Immune-Based Therapeutic Strategies for Acute Myeloid Leukemia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Modalities of Immune-Based Therapeutic Approaches
3. Clinical Evaluation of Different Approaches
3.1. Antibody Drug Conjugates
3.1.1. Gemtuzumab Ozogamicin (GO; Anti-CD33 Monoclonal Antibody)
3.1.2. IMGN779 (ADC)
3.1.3. Camidanlumab Tesirine (ADC, Development Stopped for AML)
3.1.4. Cusatuzumab (Anti-CD70 Antibody)
3.1.5. IMGN632 (ADC)
3.1.6. Tagraxofusp (ADC)
3.1.7. Talacotuzumab (ADC)
3.2. Bispecific Antibodies (CD3 x AML Antigen)
3.2.1. AMG330 (BiTE)
3.2.2. AMG673 (BiTE)
3.2.3. AMV564 (BiTE)
3.2.4. JNJ-67371244 (BiTE)
3.2.5. Flotetuzumab (DART Antibody)
3.2.6. XmAb 14045 (BiTE)
3.2.7. APVO436 (BiTE)
3.2.8. CLEC12A/CLL-1: MCLA-117 (BiTE)
3.3. Immune Checkpoint Inhibitors
3.3.1. PD-L1, PD-1 and CTLA-4 Inhibitors
- Avelumab (PD-L1 Antibody)
- Nivolumab (Anti-PD1 Antibody)
- Pembrolizumab (Anti-PD1 Antibody)
- Ipilimumab (CTLA-4 inhibitor)
3.3.2. T-Cell Immunoglobin and Mucin Domain 3 (TIM-3) Inhibitor
- Sabatolimab
3.3.3. Macrophage-Based Inhibitor
- Magrolimab
3.4. CAR-T Cell Approaches
- CD33-CLL-1-CAR-T
- CD33-CAR-T
- CAR-T-38
- UniCAR
- CAR natural killer cells
3.5. Vaccination Approaches
4. Conclusions and Future Challenges
Author Contributions
Funding
Conflicts of Interest
References
- Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Roberts, N.D.; Potter, N.E.; Heuser, M.; Thol, F.; Bolli, N.; et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N. Engl. J. Med. 2016, 374, 2209–2221. [Google Scholar] [CrossRef]
- Swerdlow, S.H.; Campo, E.; Harris, N.L.; Jaffe, E.S.; Pileri, S.A.; Stein, H.; Thiele, J. WHO Classification of Tumours of Haema-Topoietic and Lymphoid Tissues, 4th ed.; WHO Press: Geneva, Switzerland, 2017. [Google Scholar]
- Schlenk, R.F.; Frech, P.; Weber, D.; Brossart, P.; Horst, H.-A.; Kraemer, D.; Held, G.; Ringhoffer, M.; Burchardt, A.; Kobbe, G.; et al. Impact of pretreatment characteristics and salvage strategy on outcome in patients with relapsed acute myeloid leukemia. Leukemia 2017, 31, 1217–1220. [Google Scholar] [CrossRef] [PubMed]
- Dombret, H.; Gardin, C. An update of current treatments for adult acute myeloid leukemia. Blood 2016, 127, 53–61. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, M.R.; Tallman, M.S.; Abboud, C.N.; Altman, J.K.; Appelbaum, F.R.; Arber, D.A.; Bhatt, V.; Bixby, D.; Blum, W.; Coutre, S.E.; et al. Acute Myeloid Leukemia, Version 3.2017, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2017, 15, 926–957. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Lar-son, R.A.; et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef] [Green Version]
