Skeletal Muscle Volume Is an Independent Predictor of Survival after Sorafenib Treatment Failure for Hepatocellular Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Treatment
2.3. Assessment of Skeletal Muscle Volume
2.4. Evaluation of Treatment Response
2.5. Statistical Analyses
3. Results
3.1. Patient Characteristics
3.2. Treatment Response and Its Predictors
3.3. OS, PPS, and PFS According to Skeletal Muscle Volume
3.4. Correlation between OS and PFS/PPS
3.5. Predictors of PFS
3.6. Predictors of PPS or OS
3.7. Prognostic Factor of OS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Llovet, J.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.; de Oliveira, A.; Santoro, A.; Raoul, J.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y.H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, V.; et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 389, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.W.; Han, G.; Jassem, J.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef] [Green Version]
- Zhu, A.X.; Finn, R.S.; Galle, P.R.; Llovet, J.M.; Kudo, M. Ramucirumab in advanced hepatocellular carcinoma in REACH-2: The true value of α-fetoprotein. Lancet Oncol. 2019, 20, e191. [Google Scholar] [CrossRef] [Green Version]
- Abou-Alfa, G.K.; Meyer, T.; Cheng, A.L.; El-Khoueiry, A.B.; Rimassa, L.; Ryoo, B.Y.; Cicin, I.; Merle, P.; Chen, Y.; Park, J.W.; et al. Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. N. Engl. J. Med. 2018, 379, 54–63. [Google Scholar] [CrossRef]
- Alsina, A.; Kudo, M.; Vogel, A.; Cheng, A.L.; Tak, W.Y.; Ryoo, B.-Y.; Evans, T.R.J.; López López, C.; Daniele, B.; Misir, S.; et al. Effects of Subsequent Systemic Anticancer Medication Following First-Line Lenvatinib: A Post Hoc Responder Analysis from the Phase 3 REFLECT Study in Unresectable Hepatocellular Carcinoma. Liver Cancer 2020, 9, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Terashima, T.; Yamashita, T.; Takata, N.; Nakagawa, H.; Toyama, T.; Arai, K.; Kitamura, K.; Sakai, Y.; Mizukoshi, E.; Honda, M.; et al. Post-progression survival and progression-free survival in patients with advanced hepatocellular carcinoma treated by sorafenib. Hepatol. Res. 2016, 46, 650–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeki, I.; Yamasaki, T.; Maeda, M.; Hisanaga, T.; Iwamoto, T.; Fujisawa, K.; Matsumoto, T.; Hidaka, I.; Marumoto, Y.; Ishikawa, T.; et al. Treatment strategies for advanced hepatocellular carcinoma: Sorafenib. World J. Hepatol. 2018, 10, 571–584. [Google Scholar] [CrossRef]
- Rosenberg, I.H. Summary comments: Epidemiological and methodological problems in determing nutritional status of older perosons. Am. J. Clin. Nutr. 1989, 50, 3. [Google Scholar] [CrossRef]
- Rosenberg, I.H. Sarcopenia: Origins and clinical relevance. J. Nutr. 1997, 127, 990S–991S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prado, C.M.; Lieffers, J.R.; McCargar, L.J.; Reiman, T.; Sawyer, M.B.; Martin, L.; Baracos, V.E. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: A population-based study. Lancet Oncol. 2008, 9, 629–635. [Google Scholar] [CrossRef]
- Meza-Junco, J.; Montano-Loza, A.J.; Baracos, V.E.; Prado, C.M.; Bain, V.G.; Beaumont, C.; Esfandiari, N.; Lieffers, J.R.; Sawyer, M.B. Sarcopenia as a prognostic index of nutritional status in concurrent cirrhosis and hepatocellular carcinoma. J. Clin. Gastroenterol. 2013, 47, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, N.; Nakagawa, H.; Kudo, Y.; Tateishi, R.; Taguri, M.; Watadani, T.; Nakagomi, R.; Kondo, M.; Nakatsuka, T.; Minami, T.; et al. Sarcopenia, intramuscular fat deposition, and visceral adiposity independently predict the outcomes of hepatocellular carcinoma. J. Hepatol. 2015, 63, 131–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e302. [Google Scholar] [CrossRef]
