Impact of Diabetes and Metformin Use on Enteropancreatic Neuroendocrine Tumors: Post Hoc Analysis of the CLARINET Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the CLARINET Study Design and Study Treatment
2.2. Study Assessments and Analyses
2.3. Statistical Analyses
2.4. Study Data
3. Results
3.1. Patients
3.2. Effects of DM and Study Treatment on PFS
3.3. Impact of Metformin Use on PFS of Patients with DM
3.4. Impact of DM Status and Concomitant Metformin Use on PFS by Study Treatment
3.5. Multivariable Analysis in Patients Who Had Developed DM Prior to Study Treatment Initiation
3.6. Safety
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leoncini, E.; Carioli, G.; La Vecchia, C.; Boccia, S.; Rindi, G. Risk factors for neuroendocrine neoplasms: A systematic review and meta-analysis. Ann. Oncol. 2016, 27, 68–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haugvik, S.P.; Hedenström, P.; Korsæth, E.; Valente, R.; Hayes, A.; Siuka, D.; Maisonneuve, P.; Gladhaug, I.P.; Lindkvist, B.; Capurso, G. Diabetes, smoking, alcohol use, and family history of cancer as risk factors for pancreatic neuroendocrine tumors: A systematic review and meta-analysis. Neuroendocrinology 2015, 101, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Ben, Q.; Zhong, J.; Fei, J.; Chen, H.; Yv, L.; Tan, J.; Yuan, Y. Risk factors for sporadic pancreatic neuroendocrine tumors: A case-control study. Sci. Rep. 2016, 6, 36073. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.P.; Santos, A.C.; Castro, C.; Raposo, L.; Pereira, S.S.; Torres, I.; Henrique, R.; Cardoso, H.; Monteiro, M.P. Visceral obesity and metabolic syndrome are associated with well-differentiated gastroenteropancreatic neuroendocrine tumors. Cancers 2018, 10, 293. [Google Scholar] [CrossRef] [Green Version]
- Pusceddu, S.; Vernieri, C.; Di Maio, M.; Marconcini, R.; Spada, F.; Massironi, S.; Ibrahim, T.; Brizzi, M.; Campana, D.; Faggiano, A.; et al. Metformin use associates with longer progression-free survival of patients with diabetes and pancreatic neuroendocrine tumors receiving everolimus and/or somatostatin analogues. Gastroenterology 2018, 155, 479–489.e7. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Rangel, E.; Inzucchi, S.E. Metformin: Clinical use in type 2 diabetes. Diabetologia 2017, 60, 1586–1593. [Google Scholar] [CrossRef]
- Schulten, H.-J. Pleiotropic effects of metformin on cancer. Int. J. Mol. Sci. 2018, 19, 2850. [Google Scholar] [CrossRef] [Green Version]
- Luengo, A.; Sullivan, L.B.; Heiden, M.G. Understanding the complex-I-ty of metformin action: Limiting mitochondrial respiration to improve cancer therapy. BMC Biol. 2014, 12, 82. [Google Scholar] [CrossRef] [Green Version]
- Pollak, M.N. Investigating metformin for cancer prevention and treatment: The end of the beginning. Cancer Discov. 2012, 2, 778–790. [Google Scholar] [CrossRef] [Green Version]
- Pusceddu, S.; Buzzoni, R.; Vernieri, C.; Concas, L.; Marceglia, S.; Giacomelli, L.; Milione, M.; Leuzzi, L.; Femia, D.; Formisano, B.; et al. Metformin with everolimus and octreotide in pancreatic neuroendocrine tumor patients with diabetes. Future Oncol. 2016, 12, 1251–1260. [Google Scholar] [CrossRef]