- Roboz, G.J. Current treatment of acute myeloid leukemia. Curr. Opin. Oncol. 2012, 24, 711–719. [Google Scholar] [CrossRef]
- Kayser, S.; Levis, M.J. Updates on targeted therapies for acute myeloid leukaemia. Br. J. Haematol. 2021. [Google Scholar] [CrossRef]
- Daver, N.; Alotaibi, A.S.; Bücklein, V.; Subklewe, M. T-cell-based immunotherapy of acute myeloid leukemia: Current con-cepts and future developments. Leukemia 2021, 35, 1843–1863. [Google Scholar] [CrossRef]
- Chao, M.P.; Alizadeh, A.A.; Tang, C.; Jan, M.; Weissman-Tsukamoto, R.; Zhao, F.; Park, C.Y.; Weissman, I.L.; Majeti, R. Therapeutic Antibody Targeting of CD47 Eliminates Human Acute Lymphoblastic Leukemia. Cancer Res. 2010, 71, 1374–1384. [Google Scholar] [CrossRef] [Green Version]
- Chao, M.P.; Alizadeh, A.A.; Tang, C.; Myklebust, J.H.; Varghese, B.; Gill, S.; Jan, M.; Cha, A.C.; Chan, C.K.; Tan, B.T.; et al. Anti-CD47 Antibody Synergizes with Rituximab to Promote Phagocytosis and Eradicate Non-Hodgkin Lymphoma. Cell 2010, 142, 699–713. [Google Scholar] [CrossRef] [Green Version]
- Majeti, R.; Chao, M.P.; Alizadeh, A.A.; Pang, W.W.; Jaiswal, S.; Gibbs, K.D.; Van Rooijen, N.; Weissman, I.L. CD47 Is an Adverse Prognostic Factor and Therapeutic Antibody Target on Human Acute Myeloid Leukemia Stem Cells. Cell 2009, 138, 286–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, W.W.; Pluvinage, J.V.; Price, E.A.; Sridhar, K.; Arber, D.A.; Greenberg, P.L.; Schrier, S.L.; Park, C.Y.; Weissman, I.L. Hematopoietic stem cell and progenitor cell mechanisms in myelodysplastic syndromes. Proc. Natl. Acad. Sci. USA 2013, 110, 3011–3016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tseng, D.; Volkmer, J.-P.; Willingham, S.B.; Contreras-Trujillo, H.; Fathman, J.W.; Fernhoff, N.B.; Seita, J.; Inlay, M.A.; Weiskopf, K.; Miyanishi, M.; et al. Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proc. Natl. Acad. Sci. USA 2013, 110, 11103–11108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, C.; Zeidan, A.M.; Bewersdorf, J.P. BiTEs, DARTS, BiKEs and TriKEs-Are Antibody Based Therapies Changing the Future Treatment of AML? Life 2021, 11, 465. [Google Scholar] [CrossRef]
- Oluwole, O.O. Clinical experience of CAR T cell therapy in lymphomas. Best Pract. Res. Clin. Haematol. 2021, 34, 101281. [Google Scholar] [CrossRef]
- Summary of Product Characteristics for Gemtuzumab Ozogamicin. Available online: https://www.ema.europa.eu/en/documents/product-information/mylotarg-epar-product-information_en.pdf (accessed on 26 May 2021).
- Highlights of Prescribing Information for Gemtuzumab Ozogamicin. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761060lbl.pdf (accessed on 27 May 2021).
