Etiology of Acute Leukemia: A Review
Abstract
:Simple Summary
Abstract
1. Background
2. Age and Race
3. Genetics
4. Environment and Occupations
5. Effects of Radiation
6. Prior Immunosuppressive and Chemotherapy
7. Parental and Residential Factors
8. Infections
9. Acute Myeloblastic Leukemia
10. Acute Lymphoblastic Leukemia
11. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deschler, B.; Lübbert, M. Acute myeloid leukemia: Epidemiology and etiology. Cancer 2006, 107, 2099–2107. [Google Scholar] [CrossRef] [PubMed]
- Bispo, J.A.B.; Pinheiro, P.S.; Kobetz, E.K. Epidemiology and Etiology of Leukemia and Lymphoma. Cold Spring Harb. Perspect. Med. 2020, 10, a034819. [Google Scholar] [CrossRef] [PubMed]
- Ries, L. SEER Cancer Statistics Review, 1975–2002. Available online: https://seer.cancer.gov/archive/csr/1975_2002/ (accessed on 23 February 2021).
- American Association for Cancer Research. Death Rate Higher in Minorities with Acute Leukemia, s.f.S.S.D. Available online: www.sciencedaily.com/releases/2011/09/110919163952.htm (accessed on 19 September 2011).
- Patel, M.I.; Ma, Y.; Mitchell, B.; Rhoads, K.F. How Do Differences in Treatment Impact Racial and Ethnic Disparities in Acute Myeloid Leukemia? Cancer Epidemiol. Biomark. Prev. 2015, 24, 344–349. [Google Scholar] [CrossRef] [Green Version]
- O’Keefe, E.B.; Meltzer, J.P.; Bethea, T.N. Health disparities and cancer: Racial disparities in cancer mortality in the United States, 2000–2010. Front. Public Health 2015, 3, 51. [Google Scholar] [CrossRef]
- Pollock, B.H.; DeBaun, M.R.; Camitta, B.M.; Shuster, J.J.; Ravindranath, Y.; Pullen, D.J.; Land, V.J.; Mahoney, D.H.; Lauer, S.J.; Murphy, S.B. Racial differences in the survival of childhood B-precursor acute lymphoblastic leukemia: A Pediatric Oncology Group Study. J. Clin. Oncol. 2000, 18, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Kadan-Lottick, N.S.; Ness, K.K.; Bhatia, S.; Gurney, J.G. Survival variability by race and ethnicity in childhood acute lymphoblastic leukemia. JAMA 2003, 290, 2008–2014. [Google Scholar] [CrossRef] [Green Version]
- Bhatia, S.; Sather, H.N.; Heerema, N.A.; Trigg, M.E.; Gaynon, P.S.; Robison, L.L. Racial and ethnic differences in survival of children with acute lymphoblastic leukemia. Blood J. Am. Soc. Hematol. 2002, 100, 1957–1964. [Google Scholar] [CrossRef] [PubMed]
- Aquino, V.M. Acute myelogenous leukemia. Curr. Probl. Pediatr. Adolesc. Health Care 2002, 32, 50–58. [Google Scholar] [CrossRef]
- Zipf, T.; Berg, S.; Roberts, W.; Poplack, D.; Steuber, C.; Bleyer, W. Childhood Leukemias. Clinical Oncology, 2nd ed.; Churchill Livingstone: New York, NY, USA, 2000; pp. 2402–2434. [Google Scholar]
- Falletta, J.M.; Starling, K.A.; Fernbach, D.J. Leukemia in twins. Pediatrics 1973, 52, 846–849. [Google Scholar]
- Stieglitz, E.; Loh, M.L. Genetic predispositions to childhood leukemia. Ther. Adv. Hematol. 2013, 4, 270–290. [Google Scholar] [CrossRef] [Green Version]
- Heuser, M.; Thol, F.; Ganser, A. Clonal Hematopoiesis of Indeterminate Potential. Dtsch. Arztebl. Int. 2016, 113, 317–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steensma, D.P.; Bejar, R.; Jaiswal, S.; Lindsley, R.C.; Sekeres, M.A.; Hasserjian, R.P.; Ebert, B.L. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 2015, 126, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Papaemmanuil, E.; Rapado, I.; Li, Y.; Potter, N.E.; Wedge, D.C.; Tubio, J.; Alexandrov, L.B.; Van Loo, P.; Cooke, S.L.; Marshall, J.; et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat. Genet. 2014, 46, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zou, J.; Zhao, B.; Johannsen, E.; Ashworth, T.; Wong, H.; Pear, W.S.; Schug, J.; Blacklow, S.C.; Arnett, K.L.; et al. Genome-wide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells. Proc. Natl. Acad. Sci. USA 2011, 108, 14908–14913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swaminathan, M.; Bannon, S.A.; Routbort, M.; Naqvi, K.; Kadia, T.M.; Takahashi, K.; Alvarado, Y.; Ravandi-Kashani, F.; Patel, K.P.; Champlin, R.; et al. Hematologic malignancies and Li-Fraumeni syndrome. Cold Spring Harb. Mol. Case Stud. 2019, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dördelmann, M.; Schrappe, M.; Reiter, A.; Zimmermann, M.; Graf, N.; Schott, G.; Lampert, F.; Harbott, J.; Niemeyer, C.; Ritter, J.; et al. Down’s syndrome in childhood acute lymphoblastic leukemia: Clinical characteristics and treatment outcome in four consecutive BFM trials. Berlin-Frankfurt-Münster Group. Leukemia 1998, 12, 645–651. [Google Scholar] [CrossRef] [Green Version]
- Robison, L.; Neglia, J. Epidemiology of Down syndrome and childhood acute leukemia. Prog. Clin. Biol. Res. 1987, 246, 19–32. [Google Scholar]
- Woods, W.G.; Roloff, J.S.; Lukens, J.N.; Krivit, W. The occurrence of leukemia in patients with the Shwachman syndrome. J. Pediatrics 1981, 99, 425–428. [Google Scholar] [CrossRef]
- Shearer, P.; Parham, D.; Kovnar, E.; Kun, L.; Rao, B.; Lobe, T.; Pratt, C. Neurofibromatosis type I and malignancy: Review of 32 pediatric cases treated at a single institution. Med. Pediatr. Oncol. 1994, 22, 78–83. [Google Scholar] [CrossRef]
- Swift, M. Fanconi’s anaemia in the genetics of neoplasia. Nature 1971, 230, 370–373. [Google Scholar] [CrossRef]
- Willis, A.E.; Lindahl, T. DNA ligase I deficiency in Bloom’s syndrome. Nature 1987, 325, 355–357. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.W. Relation between cancer and congenital defects: An epidemiologic evaluation. J. Natl. Cancer Inst. 1968, 40, 1079–1085. [Google Scholar] [PubMed]
- Toledano, S.R.; Lange, B.J. Ataxia-telangiectasia and acute lymphoblastic leukemia. Cancer 1980, 45, 1675–1678. [Google Scholar] [CrossRef]
- Brown, W.C.; Doll, R.; Hill, A.B. Incidence of leukaemia after exposure to diagnostic radiation in utero. Br. Med. J. 1960, 2, 1539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, A.; Webb, J.; Giles, D.; Hewitt, D. Malignant disease in childhood and diagnostic irradiation in utero. Lancet 1956, 268, 447. [Google Scholar] [CrossRef]
