Risk of Adverse Pregnancy Outcomes in Young Women with Thyroid Cancer: A Systematic Review and Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Quality Assessment
2.4. Data Analyses and Statistical Methods
3. Results
3.1. Study Characteristics
3.2. Risk of Bias Assessment
3.3. Thyroid Cancer Treatment and Risk of Miscarriage or Abortion
3.4. Thyroid Cancer Treatment and Preterm Labor
3.5. Thyroid Cancer Treatment and Congenital Anomalies
3.6. Effect of RAIT on Adverse Pregnancy Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United States Cancer Statistics: Data Visualizations—Demographics. Available online: https://gis.cdc.gov/Cancer/USCS/#/Demographics/ (accessed on 16 December 2021).
- Scott, A.R.; Stoltzfus, K.C.; Tchelebi, L.T.; Trifiletti, D.M.; Lehrer, E.J.; Rao, P.; Bleyer, A.; Zaorsky, N.G. 2020 Trends in Cancer Incidence in US Adolescents and Young Adults, 1973–2015. JAMA Netw. Open 2020, 3, e2027738. [Google Scholar] [CrossRef] [PubMed]
- United States Cancer Statistics: Data Visualizations—Trends. Available online: https://gis.cdc.gov/Cancer/USCS/#/Trends/ (accessed on 16 December 2021).
- Choi, Y.M.; Kim, T.Y.; Jang, E.K.; Kwon, H.; Jeon, M.J.; Kim, W.G.; Shong, Y.K.; Kim, W.B. Standardized Thyroid Cancer Mortality in Korea between 1985 and 2010. Endocrinol. Metab. 2014, 29, 530–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwangbo, Y.; Kim, J.M.; Park, Y.J.; Lee, E.K.; Lee, Y.J.; Park, D.J.; Choi, Y.S.; Lee, K.D.; Sohn, S.Y.; Kim, S.W.; et al. Long-Term Recurrence of Small Papillary Thyroid Cancer and Its Risk Factors in a Korean Multicenter Study. J. Clin. Endocrinol. Metab. 2017, 102, 625–633. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.; Karamali, K.; Kolodziejczyk, A.; Oikonomou, G.; Watkinson, J.; Paleri, V.; Nixon, I.; Kim, D. Systematic Review of Recurrence Rate after Hemithyroidectomy for Low-Risk Well-Differentiated Thyroid Cancer. Eur. Thyroid J. 2020, 9, 73–84. [Google Scholar] [CrossRef]
- Redlich, A.; Luster, M.; Lorenz, K.; Lessel, L.; Rohrer, T.R.; Schmid, K.W.; Frühwald, M.C.; Vorwerk, P.; Kuhlen, M. Age, American Thyroid Association Risk Group, and Response to Therapy Are Prognostic Factors in Children With Differentiated Thyroid Cancer. J. Clin. Endocrinol. Metab. 2022, 107, e165–e177. [Google Scholar] [CrossRef]
- Rangel-Pozzo, A.; Sisdelli, L.; Cordioli, M.I.V.; Vaisman, F.; Caria, P.; Mai, S.; Cerutti, J.M. Genetic Landscape of Papillary Thyroid Carcinoma and Nuclear Architecture: An Overview Comparing Pediatric and Adult Populations. Cancers 2020, 12, 3146. [Google Scholar] [CrossRef]
- Crawshaw, M. Psychosocial oncofertility issues faced by adolescents and young adults over their lifetime: A review of the research. Hum. Fertil. Camb 2013, 16, 59–63. [Google Scholar] [CrossRef]
- Alexander, E.K.; Pearce, E.N.; Brent, G.A.; Brown, R.S.; Chen, H.; Dosiou, C.; Grobman, W.A.; Laurberg, P.; Lazarus, J.H.; Mandel, S.J.; et al. 2017 Guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease During Pregnancy and the Postpartum. Thyroid 2017, 27, 315–389. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.J.; Song, J.E.; Kim, J.Y.; Bae, J.H.; Kim, N.H.; Yoo, H.J.; Kim, H.Y.; Seo, J.A.; Kim, N.H.; Lee, J.; et al. Effects of radioactive iodine treatment on cardiovascular disease in thyroid cancer patients: A nationwide cohort study. Ann. Transl. Med. 2020, 8, 1235. [Google Scholar] [CrossRef]