- Hills, R.K.; Castaigne, S.; Appelbaum, F.R.; Delaunay, J.; Petersdorf, S.; Othus, M.; Chilton, L.; Burnett, A.K.; Dombret, H.; Moorman, A.V.; et al. Addition of gemtuzumab ozo-gamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: A meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol. 2014, 15, 986–996. [Google Scholar] [CrossRef] [Green Version]
- Thol, F.; Schlenk, R.F. Gemtuzumab ozogamicin in acute myeloid leukemia revisited. Expert Opin. Biol. Ther. 2014, 14, 1185–1195. [Google Scholar] [CrossRef]
- Godwin, C.D.; Gale, R.P.; Walter, R.B. Gemtuzumab ozogamicin in acute myeloid leukemia. Leukemia 2017, 31, 1855–1868. [Google Scholar] [CrossRef]
- Bross, P.F.; Beitz, J.; Chen, G.; Chen, X.H.; Duffy, E.; Kieffer, L.; Roy, S.; Sridhara, R.; Rahman, A.; Williams, G.; et al. Ap-proval summary: Gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin. Cancer Res. 2001, 7, 1490–1496. [Google Scholar]
- Larson, R.; for the Mylotarg Study Group; Boogaerts, M.; Estey, E.; Karanes, C.; Stadtmauer, A.E.; Sievers, E.; Mineur, P.; Bennett, J.M.; Berger, M.S.; et al. Antibody-targeted chemotherapy of older patients with acute myeloid leukemia in first re-lapse using Mylotarg (Gemtuzumab ozogamicin). Leukemia 2002, 16, 1627–1636. [Google Scholar] [CrossRef] [Green Version]
- Feldman, E.J.; Brandwein, J.; Stone, R.; Kalaycio, M.; Moore, J.; O’Connor, J.; Wedel, N.; Roboz, G.J.; Miller, C.; Chopra, R.; et al. Phase III Randomized Multicenter Study of a Humanized Anti-CD33 Monoclonal Antibody, Lintuzumab, in Combination with Chemotherapy, Versus Chemotherapy Alone in Patients With Refractory or First-Relapsed Acute Myeloid Leukemia. J. Clin. Oncol. 2005, 23, 4110–4116. [Google Scholar] [CrossRef]
- Kovtun, Y.; Noordhuis, P.; Whiteman, K.R.; Watkins, K.; Jones, G.E.; Harvey, L.; Pinkas, J.; Adams, S.; Sloss, C.M.; Lai, K.C.; et al. IMGN779, a Novel CD33-Targeting Antibody-Drug Conjugate with DNA-Alkylating Activity, Exhibits Potent Anti-tumor Activity in Models of AML. Mol. Cancer Ther. 2018, 17, 1271–1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldberg, A.D.; Atallah, E.; Rizzieri, D.; Walter, R.B.; Chung, K.Y.; Spira, A.; Stock, W.; Cruz, H.G.; Boni, J.; Chao, G.; et al. Camidanlumab tesirine, an anti-body-drug conjugate, in relapsed/refractory CD25-positive acute myeloid leukemia or acute lymphoblastic leu-kemia: A phase I study. Leuk. Res. 2020, 95, 106385. [Google Scholar] [CrossRef] [PubMed]
- Riether, C.; Pabst, T.; Höpner, S.; Bacher, U.; Hinterbrandner, M.; Banz, Y.; Müller, R.; Manz, M.G.; Gharib, W.H.; Francisco, D.; et al. Targeting CD70 with cusatuzumab eliminates acute myeloid leukemia stem cells in patients treated with hypometh-ylating agents. Nat. Med. 2020, 26, 1459–1467. [Google Scholar] [CrossRef] [PubMed]
- Daver, N.G.; Montesinos, P.; DeAngelo, D.J.; Wang, E.S.; Papadantonakis, N.; Deconinck, E.; Erba, H.P.; Pemmaraju, N.; Lane, A.A.; Rizzieri, D.A.; et al. Clinical Profile of IMGN632, a Novel CD123-Targeting Antibody-Drug Conjugate (ADC), in Patients with Relapsed/Refractory (R/R) Acute Myeloid Leukemia (AML) or Blastic Plasmacytoid Dendritic Cell Neoplasm (BPDCN). Blood 2019, 134, 734. [Google Scholar] [CrossRef]
- Kantarjian, H.; Kadia, T.; DiNardo, C.; Daver, N.; Borthakur, G.; Jabbour, E.; Garcia-Manero, G.; Konopleva, M.; Ravandi, F. Acute myeloid leukemia: Current progress and future directions. Blood Cancer J. 2021, 11, 41. [Google Scholar] [CrossRef] [PubMed]
- ELZONRIS; Stemline Therapeutics, Inc.: New York, NY, USA, 2018.