- Kleinerman, R.A. Cancer risks following diagnostic and therapeutic radiation exposure in children. Pediatr. Radiol. 2006, 36, 121–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardner, M.J. Review of reported increases of childhood cancer rates in the vicinity of nuclear installations in the UK. J. R. Stat. Soc. Ser. A 1989, 152, 307–325. [Google Scholar] [CrossRef]
- Meinert, R.; Kaletsch, U.; Kaatsch, P.; Schüz, J.; Michaelis, J. Associations between childhood cancer and ionizing radiation: Results of a population-based case-control study in Germany. Cancer Epidemiol. Prev. Biomark. 1999, 8, 793–799. [Google Scholar]
- Finch, S.C. Radiation-induced leukemia: Lessons from history. Best Pract. Res. Clin. Haematol. 2007, 20, 109–118. [Google Scholar] [CrossRef]
- Bhatia, S.; Robison, L.L. Epidemiology of leukemia and lymphoma. Curr. Opin. Hematol. 1999, 6, 201. [Google Scholar] [CrossRef]
- Zeeb, H.; Blettner, M. Adult leukaemia: What is the role of currently known risk factors? Radiat. Environ. Biophys. 1998, 36, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Sandler, D.P.; Ross, J.A. Epidemiology of acute leukemia in children and adults. Semin. Oncol. 1997, 24, 3–16. [Google Scholar]
- Sandler, D.P. Epidemiology and etiology of acute leukemia: An update. Leukemia 1992, 6, 3–5. [Google Scholar]
- Pearce, N.E.; Sheppard, R.A.; Howard, J.K.; Fraser, J.; Lilley, B.M. Leukemia among New Zealand agricultural workers. A cancer registry-based study. Am. J. Epidemiol. 1986, 124, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Burmeister, L.F.; Van Lier, S.F.; Isacson, P. Leukemia and farm practices in Iowa. Am. J. Epidemiol. 1982, 115, 720–728. [Google Scholar] [CrossRef]
- Loomis, D.P.; Savitz, D.A. Occupation and leukemia mortality among men in 16 states: 1985–1987. Am. J. Ind. Med. 1991, 19, 509–521. [Google Scholar] [CrossRef]
- Semenciw, R.M.; Morrison, H.I.; Morison, D.; Mao, Y. Leukemia mortality and farming in the prairie provinces of Canada. Can. J. Public Health 1994, 85, 208–211. [Google Scholar] [PubMed]
- Morton, W.; Marjanovic, D. Leukemia incidence by occupation in the Portland-Vancouver metropolitan area. Am. J. Ind. Med. 1984, 6, 185–205. [Google Scholar] [CrossRef] [PubMed]
- Keller-Byrne, J.E.; Khuder, S.A.; Schaub, E.A. Meta-analysis of leukemia and farming. Environ. Res. 1995, 71, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Blair, A.; Zheng, T.; Linos, A.; Stewart, P.A.; Zhang, Y.W.; Cantor, K.P. Occupation and leukemia: A population-based case-control study in Iowa and Minnesota. Am. J. Ind Med. 2001, 40, 3–14. [Google Scholar] [CrossRef]
- Adegoke, O.J.; Blair, A.; Shu, X.O.; Sanderson, M.; Jin, F.; Dosemeci, M.; Addy, C.L.; Zheng, W. Occupational history and exposure and the risk of adult leukemia in Shanghai. Ann. Epidemiol. 2003, 13, 485–494. [Google Scholar] [CrossRef]
- Descatha, A.; Jenabian, A.; Conso, F.; Ameille, J. Occupational exposures and haematological malignancies: Overview on human recent data. Cancer Causes Control. 2005, 16, 939–953. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.M.; Blair, A.; Gibson, R.; Everett, G.D.; Cantor, K.P.; Schuman, L.M.; Burmeister, L.F.; Van Lier, S.F.; Dick, F. Pesticide exposures and other agricultural risk factors for leukemia among men in Iowa and Minnesota. Cancer Res. 1990, 50, 6585–6591. [Google Scholar]
- Wong, O.; Harris, F.; Armstrong, T.W.; Hua, F. A hospital-based case-control study of acute myeloid leukemia in Shanghai: Analysis of environmental and occupational risk factors by subtypes of the WHO classification. Chem. Biol. Interact. 2010, 184, 112–128. [Google Scholar] [CrossRef] [PubMed]
- Beane Freeman, L.E.; Deroos, A.J.; Koutros, S.; Blair, A.; Ward, M.H.; Alavanja, M.; Hoppin, J.A. Poultry and livestock exposure and cancer risk among farmers in the agricultural health study. Cancer Causes Control. 2012, 23, 663–670. [Google Scholar] [CrossRef] [Green Version]
- DiGiacomo, R.F.; Hopkins, S.G. Food animal and poultry retroviruses and human health. Vet. Clin. N. Am. Food Anim. Pract. 1997, 13, 177–190. [Google Scholar] [CrossRef]
- Aksoy, M. Malignancies due to occupational exposure to benzene. Am. J. Ind. Med. 1985, 7, 395–402. [Google Scholar] [CrossRef]
- Seniori Costantini, A.; Quinn, M.; Consonni, D.; Zappa, M. Exposure to benzene and risk of leukemia among shoe factory workers. Scand J. Work Environ. Health 2003, 29, 51–59. [Google Scholar] [CrossRef]
- Raabe, G.K.; Collingwood, K.W.; Wong, O. An updated mortality study of workers at a petroleum refinery in Beaumont, Texas. Am. J. Ind. Med. 1998, 33, 61–81. [Google Scholar] [CrossRef]
- Paci, E.; Buiatti, E.; Seniori Costantini, A.S.; Miligi, L.; Pucci, N.; Scarpelli, A.; Petrioli, G.; Simonato, L.; Winkelmann, R.; Kaldor, J.M. Aplastic anemia, leukemia and other cancer mortality in a cohort of shoe workers exposed to benzene. Scand J. Work Environ. Health 1989, 15, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Terry, P.D.; Shore, D.L.; Rauscher, G.H.; Sandler, D.P. Occupation, hobbies, and acute leukemia in adults. Leuk. Res. 2005, 29, 1117–1130. [Google Scholar] [CrossRef]
- Linet, M.S.; Malker, H.S.; McLaughlin, J.K.; Weiner, J.A.; Stone, B.J.; Blot, W.J.; Ericsson, J.L.; Fraumeni, J.F. Leukemias and occupation in Sweden: A registry-based analysis. Am. J. Ind. Med. 1988, 14, 319–330. [Google Scholar] [CrossRef]
- Rinsky, R.A.; Smith, A.B.; Hornung, R.; Filloon, T.G.; Young, R.J.; Okun, A.H.; Landrigan, P.J. Benzene and leukemia. An epidemiologic risk assessment. N. Engl. J. Med. 1987, 316, 1044–1050. [Google Scholar] [CrossRef] [Green Version]
- Lindquist, R.; Nilsson, B.; Eklund, G.; Gahrton, G. Acute leukemia in professional drivers exposed to gasoline and diesel. Eur. J. Haematol. 1991, 47, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Enterline, P.E. Review of new evidence regarding the relationship of gasoline exposure to kidney cancer and leukemia. Environ. Health Perspect. 1993, 101 (Suppl. 6), 101–103. [Google Scholar] [CrossRef]
- Nilsson, R.; Nordlinder, R.; Järvholm, B. Health risks of gasoline handling. Exposure to benzene can cause leukemia. Lakartidningen 1993, 90, 1553–1557. [Google Scholar]