- Orosco, R.K.; Hussain, T.; Noel, J.E.; Chang, D.C.; Dosiou, C.; Mittra, E.; Divi, V.; Orloff, L.A. Radioactive iodine in differentiated thyroid cancer: A national database perspective. Endocr. Relat. Cancer 2019, 26, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Ko, K.Y.; Yen, R.F.; Lin, C.L.; Cheng, M.F.; Huang, W.S.; Kao, C.H. Pregnancy Outcome After I-131 Therapy for Patients With Thyroid Cancer: A Nationwide Population-Based Cohort Study. Medicine 2016, 95, e2685. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Jeon, M.J.; Song, E.; Kim, T.Y.; Kim, W.B.; Shong, Y.K.; Kim, W.G. Quality of Life in Patients with Papillary Thyroid Microcarcinoma According to Treatment: Total Thyroidectomy with or without Radioactive Iodine Ablation. Endocrinol. Metab. 2020, 35, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Van Nostrand, D. The benefits and risks of I-131 therapy in patients with well-differentiated thyroid cancer. Thyroid 2009, 19, 1381–1391. [Google Scholar] [CrossRef] [PubMed]
- Sawka, A.M.; Lakra, D.C.; Lea, J.; Alshehri, B.; Tsang, R.W.; Brierley, J.D.; Straus, S.; Thabane, L.; Gafni, A.; Ezzat, S.; et al. A systematic review examining the effects of therapeutic radioactive iodine on ovarian function and future pregnancy in female thyroid cancer survivors. Clin. Endocrinol. 2008, 69, 479–490. [Google Scholar] [CrossRef]
- Piek, M.W.; Postma, E.L.; van Leeuwaarde, R.; de Boer, J.P.; Bos, A.M.E.; Lok, C.; Stokkel, M.; Filipe, M.D.; van der Ploeg, I.M.C. The Effect of Radioactive Iodine Therapy on Ovarian Function and Fertility in Female Thyroid Cancer Patients: A Systematic Review and Meta-Analysis. Thyroid 2021, 31, 658–668. [Google Scholar] [CrossRef]
- Wu, J.X.; Young, S.; Ro, K.; Li, N.; Leung, A.M.; Chiu, H.K.; Harari, A.; Yeh, M.W. Reproductive outcomes and nononcologic complications after radioactive iodine ablation for well-differentiated thyroid cancer. Thyroid 2015, 25, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.O.; Lee, K.; Lee, S.M.; Seo, G.H. Association Between Pregnancy Outcomes and Radioactive Iodine Treatment After Thyroidectomy Among Women With Thyroid Cancer. JAMA Intern. Med. 2020, 180, 54–61. [Google Scholar] [CrossRef]
- Yasuoka, T.; Iwama, N.; Ota, K.; Harada, M.; Hasegawa, J.; Yaegashi, N.; Sugiyama, T.; Suzuki, N.; Osuga, Y. Pregnancy outcomes in children, adolescents, and young adults that survived cancer: A nationwide survey in Japan. J. Obstet. Gynaecol. Res. 2021, 47, 3352–3361. [Google Scholar] [CrossRef]
- Nies, M.; Cantineau, A.E.P.; Arts, E.G.J.M.; van den Berg, M.H.; van Leeuwen, F.E.; Muller Kobold, A.C.; Klein Hesselink, M.S.; Burgerhof, J.G.M.; Brouwers, A.H.; van Dam, E.W.C.M.; et al. Long-Term Effects of Radioiodine Treatment on Female Fertility in Survivors of Childhood Differentiated Thyroid Carcinoma. Thyroid 2020, 30, 1169–1176. [Google Scholar] [CrossRef]
- Wells, G.A.S.B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 16 December 2021).