- Pemmaraju, N.; Lane, A.A.; Sweet, K.L.; Stein, A.S.; Vasu, S.; Blum, W.; Rizzieri, D.A.; Wang, E.S.; Duvic, M.; Sloan, J.M.; et al. Tagraxofusp in Blastic Plasmacytoid Dendritic-Cell Neoplasm. N. Engl. J. Med. 2019, 380, 1628–1637. [Google Scholar] [CrossRef]
- Montesinos, P.; Roboz, G.J.; Bulabois, C.E.; Subklewe, M.; Platzbecker, U.; Ofran, Y.; Papayannidis, C.; Wierzbowska, A.; Shin, H.J.; Doronin, V.; et al. Safety and efficacy of talacot-uzumab plus decitabine or decitabine alone in patients with acute myeloid leukemia not eligible for chemotherapy: Results from a multicenter, randomized, phase 2/3 study. Leukemia 2021, 35, 62–74. [Google Scholar] [CrossRef]
- Krupka, C.; Kufer, P.; Kischel, R.; Zugmaier, G.; Bögeholz, J.; Köhnke, T.; Lichtenegger, F.S.; Schneider, S.; Metzeler, K.; Fiegl, M.; et al. CD33 target validation and sustained depletion of AML blasts in long-term cultures by the bispecific T-cell–engaging antibody AMG 330. Blood 2014, 123, 356–365. [Google Scholar] [CrossRef]
- Friedrich, M.; Henn, A.; Raum, T.; Bajtus, M.; Matthes, K.; Hendrich, L.; Wahl, J.; Hoffmann, P.; Kischel, R.; Rattel, B.; et al. Preclinical characterization of AMG 330, a CD3/CD33-bispecific T-cell-engaging antibody with potential for treatment of acute myelogenous leukemia. Mol. Cancer Ther. 2014, 13, 1549–1557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laszlo, G.S.; Gudgeon, C.J.; Harrington, K.H.; Dell’Aringa, J.; Newhall, K.J.; Means, G.D.; Sinclair, A.M.; Kischel, R.; Frankel, S.R.; Walter, R.B. Cellular determinants for preclinical activity of a novel CD33/CD3 bispecific T-cell engager (BiTE) antibody, AMG 330, against human AML. Blood 2014, 123, 554–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravandi, F.; Walter, R.B.; Subklewe, M.; Buecklein, V.; Jongen-Lavrencic, M.; Paschka, P.; Ossenkoppele, G.J.; Kantarjian, H.M.; Hindoyan, A.; Agarwal, S.K.; et al. Updated results from phase I dose-escalation study of AMG 330, a bispecific T-cell engager molecule, in patients with relapsed/refractory acute myeloid leukemia (R/R AML). J. Clin. Oncol. 2020, 38, 7508. [Google Scholar] [CrossRef]
- Subklewe, M.; Stein, A.; Walter, R.B.; Bhatia, R.; Wei, A.; Ritchie, D.; Dai, T.; Hindoyan, A.; Anderson, A.; Khaldoyanidiet, S.; et al. Updated Results from a Phase 1 First-in-Human Dose Escalation Study of AMG 673, a Novel aAnti-CD33/CD3 Bite® (Bispecific t-Cell Engager) in Patients with Relapsed/Refractory Acute Myeloid Leukemia; European Hematology Association: The Hague, The Netherlands, 2020. [Google Scholar]
- Westervelt, P.; Cortes, J.E.; Altman, J.K.; Long, M.; Oehler, V.G.; Gojo, I.; Roboz, G.J.; Guenot, J.; Chun, P. Phase 1 First-in-Human Trial of AMV564, a Bivalent Bispecific (2:2) CD33/CD3 T-Cell Engager, in Patients with Relapsed/Refractory Acute Myeloid Leukemia (AML). Blood 2019, 137, 834. [Google Scholar] [CrossRef]
