Prognostic Value of the Neutrophil-to-Lymphocyte Ratio before and after Radiotherapy for Anaplastic Thyroid Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Laboratory and Pathological Data
2.3. Treatment and Primary Outcome
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Optimal Cutoff Value for the NLR and Cinicopathological Characteristics According to NLR
3.3. Overall Survival According to the Baseline NLR
3.4. Subgroup Analysis in the Group with and without Surgery
3.5. Association between NLR after RT and OS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pezzi, T.A.; Mohamed, A.S.R.; Sheu, T.; Blanchard, P.; Sandulache, V.C.; Lai, S.Y.; Cabanillas, M.E.; Williams, M.D.; Pezzi, C.M.; Lu, C.; et al. Radiation therapy dose is associated with improved survival for unresected anaplastic thyroid carcinoma: Outcomes from the National Cancer Data Base. Cancer 2017, 123, 1653–1661. [Google Scholar] [CrossRef]
- Park, J.W.; Choi, S.H.; Yoon, H.I.; Lee, J.; Kim, T.H.; Kim, J.W.; Lee, I.J. Treatment outcomes of radiotherapy for anaplastic thyroid cancer. Radiat. Oncol. J. 2018, 36, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Fan, D.; Ma, J.; Bell, A.C.; Groen, A.H.; Olsen, K.S.; Lok, B.H.; Leeman, J.E.; Anderson, E.; Riaz, N.; McBride, S.; et al. Outcomes of multimodal therapy in a large series of patients with anaplastic thyroid cancer. Cancer 2020, 126, 444–452. [Google Scholar] [CrossRef]
- Moon, H.; Roh, J.-L.; Lee, S.-W.; Kim, S.-B.; Choi, S.-H.; Nam, S.Y.; Kim, S.Y. Prognostic value of nutritional and hematologic markers in head and neck squamous cell carcinoma treated by chemoradiotherapy. Radiother. Oncol. 2016, 118, 330–334. [Google Scholar] [CrossRef]
- Azab, B.; Mohammad, F.; Shah, N.; Vonfrolio, S.; Lu, W.; Kedia, S.; Bloom, S.W. The value of the pretreatment neutrophil lymphocyte ratio vs. platelet lymphocyte ratio in predicting the long-term survival in colorectal cancer. Cancer Biomark. 2014, 14, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Azab, B.; Shah, N.; Radbel, J.; Tan, P.; Bhatt, V.; Vonfrolio, S.; Habeshy, A.; Picon, A.; Bloom, S. Pretreatment neutrophil/lymphocyte ratio is superior to platelet/lymphocyte ratio as a predictor of long-term mortality in breast cancer patients. Med. Oncol. 2013, 30, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-L.; Lee, J.-J.; Liu, T.-P.; Chang, Y.-C.; Hsu, Y.-C.; Cheng, S.-P. Blood neutrophil-to-lymphocyte ratio correlates with tumor size in patients with differentiated thyroid cancer. J. Surg. Oncol. 2013, 107, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Manatakis, D.K.; Tseleni-Balafouta, S.; Balalis, D.; Soulou, V.N.; Korkolis, D.P.; Sakorafas, G.H.; Plataniotis, G.; Gontikakis, E. Association of Baseline Neutrophil-to-Lymphocyte Ratio with Clinicopathological Characteristics of Papillary Thyroid Carcinoma. Int. J. Endocrinol. 2017, 2017, 1–7. [Google Scholar] [CrossRef]
- Feng, J.; Wang, Y.; Shan, G.; Gao, L. Clinical and prognostic value of neutrophil-lymphocyte ratio for patients with thyroid cancer. Med. 2020, 99, e19686. [Google Scholar] [CrossRef]
