Radiation-Induced Pneumonitis in the Era of the COVID-19 Pandemic: Artificial Intelligence for Differential Diagnosis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Chest CT Imaging Protocol
2.3. Deep Learning Algorithm Analysis
2.4. Statistical Analysis
3. Results
3.1. Study Population Characteristics
3.2. Deep Learning Algorithm Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Albain, K.S.; Swann, R.S.; Rusch, V.W.; Turrisi, A.T.; Shepherd, F.; Smith, C.; Chen, Y.; Livingston, R.B.; Feins, R.H.; Gandara, D.R.; et al. Radiotherapy Plus Chemotherapy with or without Surgical Resection for Stage III Non-small-cell Lung Cancer: A Phase III Randomised Controlled Trial. Lancet 2009, 374, 379–386. [Google Scholar] [CrossRef] [Green Version]
- Curran, W.J.; Paulus, R.; Langer, C.J.; Komaki, R.; Lee, J.S.; Hauser, S.; Movsas, B.; Wasserman, T.; Rosenthal, S.A.; Gore, E.; et al. Sequential vs. Concurrent Chemoradiation for Stage III Non-Small Cell Lung Cancer: Randomized Phase III Trial RTOG 9410. J. Natl. Cancer Inst. 2011, 103, 1452–1460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lally, B.E.; Zelterman, D.; Colasanto, J.M.; Haffty, B.G.; Detterbeck, F.C.; Wilson, L.D. Postoperative Radiotherapy for Stage II or III Non-Small-Cell Lung Cancer Using the Surveillance, Epidemiology, and End Results Database. J. Clin. Oncol. 2006, 24, 2998–3006. [Google Scholar] [CrossRef] [PubMed]
- Giuranno, L.; Ient, J.; De Ruysscher, D.; Vooijs, M.A. Radiation-Induced Lung Injury (RILI). Front. Oncol. 2019, 9, 877. [Google Scholar] [CrossRef] [Green Version]
- Palma, D.A.; Senan, S.; Tsujino, K.; Barriger, R.B.; Rengan, R.; Moreno, M.; Bradley, J.D.; Kim, T.H.; Ramella, S.; Marks, L.B.; et al. Predicting Radiation Pneumonitis After Chemoradiation Therapy for Lung Cancer: An International Individual Patient Data Meta-analysis. Int. J. Radiat. Oncol. 2013, 85, 444–450. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Coronavirus Disease 2019 (COVID 19). Situation Report-74. Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200403-sitrep-74-covid-19-mp.pdf?sfvrsn=4e043d03_10 (accessed on 3 April 2020).
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Ippolito, E.; Fiore, M.; Greco, C.; D’Angelillo, R.M.; Ramella, S. COVID-19 and Radiation Induced Pneumonitis: Overlapping Clinical Features of Different Diseases. Radiother. Oncol. 2020, 148, 201–202. [Google Scholar] [CrossRef]
- Giovagnoni, A. Facing the COVID-19 Emergency: We Can and We Do. Radiol. Med. 2020, 125, 337–338. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.; Guan, W.; Chen, R.; Wang, W.; Li, J.; Xu, K.; Li, C.; Ai, Q.; Lu, W.; Liang, H.; et al. Cancer Patients in SARS-CoV-2 Infection: A Nationwide Analysis in China. Lancet Oncol. 2020, 21, 335–337. [Google Scholar] [CrossRef]
- Cozzi, D.; Albanesi, M.; Cavigli, E.; Moroni, C.; Bindi, A.; Luvarà, S.; Lucarini, S.; Busoni, S.; Mazzoni, L.N.; Miele, V. Chest X-ray in New Coronavirus Disease 2019 (COVID-19) Infection: Findings and Correlation with Clinical Outcome. Radiol. Med. 2020, 125, 730–737. [Google Scholar] [CrossRef]
- Gatti, M.; Calandri, M.; Barba, M.; Biondo, A.; Geninatti, C.; Gentile, S.; Greco, M.; Morrone, V.; Piatti, C.; Santonocito, A.; et al. Baseline Chest X-ray in Coronavirus Disease 19 (COVID-19) Patients: Association with Clinical and Laboratory Data. Radiol. Med. 2020, 125, 1271–1279. [Google Scholar] [CrossRef]