- Hiraoka, A.; Hirooka, M.; Koizumi, Y.; Izumoto, H.; Ueki, H.; Kaneto, M.; Kitahata, S.; Aibiki, T.; Tomida, H.; Miyamoto, Y.; et al. Muscle volume loss as a prognostic marker in hepatocellular carcinoma patients treated with sorafenib. Hepatol. Res. 2017, 47, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Imai, K.; Takai, K.; Hanai, T.; Ideta, T.; Miyazaki, T.; Kochi, T.; Suetsugu, A.; Shiraki, M.; Shimizu, M. Skeletal muscle depletion predicts the prognosis of patients with hepatocellular carcinoma treated with sorafenib. Int. J. Mol. Sci. 2015, 16, 9612–9624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeki, I.; Yamasaki, T.; Maeda, M.; Kawano, R.; Hisanaga, T.; Iwamoto, T.; Matsumoto, T.; Hidaka, I.; Ishikawa, T.; Takami, T.; et al. No Muscle Depletion with High Visceral Fat as a Novel Beneficial Biomarker of Sorafenib for Hepatocellular Carcinoma. Liver Cancer 2018, 7, 359–371. [Google Scholar] [CrossRef]
- Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet 2018, 391, 1301–1314. [Google Scholar] [CrossRef]
- Mitsiopoulos, N.; Baumgartner, R.N.; Heymsfield, S.B.; Lyons, W.; Gallagher, D.; Ross, R. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J. Appl. Physiol. (1985) 1998, 85, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Tokunaga, K.; Matsuzawa, Y.; Kotani, K.; Keno, Y.; Kobatake, T.; Fujioka, S.; Tarui, S. Ideal body weight estimated from the body mass index with the lowest morbidity. Int. J. Obes. 1991, 15, 1–5. [Google Scholar]
- Hayashi, H.; Okamoto, I.; Morita, S.; Taguri, M.; Nakagawa, K. Postprogression survival for first-line chemotherapy of patients with advanced non-small-cell lung cancer. Ann. Oncol. 2012, 23, 1537–1541. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, H.; Okamoto, I.; Hayashi, H.; Taguri, M.; Morita, S.; Nakagawa, K. Postprogression survival for first-line chemotherapy in patients with advanced gastric cancer. Eur. J. Cancer 2013, 49, 3003–3009. [Google Scholar] [CrossRef]
- Petrelli, F.; Barni, S. Correlation of progression-free and post-progression survival with overall survival in advanced colorectal cancer. Ann. Oncol. 2013, 24, 186–192. [Google Scholar] [CrossRef]
- Saad, E.D.; Katz, A.; Buyse, M. Overall survival and post-progression survival in advanced breast cancer: A review of recent randomized clinical trials. J. Clin. Oncol. 2010, 28, 1958–1962. [Google Scholar] [CrossRef] [PubMed]
- Shimokawa, M.; Kogawa, T.; Shimada, T.; Saito, T.; Kumagai, H.; Ohki, M.; Kaku, T. Overall survival and post-progression survival are potent endpoint in phase III trials of second/third-line chemotherapy for advanced or recurrent epithelial ovarian cancer. J. Cancer 2018, 9, 872–879. [Google Scholar] [CrossRef] [Green Version]
- Terashima, T.; Yamashita, T.; Toyama, T.; Arai, K.; Kawaguchi, K.; Kitamura, K.; Sakai, Y.; Mizukoshi, E.; Honda, M.; Kaneko, S. Surrogacy of Time to Progression for Overall Survival in Advanced Hepatocellular Carcinoma Treated with Systemic Therapy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Liver Cancer 2019, 8, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Terashima, T.; Yamashita, T.; Horii, R.; Arai, K.; Kawaguchi, K.; Kitamura, K.; Sakai, Y.; Mizukoshi, E.; Honda, M.; Kaneko, S. Potential efficacy of therapies targeting intrahepatic lesions after sorafenib treatment of patients with hepatocellular carcinoma. BMC Cancer 2016, 16, 338. [Google Scholar] [CrossRef] [Green Version]