- Vergez, F.; Green, A.S.; Tamburini, J.; Sarry, J.-E.; Gaillard, B.; Cornillet-Lefebvre, P.; Pannetier, M.; Neyret, A.; Chapuis, N.; Ifrah, N.; et al. High levels of CD34+CD38low/−CD123+ blasts are predictive of an adverse outcome in acute myeloid leuke-mia: A Groupe Ouest-Est des Leucémies Aiguës et Maladies du Sang (GOELAMS) study. Haematologica 2011, 96, 1792–1798. [Google Scholar] [CrossRef]
- Uy, G.L.; Aldoss, I.; Foster, M.C.; Sayre, P.H.; Wieduwilt, M.J.; Advani, A.S.; Godwin, J.E.; Arellano, M.L.; Sweet, K.L.; Emadi, A.; et al. Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. Blood 2021, 137, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Ravandi, F.; Bashey, A.; Stock, W.; Foran, J.M.; Mawad, R.; Egan, D.; Blum, W.; Yang, A.; Pastore, A.; Johnson, C.; et al. Complete Responses in Relapsed/Refractory Acute Myeloid Leukemia (AML) Patients on a Weekly Dosing Schedule of Vi-becotamab (XmAb14045), a CD123 x CD3 T Cell-Engaging Bispecific Antibody; Initial Results of a Phase 1 Study. Blood 2020, 136, 4–5. [Google Scholar] [CrossRef]
- Uckun, F.M.; Lin, T.L.; Mims, A.S.; Patel, P.; Lee, C.; Shahidzadeh, A.; Shami, P.J.; Cull, E.; Cogle, C.R.; Watts, J. A Clinical Phase 1B Study of the CD3xCD123 Bispecific Antibody APVO436 in Patients with Relapsed/Refractory Acute Myeloid Leu-kemia or Myelodysplastic Syndrome. Cancers 2021, 13, 4113. [Google Scholar] [CrossRef]
- Mascarenhas, J.; Cortes, J.; Huls, G.; Venditi, A.; Breems, D.; De Botton, S.; Deangelo, D.; van de Loosdrecht, A.; Jongen-Lavrencic, M.; Borthaku, G.; et al. Update from the Ongoing Phase I Multinational Study of MCLA-117, a Bispecific CLEC12a x CD3 T-Cell Engager, in Patients (pts) with Acute Myelogenous Leukemia (AML); European Hematology Association: The Hague, The Netherlands, 2020. [Google Scholar]
- Berger, R.; Rotem-Yehudar, R.; Slama, G.; Landes, S.; Kneller, A.; Leiba, M.; Nagler, A.; Koren-Michowitz, M.; Shimoni, A. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with ad-vanced hematologic malig-nancies. Clin. Cancer Res. 2008, 14, 3044–3051. [Google Scholar] [CrossRef] [Green Version]
- Héninger, E.; Krueger, T.E.G.; Lang, J.M.; Heninger, E. Augmenting Antitumor Immune Responses with Epigenetic Modify-ing Agents. Front. Immunol. 2015, 6, 29. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Bueso-Ramos, C.; Dinardo, C.; Estecio, M.R.; Davanlou, M.; Geng, Q.-R.; Fang, Z.; Nguyen, M.; Pierce, S.; Wei, Y.; et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypo-methylating agents. Leukemia 2014, 28, 1280–1288. [Google Scholar] [CrossRef]
- Daver, N.; Boddu, P.; Garcia-Manero, G.; Yadav, S.S.; Sharma, P.; Allison, J.; Kantarjian, H. Hypomethylating agents in combi-nation with immune checkpoint inhibitors in acute myeloid leukemia and myelodysplastic syndromes. Leukemia 2018, 32, 1094–1105. [Google Scholar] [CrossRef] [PubMed]
- Saxena, K.; Herbrich, S.M.; Pemmaraju, N.; Kadia, T.M.; DiNardo, C.D.; Borthakur, G.; Pierce, S.A.; Jabbour, E.; Wang, S.A.; Bueso-Ramos, C.; et al. A phase 1b/2 study of azacitidine with PD-L1 antibody avelumab in relapsed/refractory acute myeloid leukemia. Cancer 2021, 127, 3761–3771. [Google Scholar]