- Wong, O.; Raabe, G.K. Cell-type-specific leukemia analyses in a combined cohort of more than 208,000 petroleum workers in the United States and the United Kingdom, 1937-1989. Regul. Toxicol. Pharmacol. 1995, 21, 307–321. [Google Scholar] [CrossRef]
- Nordlinder, R.; Järvholm, B. Environmental exposure to gasoline and leukemia in children and young adults—An ecology study. Int Arch. Occup. Environ. Health 1997, 70, 57–60. [Google Scholar] [CrossRef]
- Guénel, P.; Imbernon, E.; Chevalier, A.; Crinquand-Calastreng, A.; Goldberg, M. Leukemia in relation to occupational exposures to benzene and other agents: A case-control study nested in a cohort of gas and electric utility workers. Am. J. Ind. Med. 2002, 42, 87–97. [Google Scholar] [CrossRef]
- Glass, D.C.; Gray, C.N.; Jolley, D.J.; Gibbons, C.; Sim, M.R.; Fritschi, L.; Adams, G.G.; Bisby, J.A.; Manuell, R. Leukemia risk associated with low-level benzene exposure. Epidemiology 2003, 14, 569–577. [Google Scholar] [CrossRef]
- Schwartz, E. Proportionate mortality ratio analysis of automobile mechanics and gasoline service station workers in New Hampshire. Am. J. Ind. Med. 1987, 12, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Bethwaite, P.; Cook, A.; Kennedy, J.; Pearce, N. Acute leukemia in electrical workers: A New Zealand case-control study. Cancer Causes Control 2001, 12, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Flodin, U.; Fredriksson, M.; Persson, B.; Hardell, L.; Axelson, O. Background radiation, electrical work, and some other exposures associated with acute myeloid leukemia in a case-referent study. Arch. Environ. Health 1986, 41, 77–84. [Google Scholar] [CrossRef]
- Breysse, P.N.; Matanoski, G.M.; Elliott, E.A.; Francis, M.; Kaune, W.; Thomas, K. 60 Hertz magnetic field exposure assessment for an investigation of leukemia in telephone lineworkers. Am. J. Ind. Med. 1994, 26, 681–691. [Google Scholar] [CrossRef]
- Matanoski, G.M.; Elliott, E.A.; Breysse, P.N.; Lynberg, M.C. Leukemia in telephone linemen. Am. J. Epidemiol. 1993, 137, 609–619. [Google Scholar] [CrossRef]
- Kheifets, L.I.; London, S.J.; Peters, J.M. Leukemia risk and occupational electric field exposure in Los Angeles County, California. Am. J. Epidemiol. 1997, 146, 87–90. [Google Scholar] [CrossRef] [Green Version]
- Törnqvist, S.; Knave, B.; Ahlbom, A.; Persson, T. Incidence of leukaemia and brain tumours in some “electrical occupations”. Occup. Environ. Med. 1991, 48, 597–603. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, L.; Higgins, C.; Douglas, A.; Fraser, P.; Beral, V.; Smith, P. Combined analysis of mortality in three United Kingdom nuclear industry workforces, 1946–1988. Radiat. Res. 1994, 138, 224–238. [Google Scholar] [CrossRef]
- Omar, R.Z.; Barber, J.A.; Smith, P.G. Cancer mortality and morbidity among plutonium workers at the Sellafield plant of British Nuclear Fuels. Br. J. Cancer 1999, 79, 1288–1301. [Google Scholar] [CrossRef]
- Preston, D.L.; Kato, H.; Kopecky, K.; Fujita, S. Studies of the mortality of A-bomb survivors. 8. Cancer mortality, 1950-1982. Radiat. Res. 1987, 111, 151–178. [Google Scholar] [CrossRef] [PubMed]
- Ritz, B.; Morgenstern, H.; Froines, J.; Young, B.B. Effects of exposure to external ionizing radiation on cancer mortality in nuclear workers monitored for radiation at Rocketdyne/Atomics International. Am. J. Ind. Med. 1999, 35, 21–31. [Google Scholar] [CrossRef]
- Shilnikova, N.S.; Preston, D.L.; Ron, E.; Gilbert, E.S.; Vassilenko, E.K.; Romanov, S.A.; Kuznetsova, I.S.; Sokolnikov, M.E.; Okatenko, P.V.; Kreslov, V.V.; et al. Cancer mortality risk among workers at the Mayak nuclear complex. Radiat. Res. 2003, 159, 787–798. [Google Scholar] [CrossRef]
- Miller, B.A.; Blair, A.; Reed, E.J. Extended mortality follow-up among men and women in a U.S. furniture workers union. Am. J. Ind. Med. 1994, 25, 537–549. [Google Scholar] [CrossRef]
- Skov, T.; Maarup, B.; Olsen, J.; Rørth, M.; Winthereik, H.; Lynge, E. Leukaemia and reproductive outcome among nurses handling antineoplastic drugs. Br. J. Ind. Med. 1992, 49, 855–861. [Google Scholar] [CrossRef] [Green Version]
- Lie, J.A.; Kjaerheim, K. Cancer risk among female nurses: A literature review. Eur. J. Cancer Prev. 2003, 12, 517–526. [Google Scholar] [CrossRef]
- Petralia, S.A.; Dosemeci, M.; Adams, E.E.; Zahm, S.H. Cancer mortality among women employed in health care occupations in 24 U.S. states, 1984–1993. Am. J. Ind. Med. 1999, 36, 159–165. [Google Scholar] [CrossRef]
- Mele, A.; Szklo, M.; Visani, G.; Stazi, M.A.; Castelli, G.; Pasquini, P.; Mandelli, F. Hair dye use and other risk factors for leukemia and pre-leukemia: A case-control study. Italian Leukemia Study Group. Am. J. Epidemiol. 1994, 139, 609–619. [Google Scholar] [CrossRef]
- Morgan, R.W.; Claxton, K.W.; Kaplan, S.D.; Parsons, J.M.; Wong, O. Mortality of paint and coatings industry workers. A follow-up study. J. Occup. Med. 1985, 27, 377–378. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.A.; Silverman, D.T.; Hoover, R.N.; Blair, A. Cancer risk among artistic painters. Am. J. Ind. Med. 1986, 9, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Lindquist, R.; Nilsson, B.; Eklund, G.; Gahrton, G. Increased risk of developing acute leukemia after employment as a painter. Cancer 1987, 60, 1378–1384. [Google Scholar] [CrossRef]
- Chen, R.; Seaton, A. A meta-analysis of painting exposure and cancer mortality. Cancer Detect. Prev. 1998, 22, 533–539. [Google Scholar] [CrossRef]
- Blair, A.; Decoufle, P.; Grauman, D. Causes of death among laundry and dry cleaning workers. Am. J. Public Health 1979, 69, 508–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLean, D.; Mannetje, A.; Dryson, E.; Walls, C.; McKenzie, F.; Maule, M.; Cheng, S.; Cunningham, C.; Kromhout, H.; Boffetta, P.; et al. Leukaemia and occupation: A New Zealand Cancer Registry-based case-control Study. Int. J. Epidemiol. 2009, 38, 594–606. [Google Scholar] [CrossRef] [Green Version]