- Borghesi, A.; Maroldi, R. COVID-19 Outbreak in Italy: Experimental Chest X-ray Scoring System for Quantifying and Monitoring Disease Progression. Radiol. Med. 2020, 125, 509–513. [Google Scholar] [CrossRef]
- Di Serafino, M.; Notaro, M.; Rea, G.; Iacobellis, F.; Delli Paoli, V.; Acampora, C.; Ianniello, S.; Brunese, L.; Romano, L.; Vallone, G. The Lung Ultrasound: Facts or Artifacts? In the Era of COVID-19 Outbreak. Radiol. Med. 2020, 125, 738–753. [Google Scholar] [CrossRef]
- Borghesi, A.; Zigliani, A.; Masciullo, R.; Golemi, S.; Maculotti, P.; Farina, D.; Maroldi, R. Radiographic Severity Index in COVID-19 Pneumonia: Relationship to Age and Sex in 783 Italian Patients. Radiol. Med. 2020, 125, 461–464. [Google Scholar] [CrossRef]
- Agostini, A.; Floridi, C.; Borgheresi, A.; Badaloni, M.; Esposto Pirani, P.; Terilli, F.; Ottaviani, L.; Giovagnoni, A. Proposal of a Low-dose, Long-pitch, Dual-source Chest CT Protocol on Third-generation Dual-source CT Using a Tin Filter for Spectral Shaping at 100 kVp for CoronaVirus Disease 2019 (COVID-19) Patients: A Feasibility Study. Radiol. Med. 2020, 125, 365–373. [Google Scholar] [CrossRef] [Green Version]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015; Lecture Notes in Computer Science; Navab, N., Hornegger, J., Well, W., Frangi, A., Eds.; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.S.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell 2018, 172, 1122–1131.e9. [Google Scholar] [CrossRef]
- Belfiore, M.P.; Urraro, F.; Grassi, R.; Giacobbe, G.; Patelli, G.; Cappabianca, S.; Reginelli, A. Artificial Intelligence to Codify Lung CT in Covid-19 Patients. Radiol. Med. 2020, 125, 500–504. [Google Scholar] [CrossRef]
- Neri, E.; Miele, V.; Coppola, F.; Grassi, R. Use of CT and Artificial Intelligence in Suspected or COVID-19 Positive Patients: Statement of the Italian Society of Medical and Interventional Radiology. Radiol. Med. 2020, 125, 505–508. [Google Scholar] [CrossRef]
- Li, L.; Qin, L.; Xu, Z.; Yin, Y.; Wang, X.; Kong, B.; Bai, J.; Lu, Y.; Fang, Z.; Song, Q.; et al. Artificial Intelligence Distinguishes COVID-19 from Community Acquired Pneumonia on Chest CT. Radiology 2020, 296, E65–E71. [Google Scholar] [CrossRef]
- Huang, L.; Han, R.; Ai, T.; Yu, P.; Kang, H.; Tao, Q.; Xia, L. Serial Quantitative Chest CT Assessment of COVID-19: Deep-Learning Approach. Radiol. Cardiothorac. Imaging 2020, e200075. [Google Scholar] [CrossRef] [Green Version]
- Caruso, D.; Polici, M.; Zerunian, M.; Pucciarelli, F.; Polidori, T.; Guido, G.; Rucci, C.; Bracci, B.; Muscogiuri, E.; De Dominicis, C.; et al. Quantitative Chest CT analysis in discriminating COVID-19 from non-COVID-19 patients. Radiol. Med. 2021, 126, 243–249. [Google Scholar] [CrossRef]
- Wang, M.; Xia, C.; Huang, L.; Xu, S.; Qin, C.; Liu, J.; Cao, Y.; Yu, P.; Zhu, T.; Zhu, H.; et al. Deep Learning-based Triage and Analysis of Lesion Burden for COVID-19: A Retrospective Study with External Validation. Lancet Digit. Health 2020, 10, e506–e515. [Google Scholar] [CrossRef]
- Mallio, C.A.; Napolitano, A.; Castiello, G.; Giordano, F.M.; D’Alessio, P.; Iozzino, M.; Sun, Y.; Angeletti, S.; Russano, M.; Santini, D.; et al. Deep Learning Algorithm Trained with COVID-19 Pneumonia Also Identifies Immune Checkpoint Inhibitor Therapy-Related Pneumonitis. Cancers 2021, 13, 652. [Google Scholar] [CrossRef]