- Cho, J.-S.; Park, M.-H.; Ryu, Y.-J.; Yoon, J.-H. The neutrophil to lymphocyte ratio can discriminate anaplastic thyroid cancer against poorly or well differentiated cancer. Ann. Surg. Treat. Res. 2015, 88, 187–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Ma, F.; Sun, B.; Cong, Y.; Xuan, L.; Wang, Q.; Wu, S. Predictive Value of Lymphocyte-Related Blood Parameters at the Time Point of Lymphocyte Nadir During Radiotherapy in Breast Cancer. OncoTargets Ther. 2020, ume 13, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Jensen, G.L.; Blanchard, P.; Gunn, G.B.; Garden, A.S.; Fuller, C.D.; Sturgis, E.M.; Gillison, M.L.; Phan, J.; Morrison, W.H.; Rosenthal, D.I.; et al. Prognostic impact of leukocyte counts before and during radiotherapy for oropharyngeal cancer. Clin. Transl. Radiat. Oncol. 2017, 7, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Lalani, A.-K.A.; Xie, W.; Martini, D.J.; Steinharter, J.A.; Norton, C.K.; Krajewski, K.M.; Duquette, A.; Bossé, D.; Bellmunt, J.; Van Allen, E.M.; et al. Change in neutrophil-to-lymphocyte ratio (NLR) in response to immune checkpoint blockade for metastatic renal cell carcinoma. J. Immunother. Cancer 2018, 6, 5. [Google Scholar] [CrossRef] [PubMed]
- Yoon, C.I.; Kim, D.; Ahn, S.G.; Bae, S.J.; Cha, C.; Park, S.; Park, S.; Kim, S.I.; Lee, H.S.; Park, J.Y.; et al. Radiotherapy-Induced High Neutrophil-to-Lymphocyte Ratio is a Negative Prognostic Factor in Patients with Breast Cancer. Cancers 2020, 12, 1896. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Song, E.; Oh, H.-S.; Song, D.E.; Kim, W.B.; Kim, T.Y.; Shong, Y.K.; Jeon, M.J. Low Lymphocyte-to-Monocyte Ratios Are Associated with Poor Overall Survival in Anaplastic Thyroid Carcinoma Patients. Thyroid 2019, 29, 824–829. [Google Scholar] [CrossRef] [PubMed]
- Perrier, N.D.; Brierley, J.D.; Tuttle, R.M. Differentiated and anaplastic thyroid carcinoma: Major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA: A Cancer J. Clin. 2017, 68, 55–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- French, J.D.; Bible, K.; Spitzweg, C.; Haugen, B.R.; Ryder, M. Leveraging the immune system to treat advanced thyroid cancers. Lancet Diabetes Endocrinol. 2017, 5, 469–481. [Google Scholar] [CrossRef]
- Guarino, V.; Castellone, M.D.; Avilla, E.; Melillo, R.M. Thyroid cancer and inflammation. Mol. Cell. Endocrinol. 2010, 321, 94–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ugolini, C.; Basolo, F.; Proietti, A.; Vitti, P.; Elisei, R.; Miccoli, P.; Toniolo, A. Lymphocyte and Immature Dendritic Cell Infiltrates in Differentiated, Poorly Differentiated, and Undifferentiated Thyroid Carcinoma. Thyroid 2007, 17, 389–393. [Google Scholar] [CrossRef]
- Moses, K.; Brandau, S. Human neutrophils: Their role in cancer and relation to myeloid-derived suppressor cells. Semin. Immunol. 2016, 28, 187–196. [Google Scholar] [CrossRef]
- Sacdalan, D.B.; Lucero, J.A.; Sacdalan, D.L. Prognostic utility of baseline neutrophil-to-lymphocyte ratio in patients receiving immune checkpoint inhibitors: A review and meta-analysis. OncoTargets Ther. 2018, ume 11, 955–965. [Google Scholar] [CrossRef] [Green Version]