- Forand, S.P. Leukaemia incidence among workers in the shoe and boot manufacturing industry: A case-control study. Environ. Health 2004, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Floderus, B.; Törnqvist, S.; Stenlund, C. Incidence of selected cancers in Swedish railway workers, 1961–1979. Cancer Causes Control. 1994, 5, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Alfredsson, L.; Hammar, N.; Karlehagen, S. Cancer incidence among male railway engine-drivers and conductors in Sweden, 1976–1990. Cancer Causes Control. 1996, 7, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Appelbaum, F.R.; Armitage, J.O.; Nierderhuber, J.E. (Eds.) Abeloff’s Clinical Oncology, 4th ed.; Churchill Livingstone: Philadelphia, PA, USA, 2008; pp. 2215–2234. [Google Scholar]
- Goldstein, B.D. Hematological and toxicological evaluation of formaldehyde as a potential cause of human leukemia. Hum. Exp. Toxicol. 2011, 30, 725–735. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, T.R.; Decouflé, P. Cancer mortality among northern Georgia carpet and textile workers. Am. J. Ind. Med. 1988, 14, 15–24. [Google Scholar] [CrossRef]
- Kim, E.A.; Lee, H.E.; Ryu, H.W.; Park, S.H.; Kang, S.K. Cases series of malignant lymphohematopoietic disorder in korean semiconductor industry. Saf. Health Work 2011, 2, 122–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freedman, D.M.; Stewart, P.; Kleinerman, R.A.; Wacholder, S.; Hatch, E.E.; Tarone, R.E.; Robison, L.L.; Linet, M.S. Household solvent exposures and childhood acute lymphoblastic leukemia. Am. J. Public Health 2001, 91, 564–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowengart, R.A.; Peters, J.M.; Cicioni, C.; Buckley, J.; Bernstein, L.; Preston-Martin, S.; Rappaport, E. Childhood leukemia and parents’ occupational and home exposures. J. Natl. Cancer Inst. 1987, 79, 39–46. [Google Scholar] [PubMed]
- Buckley, J.D.; Robison, L.L.; Swotinsky, R.; Garabrant, D.H.; LeBeau, M.; Manchester, P.; Nesbit, M.E.; Odom, L.; Peters, J.M.; Woods, W.G. Occupational exposures of parents of children with acute nonlymphocytic leukemia: A report from the Childrens Cancer Study Group. Cancer Res. 1989, 49, 4030–4037. [Google Scholar] [PubMed]
- Rinsky, R.A.; Young, R.J.; Smith, A.B. Leukemia in benzene workers. Am. J. Ind. Med. 1981, 2, 217–245. [Google Scholar] [CrossRef] [PubMed]
- Belson, M.; Kingsley, B.; Holmes, A. Risk factors for acute leukemia in children: A review. Environ. Health Perspect. 2007, 115, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.W. Persons with exceptionally high risk of leukemia. Cancer Res. 1967, 27, 2420–2423. [Google Scholar] [PubMed]
- Moloney, W.C. Leukemia in survivors of atomic bombing. N. Engl. J. Med. 1955, 253, 88–90. [Google Scholar] [CrossRef]
- Sali, D.; Cardis, E.; Sztanyik, L.; Auvinen, A.; Bairakova, A.; Dontas, N.; Grosche, B.; Kerekes, A.; Kusic, Z.; Kusoglu, C.; et al. Cancer consequences of the Chernobyl accident in Europe outside the former USSR: A review. Int. J. Cancer 1996, 67, 343–352. [Google Scholar] [CrossRef]
- Ron, E. Ionizing radiation and cancer risk: Evidence from epidemiology. Radiat. Res. 1998, 150, S30–S41. [Google Scholar] [CrossRef]
- Mahoney, M.C.; Moysich, K.B.; McCarthy, P.L.; McDonald, R.C.; Stepanenko, V.F.; Day, R.W.; Michalek, A.M. The Chernobyl childhood leukemia study: Background & lessons learned. Environ. Health 2004, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Shu, X.O.; Reaman, G.H.; Lampkin, B.; Sather, H.N.; Pendergrass, T.W.; Robison, L.L. Association of paternal diagnostic X-ray exposure with risk of infant leukemia. Investigators of the Childrens Cancer Group. Cancer Epidemiol. Biomark. Prev. 1994, 3, 645–653. [Google Scholar]
- Shu, X.O.; Potter, J.D.; Linet, M.S.; Severson, R.K.; Han, D.; Kersey, J.H.; Neglia, J.P.; Trigg, M.E.; Robison, L.L. Diagnostic X-rays and ultrasound exposure and risk of childhood acute lymphoblastic leukemia by immunophenotype. Cancer Epidemiol. Biomark. Prev. 2002, 11, 177–185. [Google Scholar]
- Hatch, E.E.; Linet, M.S.; Kleinerman, R.A.; Tarone, R.E.; Severson, R.K.; Hartsock, C.T.; Haines, C.; Kaune, W.T.; Friedman, D.; Robison, L.L.; et al. Association between childhood acute lymphoblastic leukemia and use of electrical appliances during pregnancy and childhood. Epidemiology 1998, 9, 234–245. [Google Scholar] [CrossRef] [PubMed]
- Infante-Rivard, C.; Deadman, J.E. Maternal occupational exposure to extremely low frequency magnetic fields during pregnancy and childhood leukemia. Epidemiology 2003, 14, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Ahlbom, A.; Day, N.; Feychting, M.; Roman, E.; Skinner, J.; Dockerty, J.; Linet, M.; McBride, M.; Michaelis, J.; Olsen, J.H.; et al. A pooled analysis of magnetic fields and childhood leukaemia. Br. J. Cancer 2000, 83, 692–698. [Google Scholar] [CrossRef] [Green Version]
- Savitz, D.A.; Chen, J.H. Parental occupation and childhood cancer: Review of epidemiologic studies. Environ. Health Perspect. 1990, 88, 325–337. [Google Scholar] [CrossRef]
- Kleinerman, R.A.; Kaune, W.T.; Hatch, E.E.; Wacholder, S.; Linet, M.S.; Robison, L.L.; Niwa, S.; Tarone, R.E. Are children living near high-voltage power lines at increased risk of acute lymphoblastic leukemia? Am. J. Epidemiol. 2000, 151, 512–515. [Google Scholar] [CrossRef] [Green Version]
- Linet, M.S.; Hatch, E.E.; Kleinerman, R.A.; Robison, L.L.; Kaune, W.T.; Friedman, D.R.; Severson, R.K.; Haines, C.M.; Hartsock, C.T.; Niwa, S.; et al. Residential exposure to magnetic fields and acute lymphoblastic leukemia in children. N. Engl. J. Med. 1997, 337, 1–7. [Google Scholar] [CrossRef]
- Myers, A.; Clayden, A.D.; Cartwright, R.A.; Cartwright, S.C. Childhood cancer and overhead powerlines: A case-control study. Br. J. Cancer 1990, 62, 1008–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, M.A.; McCaffrey, R.P.; Karp, J.E. The secondary leukemias: Challenges and research directions. J. Natl. Cancer Inst. 1996, 88, 407–418. [Google Scholar] [CrossRef]
- Tebbi, C.K.; London, W.B.; Friedman, D.; Villaluna, D.; De Alarcon, P.A.; Constine, L.S.; Mendenhall, N.P.; Sposto, R.; Chauvenet, A.; Schwartz, C.L. Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin’s disease. J. Clin. Oncol. 2007, 25, 493–500. [Google Scholar] [CrossRef]
- Lin, C.K.; Hsu, Y.T.; Brown, K.D.; Pokharel, B.; Wei, Y.; Chen, S.T. Residential exposure to petrochemical industrial complexes and the risk of leukemia: A systematic review and exposure-response meta-analysis. Environ. Pollut. 2020, 258, 113476. [Google Scholar] [CrossRef]