- Vernieri, C.; Pusceddu, S.; de Braud, F. Impact of metformin on systemic metabolism and survival of patients with advanced pancreatic neuroendocrine tumors. Front. Oncol. 2019, 9, 902. [Google Scholar] [CrossRef]
- Powell, M.K.; Cempirkova, D.; Dundr, P.; Grimmichova, T.; Trebicky, F.; Brown, R.E.; Gregorova, J.; Litschmannova, M.; Janurova, K.; Pesta, M.; et al. Metformin treatment for diabetes mellitus correlates with progression and survival in colorectal carcinoma. Transl. Oncol. 2020, 13, 383–392. [Google Scholar] [CrossRef]
- Rao, M.; Gao, C.; Guo, M.; Law, B.Y.K.; Xu, Y. Effects of metformin treatment on radiotherapy efficacy in patients with cancer and diabetes: A systematic review and meta-analysis. Cancer Manag. Res. 2018, 10, 4881–4890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonnenblick, A.; Agbor-Tarh, D.; Bradbury, I.; Di Cosimo, S.; Azim, H.A., Jr.; Fumagalli, D.; Sarp, S.; Wolff, A.C.; Andersson, M.; Kroep, J.; et al. Impact of diabetes, insulin, and metformin use on the outcome of patients with human epidermal growth factor receptor 2-positive primary breast cancer: Analysis from the ALTTO phase III randomized trial. J. Clin. Oncol. 2017, 35, 1421–1429. [Google Scholar] [CrossRef] [PubMed]
- Klubo-Gwiezdzinska, J.; Costello, J., Jr.; Patel, A.; Bauer, A.; Jensen, K.; Mete, M.; Burman, K.D.; Wartofsky, L.; Vasko, V. Treatment with metformin is associated with higher remission rate in diabetic patients with thyroid cancer. J. Clin. Endocrinol. Metab. 2013, 98, 3269–3279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, G.H.; Satkunam, M.; Pond, G.R.; Steinberg, G.R.; Blandino, G.; Schünemann, H.J.; Muti, P. Association of metformin with breast cancer incidence and mortality in patients with type II diabetes: A grade-assessed systematic review and meta-analysis. Cancer Epidemiol. Biomark. Prev. 2018, 27, 627–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zingales, V.; Distefano, A.; Raffaele, M.; Zanghi, A.; Barbagallo, I.; Vanella, L. Metformin: A bridge between diabetes and prostate cancer. Front. Oncol. 2017, 7, 243. [Google Scholar] [CrossRef] [PubMed]
- Pavel, M.; O’Toole, D.; Costa, F.; Capdevila, J.; Gross, D.; Kianmanesh, R.; Krenning, E.; Knigge, U.; Salazar, R.; Pape, U.F.; et al. ENETS consensus guidelines update for the management of distant metastatic disease of intestinal, pancreatic, bronchial neuroendocrine neoplasms (NEN) and NEN of unknown primary site. Neuroendocrinology 2016, 103, 172–185. [Google Scholar] [CrossRef]
- Caplin, M.E.; Pavel, M.; Cwikla, J.B.; Phan, A.T.; Raderer, M.; Sedlackova, E.; Cadiot, G.; Wolin, E.M.; Capdevila, J.; Wall, L.; et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N. Engl. J. Med. 2014, 371, 224–233. [Google Scholar] [CrossRef]
- World Health Organization. Glycated haemoglobin (HbA1c) for the diagnosis of diabetes. In Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of Diabetes Mellitus: Abbreviated Report of a WHO Consultation; World Health Organization, Ed.; World Health Organization: Geneva, Switzerland, 2011; Volume 2. [Google Scholar]