- Kondo, M.; Numata, K.; Hara, K.; Nozaki, A.; Fukuda, H.; Chuma, M.; Maeda, S.; Tanaka, K. Treatment of Advanced Hepatocellular Carcinoma after Failure of Sorafenib Treatment: Subsequent or Additional Treatment Interventions Contribute to Prolonged Survival Postprogression. Gastroenterol. Res. Pract. 2017, 2017, 5728946. [Google Scholar] [CrossRef] [Green Version]
- Terashima, T.; Yamashita, T.; Arai, K.; Sunagozaka, H.; Kitahara, M.; Nakagawa, H.; Kagaya, T.; Mizukoshi, E.; Honda, M.; Kaneko, S. Feasibility and efficacy of hepatic arterial infusion chemotherapy for advanced hepatocellular carcinoma after sorafenib. Hepatol. Res. 2014, 44, 1179–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, T.Y.; Lee, P.C.; Chen, Y.T.; Chao, Y.; Hou, M.C.; Huang, Y.H. Pre-sarcopenia determines post-progression outcomes in advanced hepatocellular carcinoma after sorafenib failure. Sci. Rep. 2020, 10, 18375. [Google Scholar] [CrossRef] [PubMed]
- Hanai, T.; Shiraki, M.; Ohnishi, S.; Miyazaki, T.; Ideta, T.; Kochi, T.; Imai, K.; Suetsugu, A.; Takai, K.; Moriwaki, H.; et al. Rapid skeletal muscle wasting predicts worse survival in patients with liver cirrhosis. Hepatol. Res. 2016, 46, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Uchikawa, S.; Kawaoka, T.; Namba, M.; Kodama, K.; Ohya, K.; Morio, K.; Nakahara, T.; Murakami, E.; Tsuge, M.; Hiramatsu, A.; et al. Skeletal Muscle Loss during Tyrosine Kinase Inhibitor Treatment for Advanced Hepatocellular Carcinoma Patients. Liver Cancer 2020, 9, 148–155. [Google Scholar] [CrossRef]
- Saeki, I.; Yamasaki, T.; Maeda, M.; Hisanaga, T.; Iwamoto, T.; Matsumoto, T.; Hidaka, I.; Ishikawa, T.; Takami, T.; Sakaida, I. Effect of body composition on survival benefit of hepatic arterial infusion chemotherapy for advanced hepatocellular carcinoma: A comparison with sorafenib therapy. PLoS ONE 2019, 14, e0218136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terashima, T.; Yamashita, T.; Arai, K.; Kawaguchi, K.; Kitamura, K.; Sakai, Y.; Mizukoshi, E.; Honda, M.; Kaneko, S. Beneficial Effect of Maintaining Hepatic Reserve during Chemotherapy on the Outcomes of Patients with Hepatocellular Carcinoma. Liver Cancer 2017, 6, 236–249. [Google Scholar] [CrossRef] [Green Version]
- Takami, T.; Yamasaki, T.; Saeki, I.; Matsumoto, T.; Suehiro, Y.; Sakaida, I. Supportive therapies for prevention of hepatocellular carcinoma recurrence and preservation of liver function. World J. Gastroenterol. 2016, 22, 7252–7263. [Google Scholar] [CrossRef]
- Hashida, R.; Kawaguchi, T.; Koya, S.; Hirota, K.; Goshima, N.; Yoshiyama, T.; Otsuka, T.; Bekki, M.; Iwanaga, S.; Nakano, D.; et al. Impact of cancer rehabilitation on the prognosis of patients with hepatocellular carcinoma. Oncol. Lett. 2020, 19, 2355–2367. [Google Scholar] [CrossRef]
- Ohara, M.; Ogawa, K.; Suda, G.; Kimura, M.; Maehara, O.; Shimazaki, T.; Suzuki, K.; Nakamura, A.; Umemura, M.; Izumi, T.; et al. L-Carnitine Suppresses Loss of Skeletal Muscle Mass in Patients With Liver Cirrhosis. Hepatol. Commun. 2018, 2, 906–918. [Google Scholar] [CrossRef]