- Rushton, L.; Romaniuk, H. A case-control study to investigate the risk of leukaemia associated with exposure to benzene in petroleum marketing and distribution workers in the United Kingdom. Occup. Environ. Med. 1997, 54, 152–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shu, X.O.; Stewart, P.; Wen, W.Q.; Han, D.; Potter, J.D.; Buckley, J.D.; Heineman, E.; Robison, L.L. Parental occupational exposure to hydrocarbons and risk of acute lymphocytic leukemia in offspring. Cancer Epidemiol. Biomark. Prev. 1999, 8, 783–791. [Google Scholar]
- Zahm, S.H.; Ward, M.H. Pesticides and childhood cancer. Environ. Health Perspect. 1998, 106 (Suppl. 3), 893–908. [Google Scholar] [CrossRef]
- Grossman, J. What’s hiding under the sink: Dangers of household pesticides. Environ. Health Perspect. 1995, 103, 550–554. [Google Scholar] [CrossRef]
- Daniels, J.L.; Olshan, A.F.; Savitz, D.A. Pesticides and childhood cancers. Environ. Health Perspect. 1997, 105, 1068–1077. [Google Scholar] [CrossRef]
- Infante-Rivard, C.; Labuda, D.; Krajinovic, M.; Sinnett, D. Risk of childhood leukemia associated with exposure to pesticides and with gene polymorphisms. Epidemiology 1999, 10, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Menegaux, F.; Baruchel, A.; Bertrand, Y.; Lescoeur, B.; Leverger, G.; Nelken, B.; Sommelet, D.; Hémon, D.; Clavel, J. Household exposure to pesticides and risk of childhood acute leukaemia. Occup. Environ. Med. 2006, 63, 131–134. [Google Scholar] [CrossRef] [PubMed]
- Knox, E. Childhood cancers and atmospheric carcinogens. J. Epidemiol. Community Health 2005, 59, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Petridou, E.T.; Sergentanis, T.N.; Panagopoulou, P.; Moschovi, M.; Polychronopoulou, S.; Baka, M.; Pourtsidis, A.; Athanassiadou, F.; Kalmanti, M.; Sidi, V.; et al. In vitro fertilization and risk of childhood leukemia in Greece and Sweden. Pediatr. Blood Cancer 2012, 58, 930–936. [Google Scholar] [CrossRef] [PubMed]
- Reigstad, M.M.; Larsen, I.K.; Myklebust, T.Å.; Robsahm, T.E.; Oldereid, N.B.; Brinton, L.A.; Storeng, R. Risk of Cancer in Children Conceived by Assisted Reproductive Technology. Pediatrics 2016, 137, e20152061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, B.T.; Shu, X.O.; Linet, M.S.; Zheng, W.; Wacholder, S.; Gao, Y.T.; Ying, D.M.; Jin, F. Paternal cigarette smoking and the risk of childhood cancer among offspring of nonsmoking mothers. J. Natl. Cancer Inst. 1997, 89, 238–244. [Google Scholar] [CrossRef] [Green Version]
- Stjernfeldt, M.; Ludvigsson, J.; Berglund, K.; Lindsten, J. Maternal smoking during pregnancy and the risk of childhood cancer. Lancet 1986, 2, 687–688. [Google Scholar] [CrossRef]
- John, E.M.; Savitz, D.A.; Sandler, D.P. Prenatal exposure to parents’ smoking and childhood cancer. Am. J. Epidemiol. 1991, 133, 123–132. [Google Scholar] [CrossRef]
- Sorahan, T.; Prior, P.; Lancashire, R.J.; Faux, S.P.; Hultén, M.A.; Peck, I.M.; Stewart, A.M. Childhood cancer and parental use of tobacco: Deaths from 1971 to 1976. Br. J. Cancer 1997, 76, 1525–1531. [Google Scholar] [CrossRef] [Green Version]
- Shu, X.O.; Ross, J.A.; Pendergrass, T.W.; Reaman, G.H.; Lampkin, B.; Robison, L.L. Parental alcohol consumption, cigarette smoking, and risk of infant leukemia: A Childrens Cancer Group study. J. Natl. Cancer Inst. 1996, 88, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Pang, D.; McNally, R.; Birch, J.M. Parental smoking and childhood cancer: Results from the United Kingdom Childhood Cancer Study. Br. J. Cancer 2003, 88, 373–381. [Google Scholar] [CrossRef]
- Robison, L.L.; Buckley, J.D.; Daigle, A.E.; Wells, R.; Benjamin, D.; Arthur, D.C.; Hammond, G.D. Maternal drug use and risk of childhood nonlymphoblastic leukemia among offspring. An epidemiologic investigation implicating marijuana (a report from the Childrens Cancer Study Group). Cancer 1989, 63, 1904–1911. [Google Scholar] [CrossRef]
- Dockerty, J.D.; Draper, G.; Vincent, T.; Rowan, S.D.; Bunch, K.J. Case-control study of parental age, parity and socioeconomic level in relation to childhood cancers. Int. J. Epidemiol. 2001, 30, 1428–1437. [Google Scholar] [CrossRef] [Green Version]
- Kaye, S.A.; Robison, L.L.; Smithson, W.A.; Gunderson, P.; King, F.L.; Neglia, J.P. Maternal reproductive history and birth characteristics in childhood acute lymphoblastic leukemia. Cancer 1991, 68, 1351–1355. [Google Scholar] [CrossRef]
- Ross, J.A.; Davies, S.M.; Potter, J.D.; Robison, L.L. Epidemiology of childhood leukemia, with a focus on infants. Epidemiol. Rev. 1994, 16, 243–272. [Google Scholar] [CrossRef]
- Yeazel, M.W.; Buckley, J.D.; Woods, W.G.; Ruccione, K.; Robison, L.L. History of maternal fetal loss and increased risk of childhood acute leukemia at an early age. A report from the Childrens Cancer Group. Cancer 1995, 75, 1718–1727. [Google Scholar] [CrossRef]
- Westergaard, T.; Andersen, P.K.; Pedersen, J.B.; Olsen, J.H.; Frisch, M.; Sørensen, H.T.; Wohlfahrt, J.; Melbye, M. Birth characteristics, sibling patterns, and acute leukemia risk in childhood: A population-based cohort study. J. Natl. Cancer Inst. 1997, 89, 939–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, M. Considerations on a possible viral etiology for B-precursor acute lymphoblastic leukemia of childhood. J. Immunother. 1997, 20, 89–100. [Google Scholar] [CrossRef]
- Wiemels, J. Perspectives on the causes of childhood leukemia. Chem. Biol. Interact. 2012, 196, 59–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tebbi, C.K.; Badiga, A.; Sahakian, E.; Arora, A.I.; Nair, S.; Powers, J.J.; Achille, A.N.; Jaglal, M.V.; Patel, S.; Migone, F. Plasma of Acute Lymphoblastic Leukemia Patients React to the Culture of a Mycovirus Containing Aspergillus Flavus. J. Pediatr. Hematol. Oncol. 2020, 42, 350–358. [Google Scholar] [CrossRef]
- Tebbi, C.K.; Badiga, A.; Sahakian, E.; Powers, J.J.; Achille, A.N.; Patel, S.; Migone, F. Exposure to a mycovirus containing Aspergillus Flavus reproduces acute lymphoblastic leukemia cell surface and genetic markers in cells from patients in remission and not controls. Cancer Treat. Res. Commun. 2020, 26, 100279. [Google Scholar] [CrossRef]