- Daver, N.; Garcia-Manero, G.; Basu, S.; Boddu, P.C.; Alfayez, M.; Cortes, J.E.; Konopleva, M.; Ravandi-Kashani, F.; Jabbour, E.; Kadia, T.M.; et al. Efficacy, Safety, and Biomarkers of Response to Azacitidine and Nivolumab in Relapsed/Refractory Acute Myeloid Leukemia: A Nonrandomized, Open-Label, Phase II Study. Cancer Discov. 2018, 9, 370–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daver, N.G.; Garcia-Manero, G.; Konopleva, M.Y.; Alfayez, M.; Pemmaraju, N.; Kadia, T.M.; Dinardo, C.D.; Cortes, J.E.; Ravandi, F.; Abbas, H.; et al. Azacitidine (AZA) with Nivolumab (Nivo), and AZA with Nivo + Ipilimumab (Ipi) in Re-lapsed/Refractory Acute Myeloid Leukemia: A Non-Randomized, Prospective, Phase 2 Study. Blood 2019, 134, 830. [Google Scholar] [CrossRef]
- Lindblad, K.E.; Thompson, J.; Gui, G.; Valdez, J.; Worthy, T.; Tekleab, H.; Hourigan, C.S.; Hughes, T.; Goswami, M.; Oetjen, K.; et al. Pembrolizumab and Decitabine for Re-fractory or Relapsed Acute Myeloid Leukemia. Blood 2018, 132, 1437. [Google Scholar] [CrossRef]
- Davids, M.S.; Kim, H.T.; Bachireddy, P.; Costello, C.; Liguori, R.; Savell, A.; Lukez, A.P.; Avigan, D.; Chen, Y.B.; McSweeney, P.; et al. Ipilimumab for Patients with Relapse after Allogeneic Transplantation. N. Engl. J. Med. 2016, 375, 143–153. [Google Scholar]
- Brunner, A.M.; Esteve, J.; Porkka, K.; Knapper, S.; Vey, N.; Scholl, S.; Garcia-Manero, G.; Wermke, M.; Janssen, J.; Traer, E.; et al. Efficacy and Safety of Sabatolimab (MBG453) in Combination with Hypomethylating Agents (HMAs) in Patients with Acute Myeloid Leukemia (AML) and High-Risk Myelodysplastic Syndrome (HR-MDS): Updated Results from a Phase 1b Study. Blood 2020, 136, 657. [Google Scholar] [CrossRef]
- Daver, N.; Al Malki, M.; Asch, A.; Lee, D.; Kambhampati, S.; Donnellan, W.; Marcucci, G.; Vyas, P.; Lin, M.; Chao, M.; et al. The first-in-class ANTI-CD47 antibody magrolimab combined with azacitidine is well-tolerated and effective in AML pa-tients: Phase 1B results. Blood 2019, 134, 569. [Google Scholar]
- Garcia-Manero, G.; Daver, N.G.; Xu, J.; Chao, M.; Chung, T.; Tan, A.; Wang, V.; Wei, A.; Vyas, P.; Sallman, D.A. Magro-limab + azacitidine versus azacitidine + placebo in untreated higher risk (HR) myelodysplastic syndrome (MDS): The phase 3, randomized, ENHANCE study. J. Clin. Oncol. 2021, 39, TPS7055. [Google Scholar] [CrossRef]
- Fiorenza, S.; Turtle, C.J. CAR T Cell Therapy for Acute Myeloid Leukemia: Preclinical Rationale, Current Clinical Progress, and Barriers to Success. BioDrugs 2021, 35, 281–302. [Google Scholar] [CrossRef]
- Liu, L.; Cao, Y.; Pinz, K.; Ma, Y.; Wada, M.; Chen, K.; Ma, G.; Shen, J.; Tse, C.O.; Su, Y.; et al. First-in-human CLL1-CD33 compound car (CCAR) T cell therapy in relapsed and refractory acute myeloid leukemia. Blood 2018, 132, 901. [Google Scholar] [CrossRef]