- Michael, M.; Garcia-Carbonero, R.; Weber, M.M.; Lombard-Bohas, C.; Toumpanakis, C.; Hicks, R.J. The antiproliferative role of lanreotide in controlling growth of neuroendocrine tumors: A systematic review. Oncologist 2017, 22, 272–285. [Google Scholar] [CrossRef] [Green Version]
- Steffin, B.; Gutt, B.; Bidlingmaier, M.; Dieterle, C.; Oltmann, F.; Schopohl, J. Effects of the long-acting somatostatin analogue lanreotide autogel on glucose tolerance and insulin resistance in acromegaly. Eur. J. Endocrinol. 2006, 155, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Modlin, I.M.; Pavel, M.; Kidd, M.; Gustafsson, B.I. Review article: Somatostatin analogues in the treatment of gastroenteropancreatic neuroendocrine (carcinoid) tumours. Aliment. Pharmacol. Ther. 2010, 31, 169–188. [Google Scholar] [PubMed]
- Pusceddu, S.; Prinzi, N.; Lo Russo, G.; Femia, D.; Milione, M.; Perrone, F.; Tamborini, E.; Concas, L.; Pulice, I.; Vernieri, C.; et al. Rationale and protocol of metnet-2 trial: Lanreotide autogel plus metformin in advanced gastrointestinal or lung neuroendocrine tumors. Future Oncol. 2017, 13, 1677–1683. [Google Scholar] [CrossRef]
- Herrera-Martínez, A.D.; Pedraza-Arevalo, S.; L-López, F.; Gahete, M.D.; Gálvez-Moreno, M.A.; Castaño, J.P.; Luque, R.M. Type 2 diabetes in neuroendocrine tumors: Are biguanides and statins part of the solution? J. Clin. Endocrinol. Metab. 2019, 104, 57–73. [Google Scholar] [CrossRef] [PubMed]
- Vitali, E.; Boemi, I.; Tarantola, G.; Piccini, S.; Zerbi, A.; Veronesi, G.; Baldelli, R.; Mazziotti, G.; Smiroldo, V.; Lavezzi, E.; et al. Metformin and everolimus: A promising combination for neuroendocrine tumors treatment. Cancers 2020, 12, 2143. [Google Scholar] [CrossRef] [PubMed]
Characteristic | with DM | without DM | ||||
---|---|---|---|---|---|---|
Lanreotide | Placebo | Overall | Lanreotide | Placebo | Overall | |
(N = 42) | (N = 37) | (N = 79) | (N = 59) | (N = 66) | (N = 125) | |
Sex, n (%) | n = 42 | n = 37 | n = 79 | n = 59 | n = 66 | n = 125 |
Male | 25 (59.5) | 27 (73.0) ‡ | 52 (65.8) ‡ | 28 (47.5) | 27 (40.9) ‡ | 55 (44.0) ‡ |
Female | 17 (59.5) | 10 (27.0) | 27 (34.2) | 31 (52.5) | 39 (59.1) | 70 (56.0) |
Mean age (SD), in years | n = 42 | n = 37 | n = 79 | n = 59 | n = 66 | n = 125 |
62.9 (9.2) | 63.7 (8.1) | 63.3 (8.7) | 63.6 (10.2) | 61.3 (12.5) | 62.4 (11.5) | |
BMI, kg/m2 (SD) | n = 39 | n = 36 | n = 75 | n = 57 | n = 63 | n = 120 |
29.7 (5.2) * | 28.0 (6.1) | 28.9 (5.7) * | 25.7 (3.9) * | 25.9 (5.7) | 25.8 (4.9) * | |
WHO performance status, n (%) | n = 42 | n = 37 | n = 79 | n = 59 | n = 66 | n = 125 |
0 (normal activity) | 36 (85.7) | 30 (81.1) | 66 (83.5) | 48 (81.4) | 54 (81.8) | 102 (81.6) |
1 (restricted activity) | 6 (14.3) | 6 (16.2) | 12 (15.2) | 11 (18.6) | 11 (16.7) | 22 (17.6) |
2 (in bed <50% of the time) | 0 (0.0) | 1 (2.7) | 1 (1.3) | 0 (0.0) | 1 (1.5) | 1 (0.8) |
Tumor grade, n (%) a | n = 42 | n = 37 | n = 79 | n = 59 | n = 64 | n = 123 |
Grade 1 | 25 (59.5) | 24 (64.9) | 49 (62.0) | 44 (74.6) | 48 (75.0) | 92 (74.8) |
Grade 2 | 17 (40.5) | 13 (35.1) | 30 (38.0) | 15 (25.4) | 16 (25.0) | 31 (25.2) |
Primary tumor location, n (%) | n = 42 ‡ | n = 37 ‡ | n = 79 † | n = 59 ‡ | n = 66 ‡ | n = 125 † |