- Greaves, M.F. Speculations on the cause of childhood acute lymphoblastic leukemia. Leukemia 1988, 2, 120–125. [Google Scholar] [PubMed]
- Gold, J.E.; Castella, A.; Zalusky, R. B-cell acute lymphocytic leukemia in HIV-antibody-positive patients. Am. J. Hematol. 1989, 32, 200–204. [Google Scholar] [CrossRef]
- Pantanowitz, L.; Schlecht, H.P.; Dezube, B.J. The growing problem of non-AIDS-defining malignancies in HIV. Curr. Opin. Oncol. 2006, 18, 469–478. [Google Scholar] [CrossRef]
- Lehtinen, M.; Koskela, P.; Ogmundsdottir, H.M.; Bloigu, A.; Dillner, J.; Gudnadottir, M.; Hakulinen, T.; Kjartansdottir, A.; Kvarnung, M.; Pukkala, E.; et al. Maternal herpesvirus infections and risk of acute lymphoblastic leukemia in the offspring. Am. J. Epidemiol. 2003, 158, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Bartenhagen, C.; Fischer, U.; Korn, K.; Pfister, S.M.; Gombert, M.; Chen, C.; Okpanyi, V.; Hauer, J.; Rinaldi, A.; Bourquin, J.P.; et al. Infection as a cause of childhood leukemia: Virus detection employing whole genome sequencing. Haematologica 2017, 102, e179–e183. [Google Scholar] [CrossRef] [Green Version]
- Martín-Lorenzo, A.; Hauer, J.; Vicente-Dueñas, C.; Auer, F.; González-Herrero, I.; García-Ramírez, I.; Ginzel, S.; Thiele, R.; Constantinescu, S.N.; Bartenhagen, C.; et al. Infection Exposure is a Causal Factor in B-cell Precursor Acute Lymphoblastic Leukemia as a Result of Pax5-Inherited Susceptibility. Cancer Discov. 2015, 5, 1328–1343. [Google Scholar] [CrossRef] [Green Version]
- Rowe, M.; Fitzsimmons, L.; Bell, A.I. Epstein-Barr virus and Burkitt lymphoma. Chin. J. Cancer 2014, 33, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zee, B.; Lee, J.; Chik, K.; Ha, S.; Lee, V. Impact of SARS on development of childhood acute lymphoblastic leukaemia. Leukemia 2007, 21, 1353–1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taub, J.W.; Ge, Y.; Xavier, A.C. COVID-19 and childhood acute lymphoblastic leukemia. Pediatr. Blood Cancer 2020, 67, e28400. [Google Scholar] [CrossRef] [PubMed]
- Greaves, M. COVID-19 and childhood acute lymphoblastic leukemia. Pediatr. Blood Cancer 2020, 67, e28481. [Google Scholar] [CrossRef]
- Maia, R.a.R.; Wünsch Filho, V. Infection and childhood leukemia: Review of evidence. Rev. Saude Publica 2013, 47, 1172–1185. [Google Scholar] [CrossRef]
- Chabay, P.A.; Preciado, M.V. EBV primary infection in childhood and its relation to B-cell lymphoma development: A mini-review from a developing region. Int. J. Cancer 2013, 133, 1286–1292. [Google Scholar] [CrossRef]
- Matsuoka, M. Human T-cell leukemia virus type I and adult T-cell leukemia. Oncogene 2003, 22, 5131–5140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauer, J.; Martín-Lorenzo, A.; Sánchez-García, I. Infection causes childhood leukemia. Aging 2015, 7, 607–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wray, B.B.; O’Steen, K.G. Mycotoxin-producing fungi from house associated with leukemia. Arch. Environ. Health 1975, 30, 571–573. [Google Scholar] [CrossRef]
- Wray, B.B.; Harmon, C.A.; Rushing, E.J.; Cole, R.J. Precipitins to an aflatoxin-producing strain of Aspergillus flavus in patients with malignancy. J. Cancer Res. Clin. Oncol. 1982, 103, 181–185. [Google Scholar] [CrossRef]
- McPhedran, P.; Heath, C.W. Multiple cases of leukemia associated with one house. JAMA 1969, 209, 2021–2025. [Google Scholar] [CrossRef] [PubMed]
- Wray, B.B.; Rushing, E.J.; Boyd, R.C.; Schindel, A.M. Suppression of phytohemagglutinin response by fungi from a "leukemia" house. Arch. Environ. Health 1979, 34, 350–353. [Google Scholar] [CrossRef]
- Hisano, S.; Zhang, R.; Faruk, M.I.; Kondo, H.; Suzuki, N. A neo-virus lifestyle exhibited by a (+)ssRNA virus hosted in an unrelated dsRNA virus: Taxonomic and evolutionary considerations. Virus Res. 2018, 244, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, F.R. The RNA interference-virus interplay: Tools of nature for gene modulation, morphogenesis, evolution and a possible mean for aflatoxin control. Appl. Microbiol. Biotechnol. 2009, 83, 611–615. [Google Scholar] [CrossRef]
- Kotta-Loizou, I.; Coutts, R.H.A. Mycoviruses in Aspergilli. A comprehensive review. Front. Microbiol. 2017, 8, 1699. [Google Scholar] [CrossRef] [Green Version]
- Pitt, J.I. Toxigenic fungi: Which are important? Med. Mycol. 2000, 38 (Suppl. 1), 17–22. [Google Scholar] [CrossRef]
- Klein, K.R.; Woodward, C.S.; Waller, E.K.; Lechowicz, M.J.; Rosenthal, H. Effects of Mycotoxins on Mononuclear Cells (MNCs) in Normal Blood, T-Cell Leukemia and Lymphoma Cell Lines; American Society of Hematology: Washington, DC, USA, 2005. [Google Scholar]
- Konstantinovas, C.; de Oliveira Mendes, T.A.; Vannier-Santos, M.A.; Lima-Santos, J. Modulation of Human Immune Response by Fungal Biocontrol Agents. Front. Microbiol. 2017, 8, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pahl, H.L.; Krauss, B.; Schulze-Osthoff, K.; Decker, T.; Traenckner, E.B.; Vogt, M.; Myers, C.; Parks, T.; Warring, P.; Mühlbacher, A.; et al. The immunosuppressive fungal metabolite gliotoxin specifically inhibits transcription factor NF-kappaB. J. Exp. Med. 1996, 183, 1829–1840. [Google Scholar] [CrossRef] [PubMed]
- Kordes, U.; Krappmann, D.; Heissmeyer, V.; Ludwig, W.D.; Scheidereit, C. Transcription factor NF-kappaB is constitutively activated in acute lymphoblastic leukemia cells. Leukemia 2000, 14, 399–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reilly, J.T. Pathogenesis of acute myeloid leukaemia and inv (16) (p13; q22): A paradigm for understanding leukaemogenesis? Br. J. Haematol. 2005, 128, 18–34. [Google Scholar] [CrossRef] [PubMed]
- Greaves, M. Author Correction: A causal mechanism for childhood acute lymphoblastic leukaemia. Nat. Rev. Cancer 2018, 18, 526. [Google Scholar] [CrossRef] [Green Version]
- Ries, L.A.G.; Melbert, D.; Krapcho, M.; Mariotto, A.; Miller, B.A.; Feuer, E.J.; Clegg, L.; Horner, M.J.; Howlader, N.; Eisner, M.P.; et al. (Eds.) SEER Cancer Statistics Review, 1975–2004; National Cancer Institute: Bethesda, MD, USA, 2007. Available online: https://seer.cancer.gov/csr/1975_2004/ (accessed on 23 February 2021).