- Qin, H.; Yang, L.; Chukinas, A.J.; Shah, N.N.; Tarun, S.; Pouzolles, M.; Chien, C.D.; Niswander, L.M.; Welch, A.R.; Taylor, A.N.; et al. Systematic preclinical evaluation of CD33-directed chimeric antigen receptor T cell immunotherapy for acute my-eloid leukemia defines optimized construct design. J. Immunother. Cancer 2021, 9, e003149. [Google Scholar] [CrossRef]
- Cui, Q.; Qian, C.; Xu, N.; Kang, L.; Dai, H.; Cui, W.; Song, B.; Yin, J.; Li, Z.; Zhu, X.; et al. CD38-directed CAR-T cell therapy: A novel immunotherapy strategy for relapsed acute myeloid leukemia after allogeneic hematopoietic stem cell transplanta-tion. J. Hematol. Oncol. 2021, 14, 82. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.E.; Loff, S.; Dietrich, J.; Spehr, J.; Jurado Jiménez, G.; von Bonin, M.; Ehninger, G.; Cartellieri, M.; Ehninger, A. Evaluation of switch-mediated cost-imulation in trans on universal CAR-T cells (UniCAR) targeting CD123-positive AML. Oncoimmunology 2021, 10, 1945804. [Google Scholar] [CrossRef]
- Loff, S.; Dietrich, J.; Meyer, J.-E.; Riewaldt, J.; Spehr, J.; von Bonin, M.; Gründer, C.; Swayampakula, M.; Franke, K.; Feldmann, A.; et al. Rapidly Switchable Universal CAR-T Cells for Treatment of CD123-Positive Leukemia. Mol. Ther. Oncolytics 2020, 17, 408–420. [Google Scholar] [CrossRef] [PubMed]
- Wermke, M.; Kraus, S.; Ehninger, A.; Bargou, R.C.; Goebeler, M.-E.; Middeke, J.M.; Cartellieri, M.; Kreissig, C.; Von Bonin, M.; Pehl, M.; et al. Proof of concept for a rapidly switchable universal CAR-T platform with UniCAR-T-CD123 in re-lapsed/refractory AML. Blood 2021, 137, 3145–3148. [Google Scholar] [CrossRef]
- Bachier, C.; Borthakur, G.; Hosing, C.; Blum, W.; Rotta, M.; Ojeras, P.; Nikiforow, S.; Barnett, B.; Rajangam, K.; Majhail, N.S. A phase 1 study of NKX101, an allogeneic car natural killer (NK) cell therapy, in subjects with relapsed/refractory (r/r) acute myeloid leukemia (AML) or higher risk myelodysplastic syndrome (MDS). Blood 2020, 136, 42–43. [Google Scholar] [CrossRef]
- Van de Loosdrecht, A.A.; van Wetering, S.; Santegoets, S.J.; Singh, S.K.; Eeltink, C.M.; den Hartog, Y.; de Gruijl, T.D.; Koppes, M.; Kaspers, J.; Ossenkoppele, G.J.; et al. A novel allogeneic off-the-shelf dendritic cell vaccine for post-remission treatment of elderly patients with acute myeloid leukemia. Cancer Immunol. Immunother. 2018, 67, 1505–1518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Target | Drug Name | Drug Type | Therapy | Indication | Developmental Stage | Available Results | NCT Number/ Reference |
---|---|---|---|---|---|---|---|
CD33 | Gemtuzumab ozogamicin | ADC | Intensive chemotherapy | de novo AML | EMA and FDA approved therapy | Prolonged EFS and OS | [17,18,19] |
AMG330 | BiTE | Monotherapy | r/r AML | Phase I | CR/CRi/MLFS | 02520427 | |
AMG673 | BiTE | Monotherapy | r/r AML | Phase I | CRi | 03224819 | |
AMV564 | BiTE | Monotherapy | r/r AML | Phase I | CR/CRi/PR | 03144245 | |
IMGN779 | ADC | Monotherapy | r/r AML | Phase I | Blast reduction | 02674763 | |
JNJ-67371244 | BiTE | Monotherapy | r/r AML | Phase I | N/A | 03915379 | |
CAR T-cells | CAR T-cells | Monotherapy | r/r AML | Phase I/II | N/A | 03971799 | |