- Takeda, H.; Nishikawa, H.; Iguchi, E.; Ohara, Y.; Sakamoto, A.; Saito, S.; Nishijima, N.; Nasu, A.; Komekado, H.; Kita, R.; et al. Effect of treatment with branched-chain amino acids during sorafenib therapy for unresectable hepatocellular carcinoma. Hepatol. Res. 2014, 44, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Imanaka, K.; Ohkawa, K.; Tatsumi, T.; Katayama, K.; Inoue, A.; Imai, Y.; Oshita, M.; Iio, S.; Mita, E.; Fukui, H.; et al. Impact of branched-chain amino acid supplementation on survival in patients with advanced hepatocellular carcinoma treated with sorafenib: A multicenter retrospective cohort study. Hepatol. Res. 2016, 46, 1002–1010. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.V.; Chen, J.D.; Wu, W.T.; Huang, K.C.; Hsu, C.T.; Han, D.S. Association between Loss of Skeletal Muscle Mass and Mortality and Tumor Recurrence in Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Liver Cancer 2018, 7, 90–103. [Google Scholar] [CrossRef]
- Nishikawa, H.; Shiraki, M.; Hiramatsu, A.; Moriya, K.; Hino, K.; Nishiguchi, S. Japan Society of Hepatology guidelines for sarcopenia in liver disease (1st edition): Recommendation from the working group for creation of sarcopenia assessment criteria. Hepatol. Res. 2016, 46, 951–963. [Google Scholar] [CrossRef]
- Kobayashi, T.; Kawai, H.; Nakano, O.; Abe, S.; Kamimura, H.; Sakamaki, A.; Kamimura, K.; Tsuchiya, A.; Takamura, M.; Yamagiwa, S.; et al. Rapidly declining skeletal muscle mass predicts poor prognosis of hepatocellular carcinoma treated with transcatheter intra-arterial therapies. BMC Cancer 2018, 18, 756. [Google Scholar] [CrossRef]
- Fujita, M.; Takahashi, A.; Hayashi, M.; Okai, K.; Abe, K.; Ohira, H. Skeletal muscle volume loss during transarterial chemoembolization predicts poor prognosis in patients with hepatocellular carcinoma. Hepatol. Res. 2019, 49, 778–786. [Google Scholar] [CrossRef] [PubMed]
Factors | Total (N = 356) | |
---|---|---|
Age | 69.5 (63.0–75.0) | |
Sex (male/female) | 287/69 | |
Etiology (HCV/HBV/HBV+HCV/NBNC) | 175/80/2/99 | |
Body mass index [kg/m2] | 22.9 (20.8–24.9) | |
ECOG-PS (0/1/2/3) | 314/37/3/2 | |
Child–Pugh class (A/B) | 310/46 | |
Barcelona Clinic Liver Cancer stage (B/C) | 78/278 | |
Tumor number | 8 (2–8) | |
Tumor size [mm] | 35.0 (18.3–65.0) | |
Macrovascular invasion (−/+) | 258/98 | |
Extrahepatic spread (−/+) | 167/189 | |
Response (CR/PR/SD/PD) | 0/16/197/143 | |
Skeletal mass index | male | 45.3 (41.2–50.4) |
female | 38.3 (34.0–42.9) | |
Muscle volume (high/low) | 181/175 |
Factors | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
HR | 95%CI | p Value | HR | 95%CI | p Value | |
Age (<70/≥70) | 1.135 | 0.893–1.442 | 0.300 | 1.082 | 0.844–1.386 | 0.534 |
Sex (male/female) | 0.742 | 0.549–1.003 | 0.052 | 0.672 | 0.494–0.914 | 0.011 |
Body mass index [kg/m2] (≥22/<22) | 0.918 | 0.720–1.170 | 0.488 | 1.155 | 0.849–1.570 | 0.360 |
ECOG-PS (−1/2-) | 0.607 | 0.250–1.476 | 0.271 | 0.633 | 0.257–1.555 | 0.318 |
Child–Pugh class (A/B) | 0.617 | 0.432–0.880 | 0.008 | 0.612 | 0.421–0.890 | 0.010 |
Tumor number (<8/≥8) | 0.674 | 0.529–0.859 | 0.001 | 0.656 | 0.509–0.844 | 0.001 |
Tumor size [mm] (<35/≥35) | 0.820 | 0.646–1.041 | 0.102 | 0.863 | 0.661–1.125 | 0.276 |
Macrovascular invasion (−/+) | 0.614 | 0.469–0.804 | <0.001 | 0.720 | 0.528–0.982 | 0.038 |
Extrahepatic spread (−/+) | 0.842 | 0.661–1.070 | 0.160 | 0.674 | 0.521–0.872 | 0.003 |
Muscle volume (high/low) | 0.745 | 0.586–0.946 | 0.016 | 0.698 | 0.509–0.959 | 0.027 |
Factors | Univariate Analysis | Multivariate Analysis | ||||
HR | 95%CI | p Value | HR | 95%CI | p Value | |