- Takakura, K.; Ito, Z.; Suka, M.; Kanai, T.; Matsumoto, Y.; Odahara, S.; Matsudaira, H.; Haruki, K.; Fujiwara, Y.; Saito, R.; et al. Comprehensive assessment of the prognosis of pancreatic cancer: Peripheral blood neutrophil–lymphocyte ratio and immunohistochemical analyses of the tumour site. Scand. J. Gastroenterol. 2016, 51, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Swaak-Kragten, A.T.; De Wilt, J.H.; Schmitz, P.I.; Bontenbal, M.; Levendag, P.C. Multimodality treatment for anaplastic thyroid carcinoma–Treatment outcome in 75 patients. Radiother. Oncol. 2009, 92, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Saini, S.; Tulla, K.; Maker, A.V.; Burman, K.D.; Prabhakar, B.S. Therapeutic advances in anaplastic thyroid cancer: A current perspective. Mol. Cancer 2018, 17, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Subbiah, V.; Kreitman, R.J.; Wainberg, Z.A.; Cho, J.Y.; Schellens, J.H.; Soria, J.C.; Wen, P.Y.; Zielinski, C.; Cabanillas, M.E.; Urbanowitz, G.; et al. Dabrafenib and Trametinib Treatment in Patients With Locally Advanced or Metastatic BRAF V600–Mutant Anaplastic Thyroid Cancer. J. Clin. Oncol. 2018, 36, 7–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iyer, P.C.; Dadu, R.; Ferrarotto, R.; Busaidy, N.L.; Habra, M.A.; Zafereo, M.; Gross, N.; Hess, K.R.; Gule-Monroe, M.; Williams, M.D.; et al. Real-World Experience with Targeted Therapy for the Treatment of Anaplastic Thyroid Carcinoma. Thyroid 2018, 28, 79–87. [Google Scholar] [CrossRef] [PubMed]
Variables | OP + RT ± Systemic Tx (n = 19) | RT ± Systemic Tx (n = 21) | p-Value |
---|---|---|---|
Age (years) | 65.1 (57.8–72.2) | 70.8 (58.1–78.6) | 0.383 |
Sex | 0.220 | ||
Male | 9 (47.4) | 6 (28.6) | - |
Female | 10 (52.6) | 15 (71.4) | - |
Tumor size (cm) | 4.8 (3.1–5.4) | 5.3 (4.2–6.5) | 0.245 |
Stage | 0.012 | ||
IVA & IVB | 13 (68.4) | 6 (28.6) | - |
IVC | 6 (31.6) | 15 (71.4) | |
Total dose (EQD210, Gy) | <0.001 | ||
<60.0 | 7 (36.9) | 19 (90.5) | - |
≥60.0 | 12 (63.1) | 2 (9.5) | - |
Systemic treatment | - | ||
Cytotoxic chemotherapy | 5 (26.32) | 9 (42.86) | 0.273 |
TKI | 3 (15.8) | 7 (33.3) | 0.201 |
Multimodal therapy | 19 (100) | 13 (61.9) | 0.003 |
Baseline ALC (µL) | 2120 (1740–2363) | 1810 (1310–2380) | 0.173 |
Baseline ANC (µL) | 4220 (2970–5803) | 6598 (5814–11,729) | 0.017 |
Baseline NLR | 2.24 (1.4–3.1) | 4.95 (2.54–6.60) | 0.013 |
Baseline NLR (≥3.47) | 3 (15.8) | 12 (57.1) | 0.007 |
Variables | Low NLR (n = 25) | High NLR (n = 15) | p-Value |
---|---|---|---|
Age (years) | 67.4 (63.1–72.2) | 67.3 (57.9–73.0) | 0.882 |
Sex | 0.354 | ||
Male | 8 (32.0) | 7 (53.3) | - |
Female | 17 (68.0) | 8 (46.7) | - |
Tumor size (cm) | 4.5 (3.3–5.5) | 5.4 (4.4–6.5) | 0.145 |
Stage | 0.165 | ||
IVA & IVB | 14 (56.0) | 5 (33.3) | - |
IVC | 11 (44.0) | 10 (66.7) | - |
Total dose (EQD210, Gy) | 0.123 | ||
<60.0 | 14 (56.0) | 12 (80.0) | - |
≥60.0 | 11 (44.0) | 3 (20.0) | - |
Surgery | 16 (64.0) | 3 (20.0) | 0.007 |
Systemic treatment | |||
Cytotoxic chemotherapy | 7 (28.0) | 7 (46.7) | 0.231 |
TKI | 6 (24.0) | 4 (26.7) | 0.850 |
Multimodal therapy | 20 (80.0) | 12 (80.0) | 1.000 |
Baseline NLR | 1.99 (1.28–2.67) | 6.33 (4.95–11.11) | <0.001 |
Baseline ALC (µL) | 2218 (1890–2460) | 1480 (1222–1853) | <0.001 |