- Puumala, S.E.; Ross, J.A.; Aplenc, R.; Spector, L.G. Epidemiology of childhood acute myeloid leukemia. Pediatr. Blood Cancer 2013, 60, 728–733. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Davies, S.M.; Xiang, Y.; Robison, L.L.; Ross, J.A. Trends in leukemia incidence and survival in the United States (1973–1998). Cancer 2003, 97, 2229–2235. [Google Scholar] [CrossRef]
- Fong, C.T.; Brodeur, G.M. Down’s syndrome and leukemia: Epidemiology, genetics, cytogenetics and mechanisms of leukemogenesis. Cancer Genet. Cytogenet. 1987, 28, 55–76. [Google Scholar] [CrossRef]
- Khan, I.; Malinge, S.; Crispino, J. Myeloid leukemia in Down syndrome. Crit. Rev. Oncog. 2011, 16, 25–36. [Google Scholar] [CrossRef]
- Lagunas-Rangel, F.A.; Chávez-Valencia, V.; Gómez-Guijosa, M.; Cortes-Penagos, C. Acute Myeloid Leukemia-Genetic Alterations and Their Clinical Prognosis. Int. J. Hematol. Oncol. Stem Cell Res. 2017, 11, 328–339. [Google Scholar]
- Heim, S.; Mitelman, F. Cytogenetic analysis in the diagnosis of acute leukemia. Cancer 1992, 70, 1701–1709. [Google Scholar] [CrossRef]
- Khwaja, A.; Bjorkholm, M.; Gale, R.E.; Levine, R.L.; Jordan, C.T.; Ehninger, G.; Bloomfield, C.D.; Estey, E.; Burnett, A.; Cornelissen, J.J.; et al. Acute myeloid leukaemia. Nat. Rev. Dis. Primers 2016, 2, 16010. [Google Scholar] [CrossRef]
- Moorman, A.V.; Roman, E.; Willett, E.V.; Dovey, G.J.; Cartwright, R.A.; Morgan, G.J. Karyotype and age in acute myeloid leukemia. Are they linked? Cancer Genet. Cytogenet. 2001, 126, 155–161. [Google Scholar] [CrossRef]
- Bloomfield, C.D.; Lawrence, D.; Byrd, J.C.; Carroll, A.; Pettenati, M.J.; Tantravahi, R.; Patil, S.R.; Davey, F.R.; Berg, D.T.; Schiffer, C.A.; et al. Frequency of prolonged remission duration after high-dose cytarabine intensification in acute myeloid leukemia varies by cytogenetic subtype. Cancer Res. 1998, 58, 4173–4179. [Google Scholar] [PubMed]
- Grimwade, D.; Walker, H.; Oliver, F.; Wheatley, K.; Harrison, C.; Harrison, G.; Rees, J.; Hann, I.; Stevens, R.; Burnett, A.; et al. The importance of diagnostic cytogenetics on outcome in AML: Analysis of 1612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood 1998, 92, 2322–2333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mauritzson, N.; Johansson, B.; Albin, M.; Billström, R.; Ahlgren, T.; Mikoczy, Z.; Nilsson, P.G.; Hagmar, L.; Mitelman, F. A single-center population-based consecutive series of 1500 cytogenetically investigated adult hematological malignancies: Karyotypic features in relation to morphology, age and gender. Eur. J. Haematol. 1999, 62, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Rossi, G.; Pelizzari, A.M.; Bellotti, D.; Tonelli, M.; Barlati, S. Cytogenetic analogy between myelodysplastic syndrome and acute myeloid leukemia of elderly patients. Leukemia 2000, 14, 636–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bacher, U.; Schnittger, S.; Haferlach, T. Molecular genetics in acute myeloid leukemia. Curr. Opin. Oncol. 2010, 22, 646–655. [Google Scholar] [CrossRef]
- Abe, R.; Raza, A.; Preisler, H.D.; Tebbi, C.K.; Sandberg, A.A. Chromosomes and causation of human cancer and leukemia. LIV. Near-tetraploidy in acute leukemia. Cancer Genet. Cytogenet. 1985, 14, 45–59. [Google Scholar] [CrossRef]
- Andersen, M.K.; Christiansen, D.H.; Jensen, B.A.; Ernst, P.; Hauge, G.; Pedersen-Bjergaard, J. Therapy-related acute lymphoblastic leukaemia with MLL rearrangements following DNA topoisomerase II inhibitors, an increasing problem: Report on two new cases and review of the literature since 1992. Br. J. Haematol. 2001, 114, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Larson, R.A.; Wang, Y.; Banerjee, M.; Wiemels, J.; Hartford, C.; Le Beau, M.M.; Smith, M.T. Prevalence of the inactivating 609C→T polymorphism in the NAD(P)H:quinone oxidoreductase (NQO1) gene in patients with primary and therapy-related myeloid leukemia. Blood 1999, 94, 803–807. [Google Scholar] [CrossRef]
- Smith, M.T.; Wang, Y.; Kane, E.; Rollinson, S.; Wiemels, J.L.; Roman, E.; Roddam, P.; Cartwright, R.; Morgan, G. Low NAD(P)H:quinone oxidoreductase 1 activity is associated with increased risk of acute leukemia in adults. Blood 2001, 97, 1422–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurney, J.G.; Severson, R.K.; Davis, S.; Robison, L.L. Incidence of cancer in children in the United States. Sex-, race-, and 1-year age-specific rates by histologic type. Cancer 1995, 75, 2186–2195. [Google Scholar] [CrossRef]
- Clarkson, B.D.; Boyse, E.A. Possible explanation of the high concoddance for acute leukaemia in monozygotic twins. Lancet 1971, 1, 699–701. [Google Scholar] [CrossRef]
- Greaves, M.F.; Maia, A.T.; Wiemels, J.L.; Ford, A.M. Leukemia in twins: Lessons in natural history. Blood 2003, 102, 2321–2333. [Google Scholar] [CrossRef] [PubMed]
- Heath, C.W.; Moloney, W.C. Familial leukemia; Five cases of acute leukemia in three generations. N. Engl. J. Med. 1965, 272, 882–887. [Google Scholar] [CrossRef]