Age (<70/≥70) | 1.055 | 0.840–1.325 | 0.643 | 1.002 | 0.792–1.266 | 0.989 |
Sex (male/female) | 0.766 | 0.576–1.019 | 0.067 | 0.661 | 0.491–0.889 | 0.006 |
Body mass index [kg/m2] (≥22/<22) | 0.918 | 0.728–1.158 | 0.472 | 1.217 | 0.919–1.612 | 0.170 |
ECOG-PS (−1/2-) | 0.578 | 0.238–1.404 | 0.266 | 0.590 | 0.241–1.445 | 0.248 |
Child–Pugh class (A/B) | 0.685 | 0.490–0.956 | 0.026 | 0.701 | 0.496–0.992 | 0.045 |
Tumor number (<8/≥8) | 0.625 | 0.496–0.788 | <0.001 | 0.591 | 0.465–0.751 | <0.001 |
Tumor size [mm] (<35/≥35) | 0.805 | 0.640–1.012 | 0.063 | 0.863 | 0.670–1.113 | 0.256 |
Macrovascular invasion (−/+) | 0.584 | 0.453–0.754 | <0.001 | 0.678 | 0.506–0.907 | 0.009 |
Extrahepatic spread (−/+) | 0.771 | 0.612–0.970 | 0.027 | 0.600 | 0.470–0.766 | <0.001 |
Muscle volume (high/low) | 0.721 | 0.574–0.907 | 0.005 | 0.666 | 0.501–0.886 | 0.005 |
Factors | Univariate Analysis | Multivariate Analysis | ||||
HR | 95%CI | p Value | HR | 95%CI | p Value | |
Age (<70/≥70) | 1.092 | 0.860–1.385 | 0.471 | 0.996 | 0.774–1.282 | 0.975 |
Sex (male/female) | 0.718 | 0.531–0.972 | 0.032 | 0.717 | 0.524–0.980 | 0.037 |
Body mass index [kg/m2] (≥22/<22) | 0.913 | 0.716–1.164 | 0.463 | 1.193 | 0.871–1.635 | 0.271 |
ECOG-PS (-1/2-) | 0.572 | 0.235–1.3908 | 0.217 | 0.570 | 0.229–1.421 | 0.228 |
Child-Pugh class (A /B) | 0.691 | 0.484–0.986 | 0.041 | 0.685 | 0.469–1.002 | 0.051 |
Tumor number (<8/≥8) | 0.673 | 0.528–0.858 | 0.001 | 0.615 | 0.476–0.793 | <0.001 |
Tumor size [mm] (<35/≥35) | 0.774 | 0.609–0.984 | 0.037 | 0.807 | 0.612–1.063 | 0.127 |
Macrovascular invasion (−/+) | 0.585 | 0.446–0.766 | <0.001 | 0.858 | 0.621–1.185 | 0.352 |
Extrahepatic spread (−/+) | 0.799 | 0.627–1.017 | 0.068 | 0.684 | 0.527–0.887 | 0.004 |
Muscle volume (high/low) | 0.704 | 0.555–0.894 | 0.004 | 0.545 | 0.393–0.755 | <0.001 |
Disease control (yes/no) | 0.431 | 0.336–0.552 | <0.001 | 0.398 | 0.307–0.516 | <0.001 |
Post-sorafenib therapy (yes/no) | 0.575 | 0.449–0.736 | <0.001 | 0.610 | 0.472–0.789 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saeki, I.; Yamasaki, T.; Yamauchi, Y.; Takami, T.; Kawaoka, T.; Uchikawa, S.; Hiramatsu, A.; Aikata, H.; Kawano, R.; Kobayashi, K.; et al. Skeletal Muscle Volume Is an Independent Predictor of Survival after Sorafenib Treatment Failure for Hepatocellular Carcinoma. Cancers 2021, 13, 2247. https://doi.org/10.3390/cancers13092247
Saeki I, Yamasaki T, Yamauchi Y, Takami T, Kawaoka T, Uchikawa S, Hiramatsu A, Aikata H, Kawano R, Kobayashi K, et al. Skeletal Muscle Volume Is an Independent Predictor of Survival after Sorafenib Treatment Failure for Hepatocellular Carcinoma. Cancers. 2021; 13(9):2247. https://doi.org/10.3390/cancers13092247
Chicago/Turabian StyleSaeki, Issei, Takahiro Yamasaki, Yurika Yamauchi, Taro Takami, Tomokazu Kawaoka, Shinsuke Uchikawa, Akira Hiramatsu, Hiroshi Aikata, Reo Kawano, Kazufumi Kobayashi, and et al. 2021. "Skeletal Muscle Volume Is an Independent Predictor of Survival after Sorafenib Treatment Failure for Hepatocellular Carcinoma" Cancers 13, no. 9: 2247. https://doi.org/10.3390/cancers13092247
APA StyleSaeki, I., Yamasaki, T., Yamauchi, Y., Takami, T., Kawaoka, T., Uchikawa, S., Hiramatsu, A., Aikata, H., Kawano, R., Kobayashi, K., Kondo, T., Ogasawara, S., Chiba, T., Chayama, K., Kato, N., & Sakaida, I. (2021). Skeletal Muscle Volume Is an Independent Predictor of Survival after Sorafenib Treatment Failure for Hepatocellular Carcinoma. Cancers, 13(9), 2247. https://doi.org/10.3390/cancers13092247