Baseline ANC (µL) | 4188 (2680–5802) | 10,494 (7677–14,060) | <0.001 |
Variables | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Age (years) | 1.00 (0.97–1.04) | 0.819 | - | - |
Sex (male) | 1.18 (0.56–2.48) | 0.661 | - | - |
Size (cm) | 1.23 (0.99–1.52) | 0.059 | 0.86 (0.64–1.16) | 0.328 |
Stage (IVC) | 3.59 (1.59–8.07) | 0.002 | 2.97 (0.81–10.95) | 0.102 |
Surgery | 0.21 (0.09–0.50) | <0.001 | 0.70 (0.24–2.03) | 0.507 |
Systemic treatment | ||||
Cytotoxic CTx | 1.57 (0.74–3.33) | 0.238 | - | - |
TKI | 0.76 (0.33–1.72) | 0.506 | - | - |
Multimodal therapy | 0.36 (0.16–0.84) | 0.018 | 0.42 (0.10–1.77) | 0.236 |
EQD210(≥60 Gy) | 0.10 (0.03–0.31) | <0.001 | 0.27 (0.06–1.22) | 0.089 |
NLR (≥3.47) | 3.32 (1.51–7.29) | 0.003 | 3.18 (1.15–8.85) | 0.026 |
Treatment | OP + RT ± Systemic Tx (n = 19) | RT ± Systemic Tx (n= 21) | ||||||
---|---|---|---|---|---|---|---|---|
Variables | Univariate Analysis | Multivariate Analysis | Univariate Analysis | Multivariate Analysis | ||||
HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Age (years) | 1.00 (0.93–1.09) | 0.831 | - | - | 0.98 (0.94–1.02) | 0.375 | - | - |
Sex (male) | 1.74 (0.52–5.77) | 0.369 | - | - | 1.79 (0.60–5.39) | 0.298 | - | - |
Size (cm) | 1.03 (0.67–1.58) | 0.893 | - | - | 1.14 (0.88–1.46) | 0.322 | - | - |
Stage (IVC) | 2.21 (0.52–9.37) | 0.281 | - | - | 2.96 (0.95–9.22) | 0.061 | 9.37 (2.22–39.46) | 0.002 |
Systemic Tx | - | - | - | - | 0.88 (0.34–2.25) | 0.787 | - | - |
Cytotoxic CTx | 1.11 (0.29–4.30) | 0.883 | - | - | 1.86 (0.66–5.19) | 0.238 | - | - |
TKI | 0.74 (0.15–3.52) | 0.702 | - | - | 0.44 (0.16–1.17) | 0.099 | 0.14 (0.04–0.51) | 0.003 |
EQD210 (≥60 Gy) | 0.04 (0.005–0.36) | 0.004 | 0.05 (0.005–0.43) | 0.007 | 0.46 (0.10–2.04) | 0.304 | - | - |
NLR (≥3.47) | 7.76 (1.08–55.92) | 0.042 | 2.07 (0.28–15.39) | 0.478 | 1.52 (0.59–3.90) | 0.382 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Park, J.; Shin, J.-H.; Oh, Y.-L.; Jung, H.-A.; Chung, M.-K.; Choe, J.-H.; Ahn, Y.-C.; Kim, S.-W.; Chung, J.-H.; et al. Prognostic Value of the Neutrophil-to-Lymphocyte Ratio before and after Radiotherapy for Anaplastic Thyroid Carcinoma. Cancers 2021, 13, 1913. https://doi.org/10.3390/cancers13081913
Park J, Park J, Shin J-H, Oh Y-L, Jung H-A, Chung M-K, Choe J-H, Ahn Y-C, Kim S-W, Chung J-H, et al. Prognostic Value of the Neutrophil-to-Lymphocyte Ratio before and after Radiotherapy for Anaplastic Thyroid Carcinoma. Cancers. 2021; 13(8):1913. https://doi.org/10.3390/cancers13081913
Chicago/Turabian StylePark, Jiyun, Jun Park, Jung-Hee Shin, Young-Lyun Oh, Hyun-Ae Jung, Man-Ki Chung, Jun-Ho Choe, Yong-Chan Ahn, Sun-Wook Kim, Jae-Hoon Chung, and et al. 2021. "Prognostic Value of the Neutrophil-to-Lymphocyte Ratio before and after Radiotherapy for Anaplastic Thyroid Carcinoma" Cancers 13, no. 8: 1913. https://doi.org/10.3390/cancers13081913
APA StylePark, J., Park, J., Shin, J. -H., Oh, Y. -L., Jung, H. -A., Chung, M. -K., Choe, J. -H., Ahn, Y. -C., Kim, S. -W., Chung, J. -H., Kim, T. -H., & Noh, J. -M. (2021). Prognostic Value of the Neutrophil-to-Lymphocyte Ratio before and after Radiotherapy for Anaplastic Thyroid Carcinoma. Cancers, 13(8), 1913. https://doi.org/10.3390/cancers13081913