CD25 | Camidanlumab tesirine | ADC | Monotherapy | r/r AML | Phase I, development stopped for AML | CRi | 02588092 |
CD47 | Magrolimab | mAb | Azacitidine | MDS/AML | Phase I; randomized, double-blind phase III trial for untreated high-risk MDS patients (ENHANCE, NCT04313881) | Improved CR/CRi | 03248479 04313881 |
CD70 | Cusatuzumab | mAb | Azacitidine/ Venetoclax; Azacitidine; Monotherapy | de novo AML, r/r AML | Phase I | Improved CR/CRi | 04150887 |
CD123 | Flotetuzumab | DART | Monotherapy | r/r AML | Phase I/II | CR/CRi | 02152956 |
IMGN632 | ADC | Azacitidine/ Venetoclax | r/r AML | Phase I/II | CR/CRi | 04086264 | |
Vibecotamab | BiTE | Monotherapy | r/r AML | Phase I | CR/CRi/MLFS | 02730312 | |
APVO436 | BiTE | Monotherapy | r/r AML | Phase I | PR | 03647800 | |
Tagraxofusp | ADC | Azacitidine/ Venetoclax | r/r AML, BPDCN | Phase I; tagraxofusp as monotherapy: approved for BPDCN | N/A | 03113643 | |
Talacotuzumab | mAb | Decitabine | de novo AML | Phase II/III, halted prematurely in its clinical development | No improvement | 02472145 | |
UniCAR | CAR T-cells | Monotherapy | r/r AML, MDS, BPDCN | Phase I | N/A | 04230265 | |
CLEC12A/ CLL-1 | MCLA-117 | BiTE | Monotherapy | r/r AML | Phase I | MLFS, blast reduction | 03038230 |
PD-1/ CTLA-4 | Nivolumab | mAb | Azacitidine, Ipilimumab | de novo AML, r/r AML | Phase II | CR/CRi | 02397720 |
Ipilimumab | mAb | Azacitidine, Nivolumab | de novo AML, r/r AML | Phase II | CR/CRi | 02397720 | |
Pembrolizumab | mAb | Azacitidine | MRD+ AML in CR | Phase II | N/A | 03769532 | |
Azacitidine/ Venetoclax; Intensive chemotherapy | de novo AML | Phase II Phase II | N/A | 04284787 04214249 | |||
Decitabine | de novo AML | Phase I | CR, SD | 03969446 | |||
TIM-3 | Sabatolimab | mAb | Decitabine or azacitidine | de novo AML | Phase I | CR/CRi | 03066648 |
Azacitidine/ Venetoclax | de novo AML | Phase II Phase I/II | N/A | 04150029 04623216 | |||
CD33/CLL-1 | CAR T-cells | CAR T-cells | N/A | r/r AML | Phase I | MRD negative, CR | 03795779 |
CD38 | CAR T-cells | CAR T-cells | N/A | r/r AML | Phase I/II | N/A | 04351022 |
PRAME | TCR-modified T-cells | TCR-modified T-cells | N/A | r/r AML, MDS | Phase I/II | N/A | 03503968 |
N/A | CAR NK-cells | CAR NK-cells | N/A | r/r AML | Phase I | N/A | 04623944 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Böhme, M.; Kayser, S. Immune-Based Therapeutic Strategies for Acute Myeloid Leukemia. Cancers 2022, 14, 105. https://doi.org/10.3390/cancers14010105
Böhme M, Kayser S. Immune-Based Therapeutic Strategies for Acute Myeloid Leukemia. Cancers. 2022; 14(1):105. https://doi.org/10.3390/cancers14010105
Chicago/Turabian StyleBöhme, Matthias, and Sabine Kayser. 2022. "Immune-Based Therapeutic Strategies for Acute Myeloid Leukemia" Cancers 14, no. 1: 105. https://doi.org/10.3390/cancers14010105
APA StyleBöhme, M., & Kayser, S. (2022). Immune-Based Therapeutic Strategies for Acute Myeloid Leukemia. Cancers, 14(1), 105. https://doi.org/10.3390/cancers14010105