Advances and Perspectives in the Treatment of B-Cell Malignancies
Author Contributions
Funding
Conflicts of Interest
References
- Montironi, C.; Muñoz-Pinedo, C.; Eldering, E. Hematopoietic versus solid cancers and T cell dysfunction: Looking for similarities and distinctions. Cancers 2021, 13, 284. [Google Scholar] [CrossRef] [PubMed]
- Van Bruggen, J.A.C.; Martens, A.W.J.; Tonino, S.H.; Kater, A.P. Overcoming the hurdles of autologous t-cell-based therapies in b-cell non-hodgkin lymphoma. Cancers 2020, 12, 3837. [Google Scholar] [CrossRef] [PubMed]
- Van der Horst, H.J.; Nijhof, I.S.; Mutis, T.; Chamuleau, M.E.D. Fc-engineered antibodies with enhanced fc-effector function for the treatment of b-cell malignancies. Cancers 2020, 12, 3041. [Google Scholar] [CrossRef] [PubMed]
- Armengol, M.; Santos, J.C.; Fernández-serrano, M.; Profitós-pelejà, N.; Ribeiro, M.L.; Roué, G. Immune-checkpoint inhibitors in B-cell lymphoma. Cancers 2021, 13, 214. [Google Scholar] [CrossRef] [PubMed]
- Vera de Jonge, A.; Mutis, T.; Roemer, M.G.M.; Scheijen, B.; Chamuleau, M.E.D. Impact of myc on anti-tumor immune responses in aggressive b cell non-hodgkin lymphomas: Consequences for cancer immunotherapy. Cancers 2020, 12, 3052. [Google Scholar] [CrossRef] [PubMed]
- Dobaño-lópez, C.; Araujo-ayala, F.; Serrat, N.; Valero, J.G.; Pérez-galán, P. Follicular lymphoma microenvironment: An intricate network ready for therapeutic intervention. Cancers 2021, 13, 641. [Google Scholar] [CrossRef] [PubMed]
- Zijtregtop, E.A.M.; van der Strate, I.; Beishuizen, A.; Zwaan, C.M.; Scheijde-Vermeulen, M.A.; Brandsma, A.M.; Meyer-Wentrup, F. Biology and clinical applicability of plasma thymus and activation-regulated chemokine (TARC) in classical hodgkin lymphoma. Cancers 2021, 13, 884. [Google Scholar] [CrossRef] [PubMed]
- Bloedjes, T.A.; de Wilde, G.; Guikema, J.E.J. Metabolic effects of recurrent genetic aberrations in multiple myeloma. Cancers 2021, 13, 396. [Google Scholar] [CrossRef] [PubMed]
- Bordini, J.; Morisi, F.; Cerruti, F.; Cascio, P.; Camaschella, C.; Ghia, P.; Campanella, A. Iron causes lipid oxidation and inhibits proteasome function in multiple myeloma cells: A proof of concept for novel combination therapies. Cancers 2020, 12, 970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wirth, M.; Schick, M.; Keller, U.; Krönke, J. Ubiquitination and ubiquitin-like modifications in multiple myeloma: Biology and therapy. Cancers 2020, 12, 3764. [Google Scholar] [CrossRef] [PubMed]
- Lin, V.S.; Xu, Z.F.; Huang, D.C.S.; Thijssen, R. Bh3 mimetics for the treatment of b-cell malignancies—insights and lessons from the clinic. Cancers 2020, 12, 3353. [Google Scholar] [CrossRef] [PubMed]
- George, B.; Chowdhury, S.M.; Hart, A.; Sircar, A.; Singh, S.K.; Nath, U.K.; Mamgain, M.; Singhal, N.K.; Sehgal, L.; Jain, N. Ibrutinib resistance mechanisms and treatment strategies for B-cell lymphomas. Cancers 2020, 12, 1328. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, M.R.; Stevens, W.B.C.; van den Brand, M.; van Krieken, J.H.; Scheijen, B. Molecular genetics of relapsed diffuse large b-cell lymphoma: Insight into mechanisms of therapy resistance. Cancers 2020, 12, 3553. [Google Scholar] [CrossRef] [PubMed]
- Priebe, V.; Sartori, G.; Napoli, S.; Chung, E.Y.L.; Cascione, L.; Kwee, I.; Arribas, A.J.; Mensah, A.A.; Rinaldi, A.; Ponzoni, M.; et al. Role of ets1 in the transcriptional network of diffuse large b cell lymphoma of the activated b cell-like type. Cancers 2020, 12, 1912. [Google Scholar] [CrossRef] [PubMed]
- Niu, F.; Kazimierska, M.; Nolte, I.M.; Terpstra, M.M.; de Jong, D.; Koerts, J.; van der Sluis, T.; Rutgers, B.; O’connell, R.M.; Kok, K.; et al. The mir-26b-5p/kpna2 axis is an important regulator of burkitt lymphoma cell growth. Cancers 2020, 12, 1464. [Google Scholar] [CrossRef] [PubMed]
- Cazaubiel, T.; Mulas, O.; Montes, L.; Schavgoulidze, A.; Avet-Loiseau, H.; Corre, J.; Perrot, A. Risk and response-adapted treatment in multiple myeloma. Cancers 2020, 12, 3497. [Google Scholar] [CrossRef] [PubMed]
- Dumont, M.; Battistella, M.; Ram-Wolff, C.; Bagot, M.; de Masson, A. Diagnosis and treatment of primary cutaneous b-cell lymphomas: State of the art and perspectives. Cancers 2020, 12, 1497. [Google Scholar] [CrossRef] [PubMed]
- Sanguedolce, F.; Zanelli, M.; Zizzo, M.; Bisagni, A.; Soriano, A.; Cocco, G.; Palicelli, A.; Santandrea, G.; Caprera, C.; Corsi, M.; et al. Primary pulmonary B-cell lymphoma: A review and update. Cancers 2021, 13, 415. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuenca, M.; Peperzak, V. Advances and Perspectives in the Treatment of B-Cell Malignancies. Cancers 2021, 13, 2266. https://doi.org/10.3390/cancers13092266
Cuenca M, Peperzak V. Advances and Perspectives in the Treatment of B-Cell Malignancies. Cancers. 2021; 13(9):2266. https://doi.org/10.3390/cancers13092266
Chicago/Turabian StyleCuenca, Marta, and Victor Peperzak. 2021. "Advances and Perspectives in the Treatment of B-Cell Malignancies" Cancers 13, no. 9: 2266. https://doi.org/10.3390/cancers13092266
APA StyleCuenca, M., & Peperzak, V. (2021). Advances and Perspectives in the Treatment of B-Cell Malignancies. Cancers, 13(9), 2266. https://doi.org/10.3390/cancers13092266