- Draper, G.J.; Heaf, M.M.; Kinnier Wilson, L.M. Occurrence of childhood cancers among sibs and estimation of familial risks. J. Med. Genet. 1977, 14, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Pui, C.H.; Nichols, K.E.; Yang, J.J. Somatic and germline genomics in paediatric acute lymphoblastic leukaemia. Nat. Rev. Clin. Oncol. 2019, 16, 227–240. [Google Scholar] [CrossRef]
- Gu, Z.; Churchman, M.L.; Roberts, K.G.; Moore, I.; Zhou, X.; Nakitandwe, J.; Hagiwara, K.; Pelletier, S.; Gingras, S.; Berns, H.; et al. PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat. Genet. 2019, 51, 296–307. [Google Scholar] [CrossRef]
- Raboso-Gallego, J.; Casado-García, A.; Isidro-Hernández, M.; Vicente-Dueñas, C. Epigenetic Priming in Childhood Acute Lymphoblastic Leukemia. Front. Cell Dev. Biol. 2019, 7, 137. [Google Scholar] [CrossRef] [Green Version]
- Schmiegelow, K.; Vestergaard, T.; Nielsen, S.M.; Hjalgrim, H. Etiology of common childhood acute lymphoblastic leukemia: The adrenal hypothesis. Leukemia 2008, 22, 2137–2141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Predisposing Disorder | Gene | Inheritance | Type of Leukemia |
---|---|---|---|
CEBPA | CEBPA | AD | MDS/AML |
Monosomy 7 | 7p/q | AD | MDS/AML/ALL |
Familial platelet disorder/AML | RUNX1 | AD | MDS/AML/T-cell ALL |
MonoMAC Syndrome | GATA2 | AD | MDS/AML |
Familial AML with mutated DDX41 | DDX41 | AD | MDS/AML/CMML |
Thrombocytopenia 2 | ANKRD26 | AD | MDS/AML |
Thrombocytopenia 5 | ETV6 | AD | MDS/AM/CMML, B-cell ALL |
Familial MDS/AML with mutated GATA2 | GATA2 | AD | MDS/AML/CMML |
Li-Fraumeni syndrome | TP53 | AD | ALL |
Neurofibromatosis type 1 | NF1 | AD | JMML/MDS/AML |
Noonan syndrome | PTPN11 | AD | JMML/MDS/AML |
CBL syndrome | CBL | AD | JMML |
Familial aplastic anemia with mutated SRP72 | SRP72 | AD | MDS/AML |
Familial B- cell ALL with mutated PAX5 | PAX5 | AD | ALL |
Germline SH2B3 | SH2B3 | AR | ALL |
Telomere syndromes (dyskeratosis congenita) | TERC, TERT, CTC1, DKC1, NHP2, NOP10, RTEL1, TINF2, WRAP53, ACD, PARN | AD, AR | MDS/AML |
Diamond Blackfan anemia | RPS19, RPL5, RPL11 | Sporadic, AD, AR, | MDS/AML/ALL |
Shwachman–Diamond syndrome | SBDS | AR | MDS/AML/ALL |
Amegakaryocytic thrombocytopenia | c-MPL | AR | MDS/AML |
Thrombocytopenia with absent radii syndrome | RBM8A | AR, Sporadic | ALL/AML |
Severe congenital neutropenia | ELA2, HAX1, G6PC3, WASP | AD, AR, X-linked | MDS/AML |
Fanconi anemia | FANCA, FANCB, FANCC, BRCA2, FANCD2, FANCE, FANCF, FANCG, FANCI, BRIP1, FANCL, FANCM, PALB2, RAD51C, SLX4 | AR | ALL/AML |
Mismatch repair Cancer syndrome | PMS2, MSH6, MLH1, MSH2 | AR | ALL |
Ataxia-telangiectasia | ATM | AR | ALL |
Nijmegen breakage syndrome | NBS1 | AR | ALL |
Bloom Syndrome | BLM | AR | ALL |
Werner Syndrome | WRN (RECQL2) | AR | MDS/AML |
Rothmund–Thomson | RECQL4 | AR | AML |
Wiskott–Aldrich Syndrome | WASP | X-linked | ALL |
Burton’s agammaglobulinemia | BTK | X-linked | ALL |
Trisomy 21 (Down Syndrome) | 21q | Sporadic | ALL/AML |
Industries with Increased Rate of Leukemia |
Agriculture/Crop production and related ventures |
Forestry |
Fishing and Hunting |
Construction and related services |
Animal slaughtering/poultry processing |
Oil refining and petrochemicals |
Industries with Decreased Rate of Acute Leukemia |
Professional, legal and technical services |
Computer systems and related services |
Business support, management and administrative services |
Public administration |
Occupations Associated with Increased Risk of Acute Leukemia |
Farmers, foresters, agriculture workers and related occupations |
Fishing and related works |
Construction, painting, maintenance and related occupations |
Carpet, tile and floor installers |
Building and ground cleaning, janitorial and maintenance workers |
Healthcare workers |
Workers exposed to solvents, chemicals and benzene |
Electricians/electrical utility workers |
Workers exposed to high doses of radiation/nuclear power industry |
Automobile mechanics/drivers/rail conductors and pilots |
Furniture manufacturers and repair personnel |
Laundry workers, dry cleaners |
Textile workers and manufacturers |
Hairdressers |
Teachers |
Occupations Associated with Decreased Risk of Acute Leukemia |
Attorneys and legal workers |
Movers |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tebbi, C.K. Etiology of Acute Leukemia: A Review. Cancers 2021, 13, 2256. https://doi.org/10.3390/cancers13092256
Tebbi CK. Etiology of Acute Leukemia: A Review. Cancers. 2021; 13(9):2256. https://doi.org/10.3390/cancers13092256
Chicago/Turabian StyleTebbi, Cameron K. 2021. "Etiology of Acute Leukemia: A Review" Cancers 13, no. 9: 2256. https://doi.org/10.3390/cancers13092256
APA StyleTebbi, C. K. (2021). Etiology of Acute Leukemia: A Review. Cancers, 13(9), 2256. https://doi.org/10.3390/cancers13092256