Pancreas | 24 (57.1) | 25 (67.6) | 49 (62.0) | 18 (30.5) | 24 (36.4) | 42 (33.6) |
Midgut | 8 (19.0) | 8 (21.6) | 16 (20.3) | 25 (42.4) | 32 (48.5) | 57 (45.6) |
Hindgut | 4 (9.5) | 1 (2.7) | 5 (6.3) | 7 (11.9) | 2 (3.0) | 9 (7.2) |
Other/unknown | 6 (14.3) | 3 (8.1) | 9 (11.4) | 9 (15.3) | 8 (12.1) | 17 (13.6) |
Previous therapy for non-functional enteropancreatic NETs at study entry, n (%) | n = 42 | n = 37 | n = 79 | n = 59 | n = 66 | n = 125 |
11 (26.2) ‡ | 3 (8.1) | 14 (17.7) | 5 (8.5) ‡ | 13 (19.7) | 18 (14.4) | |
Previous surgery of primary tumor, n (%) | n = 42 | n = 37 | n = 79 | n = 59 | n = 66 | n = 125 |
17 (40.5) | 12 (32.4) | 29 (36.7) | 23 (39.0) | 27 (40.9) | 50 (40.0) | |
Hepatic tumor load, n (%) | n = 42 | n = 37 | n = 79 ‡ | n = 59 | n = 66 | n = 125 ‡ |
≤25% | 23 (54.8) | 23 (62.2) | 46 (58.2) | 39 (66.1) | 52 (78.8) | 91 (72.8) |
>25% | 19 (45.2) | 14 (37.8) | 33 (41.8) | 20 (33.9) | 14 (21.2) | 34 (27.2) |
Mean HbA1c (SD), % | n = 40 | n = 37 | n = 77 | n = 59 | n = 65 | n = 124 |
6.9 (1.5) * | 6.8 (1.2) * | 6.9 (1.3) * | 5.6 (0.4) * | 5.6 (0.3) * | 5.6 (0.3) * | |
Median (range) fasting glucose, mmol/L | n = 32 | n = 30 | n = 62 | n = 50 | n = 48 | n = 98 |
6.5 (3.6; 11.6) * | 6.5 (4.6; 14.5) * | 6.5 (3.6; 14.5) * | 4.9 (4.1; 6.9) * | 4.8 (3.4; 6.1) * | 4.8 (3.4; 6.9) * | |
Median (range) non-fasting glucose, mmol/L | n = 6 | n = 5 | n = 11 | n = 7 | n = 16 | n = 23 |
7.1 (3.2; 22.6) | 5.8 (3.3; 9.8) | 6.8 (3.2; 22.6) | 5.5 (4.6; 5.9) | 4.8 (3.9; 7.8) | 4.9 (3.9; 7.8) |
Variable (Reference Level) | HR (95% CI) | p Value |
---|---|---|
Diabetes at baseline (No) | 1.64 (0.95 to 2.84) | 0.079 |
Previous therapy at entry (No) | 1.56 (0.88 to 2.77) | 0.130 |
Progression at baseline (No) | 3.19 (1.34 to 7.61) | 0.009 |
Treatment (Placebo) | 0.53 (0.31 to 0.89) | 0.017 |
Interaction between treatment and DM at baseline interaction (No) | 0.78 (0.29 to 2.09) | 0.619 |
Variable (Reference Level) | HR (95% CI) | p Value (Probability > Chi-Squared) |
---|---|---|
Treatment (Placebo) | 0.41 (0.24 to 0.67) | <0.001 |
Progression at baseline (No) | 4.62 (1.68 to 12.74) | 0.003 |
Previous therapy at entry (No) | 1.42 (0.76 to 2.65) | 0.275 |
BMI (≤ median value) | 0.58 (0.36 to 0.94) | 0.028 |
Hepatic tumor load: >0%, ≤10% (0%) | 0.88 (0.44 to 1.76) | – |
Hepatic tumor load: >10%, ≤25% (0%) | 1.17 (0.54 to 2.52) | – |
Hepatic tumor load: >25%, ≤50% (0%) | 3.17 (1.52 to 6.62) | – |
Hepatic tumor load: >50% (0%) | 2.33 (1.09 to 4.98) | 0.002 |
Primary tumor type: Mid Gut (Pancreas) | 0.48 (0.28 to 0.82) | – |
Primary tumor type: Hind Gut (Pancreas) | 1.17 (0.47 to 2.93) | – |
Primary tumor type: Other/Unknown (Pancreas) | 0.42 (0.19 to 0.96) | 0.018 |
Type of TEAE | Patients with DM | Patients without DM | ||||
---|---|---|---|---|---|---|
Lanreotide | Placebo | Lanreotide (N = 59) n (%) {m} | Placebo (N = 66) n (%) {m} | |||
with Metformin (N = 14) n (%) {m} | without Metformin (N = 28) n (%) {m} | with Metformin (N = 10) n (%) {m} | without Metformin (N = 27) n (%) {m} | |||
Any TEAE | 14 (100) {191} | 26 (92.9) {187} | 9 (90.0) {109} | 24 (88.9) {206} | 49 (83.1) {479} | 60 (90.9) {500} |
Diarrhea | 9 (64.3) {16} * | 8 (28.6) {12} * | 3 (30.0) {5} | 10 (37) {16} | 18 (30.5) {29} | 23 (34.8) {55} |
