches targeting LRP/LR for cancer treatment. Expert Opin. Ther. Patents 2019, 29, 987–1009. [Google Scholar] [CrossRef] [PubMed]
- Solomonov, I.; Zehorai, E.; Talmi-Frank, D.; Wolf, S.G.; Shainskaya, A.; Zhuravlev, A.; Kartvelishvily, E.; Visse, R.; Levin, Y.; Kampf, N.; et al. Distinct biological events generated by ECM proteolysis by two homologous collagenases. Proc. Natl. Acad. Sci. USA 2016, 113, 10884–10889. [Google Scholar] [CrossRef] [Green Version]
- Levin, M.; Udi, Y.; Solomonov, I.; Sagi, I. Next generation matrix metalloproteinase inhibitors—Novel strategies bring new prospects. Biochim. Biophys. Acta Bioenerg. 2017, 1864, 1927–1939. [Google Scholar] [CrossRef]
- Mushtaq, M.U.; Papadas, A.; Pagenkopf, A.; Flietner, E.; Morrow, Z.; Chaudhary, S.G.; Asimakopoulos, F. Tumor matrix remodeling and novel immunotherapies: The promise of matrix-derived immune biomarkers. J. Immunother. Cancer 2018, 6, 65. [Google Scholar] [CrossRef]
- Li, L.; Wei, J.R.; Dong, J.; Lin, Q.G.; Tang, H.; Jia, X.X.; Tan, W.; Chen, Q.Y.; Zeng, T.T.; Xing, S.; et al. Laminin γ2-mediating T cell exclusion attenuates response to anti-PD-1 therapy. Sci. Adv. 2021, 7, 58–68. [Google Scholar] [CrossRef]
- Németh, Z.; Szigeti, K.; Máthé, M.; Szabó, G.; Velich, N.; Suba, Z. Effect of Induction Chemotherapy on Changes of Laminin and Syndecan Expression in Oral Squamous Cell Carcinomas: A Prospective, Randomized, Clinicopathologic and Immunohistochemical Study. J. Craniofacial Surg. 2005, 16, 205–212. [Google Scholar] [CrossRef]
- Nakawatari, M.; Iwakawa, M.; Ohno, T.; Katoh, S.; Tamaki, T.; Imadome, K.; Sakai, M.; Tsujii, H.; Imai, T. Chemoradiation-induced expression of fibroblast growth factor-2 and laminin in patients with cervical cancer. Cancer Biol. Ther. 2007, 6, 1780–1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Worden, F.P.; Sacco, A.G. Molecularly targeted therapy for the treatment of head and neck cancer: A review of the ErbB family inhibitors. OncoTargets Ther. 2016, 9, 1927–1943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunitomi, H.; Kobayashi, Y.; Wu, R.-C.; Takeda, T.; Tominaga, E.; Banno, K.; Aoki, D. LAMC1 is a prognostic factor and a potential therapeutic target in endometrial cancer. J. Gynecol. Oncol. 2020, 31, e11. [Google Scholar] [CrossRef] [PubMed]
Type of Head and Neck Squamous Cell Carcinoma | New Cases per Year Worldwide [1,5] | Deaths per Year Worldwide [1,5] |
---|---|---|
Oral Cavity Squamous Cell Carcinoma | 355,000/male-to-female incidence ratio of 2:1 | 177,000 |
Pharyngeal Squamous Cell Carcinoma | 302,000 | 159,000 |
Laryngeal Squamous Cell Carcinoma | 177,000/male-to-female incidence ratio of 7:1 | 95,000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meireles Da Costa, N.; Mendes, F.A.; Pontes, B.; Nasciutti, L.E.; Ribeiro Pinto, L.F.; Palumbo Júnior, A. Potential Therapeutic Significance of Laminin in Head and Neck Squamous Carcinomas. Cancers 2021, 13, 1890. https://doi.org/10.3390/cancers13081890
Meireles Da Costa N, Mendes FA, Pontes B, Nasciutti LE, Ribeiro Pinto LF, Palumbo Júnior A. Potential Therapeutic Significance of Laminin in Head and Neck Squamous Carcinomas. Cancers. 2021; 13(8):1890. https://doi.org/10.3390/cancers13081890
Chicago/Turabian StyleMeireles Da Costa, Nathalia, Fábio A. Mendes, Bruno Pontes, Luiz Eurico Nasciutti, Luis Felipe Ribeiro Pinto, and Antonio Palumbo Júnior. 2021. "Potential Therapeutic Significance of Laminin in Head and Neck Squamous Carcinomas" Cancers 13, no. 8: 1890. https://doi.org/10.3390/cancers13081890
APA StyleMeireles Da Costa, N., Mendes, F. A., Pontes, B., Nasciutti, L. E., Ribeiro Pinto, L. F., & Palumbo Júnior, A. (2021). Potential Therapeutic Significance of Laminin in Head and Neck Squamous Carcinomas. Cancers, 13(8), 1890. https://doi.org/10.3390/cancers13081890