- Quattrocchi, C.C.; Mallio, C.A.; Presti, G.; Zobel, B.B.; Cardinale, J.; Iozzino, M.; Della Sala, S.W. The Challenge of COVID-19 Low Disease Prevalence for Artificial Intelligence Models: Report of 1,610 Patients. Quant. Imaging Med. Surg. 2020. [Google Scholar] [CrossRef]
Variable | Pneumonia-Free | COVID-19 | RP |
---|---|---|---|
Patients (n) | 30 | 34 | 36 |
Female/Male (n) | 13/17 | 15/19 | 22/14 |
Age (Years) | 59 (32–88) | 67 (38–87) | 72 (49–87) |
SARS-CoV-2 RT-PCR (Positive/Negative/n.a.) | 0/14/16 | 34/0/0 | 0/0/21 |
NSCLC/SCLC | 0/0 | 0/0 | 32/4 |
Radiation Dose (Gy) | n.a. | n.a. | 54 ± 6.7 Gy |
AI Class: No COVID-19 | 30/30 | 1/34 | 1/36 |
AI Class: COVID-19 Low Risk | 0/30 | 7/34 | 24/36 |
AI Class: COVID-19 High Risk | 0/30 | 26/34 | 11/36 |
Comparison | Sensitivity | Specificity | VPP | VPN | Accuracy | AUC |
---|---|---|---|---|---|---|
COVID-19 vs. pneumonia-free | 97.1 (88.6–97.1) | 100 (90.4–100) | 100 (91.2, 100) | 96.8(87.5, 96.8) | 98.4% | 0.99 |
COVID-19 vs. others | 97% (0.85–0.99) | 47% (0.4–0.48) | 48% (0.42–0.49) | 97% (0.84–0.99) | 64% | 0.85 |
COVID-19 vs. RP | 97% (0.94–0.99) | 2% (0–0.05) | 48% (0.47–0.49) | 50% (0.02–0.97) | 48% | 0.72 |
COVID-19 vs. RP (cut-off 30%) | 76% (0.63–0.87) | 63% (0.51–0.74) | 67% (0.55–0.76) | 96% (0.83–0.99) | 70% | 0.84 |
COVID-19 | RP | p-Value | ||
---|---|---|---|---|
Total | (%) | 2.95 (1.22–8.89) | 0.51 (0.16–1.99) | 0.001 |
(cm3) | 105.54 (44.68–257.07) | 29.14 (5.59–69.20) | 0.001 | |
RUL | (%) | 0.78 (0.15–5.12) | 0.29 (0–1.59) | 0.12 |
(cm3) | 7.3 (1.21–31.42) | 2.05 (0.04–11.65) | 0.052 | |
ML | (%) | 0.24 (0–3.89) | 0 (0–0.59) | 0.033 |
(cm3) | 1.01 (0–7.92) | 0 (0–2.46) | 0.045 | |
RLL | (%) | 3.54 (1.19–11.06) | 0.15 (0–0.9) | <0.001 |
(cm3) | 27.14 (8.20–83.30) | 1.3 (0–5.77) | <0.001 | |
LUL | (%) | 0.73 (0.05–5.70) | 0.29 (0–1.59) | 0.042 |
(cm3) | 7.22 (0.84–54.28) | 0.98 (0–28.28) | 0.032 | |
LLL | (%) | 3.99 (0.46–17.56) | 0.005 (0–2.32) | <0.001 |
(cm3) | 16.35 (3.66–85.61) | 0.06 (0–14.76) | <0.001 | |
COVID-19 Risk (%) | 41.85 (34.52–51.12) | 27.35 (20.09–35.5) | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giordano, F.M.; Ippolito, E.; Quattrocchi, C.C.; Greco, C.; Mallio, C.A.; Santo, B.; D’Alessio, P.; Crucitti, P.; Fiore, M.; Zobel, B.B.; et al. Radiation-Induced Pneumonitis in the Era of the COVID-19 Pandemic: Artificial Intelligence for Differential Diagnosis. Cancers 2021, 13, 1960. https://doi.org/10.3390/cancers13081960
Giordano FM, Ippolito E, Quattrocchi CC, Greco C, Mallio CA, Santo B, D’Alessio P, Crucitti P, Fiore M, Zobel BB, et al. Radiation-Induced Pneumonitis in the Era of the COVID-19 Pandemic: Artificial Intelligence for Differential Diagnosis. Cancers. 2021; 13(8):1960. https://doi.org/10.3390/cancers13081960
Chicago/Turabian StyleGiordano, Francesco Maria, Edy Ippolito, Carlo Cosimo Quattrocchi, Carlo Greco, Carlo Augusto Mallio, Bianca Santo, Pasquale D’Alessio, Pierfilippo Crucitti, Michele Fiore, Bruno Beomonte Zobel, and et al. 2021. "Radiation-Induced Pneumonitis in the Era of the COVID-19 Pandemic: Artificial Intelligence for Differential Diagnosis" Cancers 13, no. 8: 1960. https://doi.org/10.3390/cancers13081960
APA StyleGiordano, F. M., Ippolito, E., Quattrocchi, C. C., Greco, C., Mallio, C. A., Santo, B., D’Alessio, P., Crucitti, P., Fiore, M., Zobel, B. B., D’Angelillo, R. M., & Ramella, S. (2021). Radiation-Induced Pneumonitis in the Era of the COVID-19 Pandemic: Artificial Intelligence for Differential Diagnosis. Cancers, 13(8), 1960. https://doi.org/10.3390/cancers13081960