Abdominal pain | 4 (28.6) {6} | 6 (21.4) {9} | 1 (10.0) {1} | 5 (18.5) {6} | 14 (23.7) {17} | 11 (16.7) {25} |
Vomiting | 4 (28.6) {4} | 8 (28.6) {10} | 0 | 2 (7.4) {2} | 7 (11.9) {10} | 7 (10.6) {25} |
Constipation | 1 (7.1) {2} | 5 (17.9) {5} | 1 (10.0) {1} | 4 (14.8) {4} | 6 (10.2) {7} | 8 (12.1) {10} |
Flatulence | 4 (28.6) {4} | 4 (14.3) {4} | 0 | 2 (7.4) {2} | 4 (6.8) {5} | 7 (10.6) {10} |
Nausea | 2 (14.3) {10} | 5 (17.9) {6} | 0 | 4 (14.8) {4} | 7 (11.9) {12} | 10 (15.2) {19} |
Fatigue | 2 (14.3) {3} | 2 (7.1) {2} | 3 (30.0) {3} | 4 (14.8) {5} | 6 (10.2) {9} | 8 (12.1) {9} |
Injection site pain | 5 (35.7) {7} * | 1 (3.6) {1} * | 1 (10.0) {5} | 1 (3.7) {1} | 2 (3.4) {22} | 2 (3) {4} |
Nasopharyngitis | 2 (14.3) {2} | 1 (3.6) {1} | 3 (30.0) {3} | 3 (11.1) {5} | 6 (10.2) {6} | 10 (15.2) {14} |
Back pain | 2 (14.3) {3} | 2 (7.1) {2} | 1 (10.0) {1} | 0 | 8 (13.6) {8} | 10 (15.2) {10} |
Arthralgia | 2 (14.3) {3} | 2 (7.1) {2} | 0 | 3 (11.1) {3} | 6 (10.2) {9} | 6 (9.1) {7} |
Headache | 2 (14.3) {2} | 3 (10.7) {3} | 0 | 3 (11.1) {4} | 11 (18.6) {14} | 8 (12.1) {14} |
Decreased appetite | 4 (28.6) {4} | 3 (10.7) {3} | 1 (10.0) {1} | 4 (14.8) {5} | 3 (5.1) {4} | 4 (6.1) {5} |
DM | 5 (35.7) {6} * | 2 (7.1) {2} * | 3 (30.0) {3} | 1 (3.7) {1} | - | - |
Dizziness | 4 (28.6) {5} | 1 (3.6) {1} | 1 (10.0) {1} | 0 | 4 (6.8) {6} | 1 (1.5) {1} |
Weight decreased | 3 (21.4) {3} | 2 (7.1) {2} | 1 (10.0) {1} | 2 (7.4) {3} | 3 (5.1) {3} | 6 (9.1) {6} |
Hypertension | 5 (35.7) {6} | 3 (10.7) {3} | 2 (20.0) {2} | 0 | 5 (8.5) {7} | 3 (4.5) {3} |
Cholelithiasis | 3 (21.4) {3} | 3 (10.7) {3} | 1 (10.0) {1} | 2 (7.4) {2} | 8 (13.6) {9} | 4 (6.1) {4} |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pusceddu, S.; Vernieri, C.; Di Maio, M.; Prinzi, N.; Torchio, M.; Corti, F.; Coppa, J.; Buzzoni, R.; Di Bartolomeo, M.; Milione, M.; et al. Impact of Diabetes and Metformin Use on Enteropancreatic Neuroendocrine Tumors: Post Hoc Analysis of the CLARINET Study. Cancers 2022, 14, 69. https://doi.org/10.3390/cancers14010069
Pusceddu S, Vernieri C, Di Maio M, Prinzi N, Torchio M, Corti F, Coppa J, Buzzoni R, Di Bartolomeo M, Milione M, et al. Impact of Diabetes and Metformin Use on Enteropancreatic Neuroendocrine Tumors: Post Hoc Analysis of the CLARINET Study. Cancers. 2022; 14(1):69. https://doi.org/10.3390/cancers14010069
Chicago/Turabian StylePusceddu, Sara, Claudio Vernieri, Massimo Di Maio, Natalie Prinzi, Martina Torchio, Francesca Corti, Jorgelina Coppa, Roberto Buzzoni, Maria Di Bartolomeo, Massimo Milione, and et al. 2022. "Impact of Diabetes and Metformin Use on Enteropancreatic Neuroendocrine Tumors: Post Hoc Analysis of the CLARINET Study" Cancers 14, no. 1: 69. https://doi.org/10.3390/cancers14010069
APA StylePusceddu, S., Vernieri, C., Di Maio, M., Prinzi, N., Torchio, M., Corti, F., Coppa, J., Buzzoni, R., Di Bartolomeo, M., Milione, M., Regnault, B., Truong Thanh, X. -M., Mazzaferro, V., & de Braud, F. (2022). Impact of Diabetes and Metformin Use on Enteropancreatic Neuroendocrine Tumors: Post Hoc Analysis of the CLARINET Study. Cancers, 14(1), 69. https://doi.org/10.3390/cancers14010069