- Solmi, M.; Firth, J.; Miola, A.; Fornaro, M.; Frison, E.; Fusar-Poli, P.; Dragioti, E.; Shin, J.I.; Carvalho, A.F.; Stubbs, B.; et al. Disparities in cancer screening in people with mental illness across the world versus the general population: Prevalence and comparative meta-analysis including 4,717,839 people. Lancet Psychiatry 2020, 7, 52–63. [Google Scholar] [CrossRef]
- Blackburn, B.E.; Ganz, P.A.; Rowe, K.; Snyder, J.; Wan, Y.; Deshmukh, V.; Newman, M.; Fraser, A.; Smith, K.; Herget, K.; et al. Reproductive and gynecological complication risks among thyroid cancer survivors. J. Cancer Surviv. 2018, 12, 702–711. [Google Scholar] [CrossRef]
- Beksaç, K.; Aktoz, F.; Örgül, G.; Çelik, H.T.; Özgü-Erdinç, A.S.; Beksaç, M.S. Pregnancy in papillary thyroid cancer survivors. J. Turk. Ger. Gynecol. Assoc. 2018, 19, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Hartnett, K.P.; Ward, K.C.; Kramer, M.R.; Lash, T.L.; Mertens, A.C.; Spencer, J.B.; Fothergill, A.; Howards, P.P. The risk of preterm birth and growth restriction in pregnancy after cancer. Int. J. Cancer 2017, 141, 2187–2196. [Google Scholar] [CrossRef] [PubMed]
- Metallo, M.; Groza, L.; Brunaud, L.; Klein, M.; Weryha, G.; Feigerlova, E. Long-Term Quality of Life and Pregnancy Outcomes of Differentiated Thyroid Cancer Survivors Treated by Total Thyroidectomy and I(131) during Adolescence and Young Adulthood. Int. J. Endocrinol. 2016, 2016, 7586482. [Google Scholar] [CrossRef] [Green Version]
- Fard-Esfahani, A.; Hadifar, M.; Fallahi, B.; Beiki, D.; Eftekhari, M.; Saghari, M.; Takavar, A. Radioiodine treatment complications to the mother and child in patients with differentiated thyroid carcinoma. Hell. J. Nucl. Med. 2009, 12, 37–40. [Google Scholar]
- Garsi, J.P.; Schlumberger, M.; Rubino, C.; Ricard, M.; Labbé, M.; Ceccarelli, C.; Schvartz, C.; Henri-Amar, M.; Bardet, S.; de Vathaire, F. Therapeutic administration of 131I for differentiated thyroid cancer: Radiation dose to ovaries and outcome of pregnancies. J. Nucl. Med. 2008, 49, 845–852. [Google Scholar] [CrossRef] [Green Version]
- Brandão, C.D.; Miranda, A.E.; Corrêa, N.D.; Sieiro Netto, L.; Corbo, R.; Vaisman, M. Radioiodine therapy and subsequent pregnancy. Arq. Bras. Endocrinol. Metabol. 2007, 51, 534–540. [Google Scholar] [CrossRef] [Green Version]
- do Rosário, P.W.; Barroso, A.L.; Rezende, L.L.; Padrão, E.L.; Borges, M.A.; Purisch, S. Malformations in the offspring of women with thyroid cancer treated with radioiodine for the ablation of thyroid remnants. Arq. Bras. Endocrinol. Metabol. 2006, 50, 930–933. [Google Scholar] [CrossRef] [Green Version]
- Balenović, A.; Vlasić, M.; Sonicki, Z.; Bodor, D.; Kusić, Z. Pregnancy outcome after treatment with radioiodine for differentiated thyroid carcinoma. Coll. Antropol. 2006, 30, 743–748. [Google Scholar]
- Bal, C.; Kumar, A.; Tripathi, M.; Chandrashekar, N.; Phom, H.; Murali, N.R.; Chandra, P.; Pant, G.S. High-dose radioiodine treatment for differentiated thyroid carcinoma is not associated with change in female fertility or any genetic risk to the offspring. Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Chow, S.M.; Yau, S.; Lee, S.H.; Leung, W.M.; Law, S.C. Pregnancy outcome after diagnosis of differentiated thyroid carcinoma: No deleterious effect after radioactive iodine treatment. Int. J. Radiat. Oncol. Biol. Phys. 2004, 59, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- Dottorini, M.E.; Lomuscio, G.; Mazzucchelli, L.; Vignati, A.; Colombo, L. Assessment of female fertility and carcinogenesis after iodine-131 therapy for differentiated thyroid carcinoma. J. Nucl. Med. 1995, 36, 21–27. [Google Scholar] [PubMed]
- Vini, L.; Hyer, S.; Al-Saadi, A.; Pratt, B.; Harmer, C. Prognosis for fertility and ovarian function after treatment with radioiodine for thyroid cancer. Postgrad. Med. J. 2002, 78, 92–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.D.; Wang, H.S.; Weng, H.F.; Kao, P.F. Outcome of pregnancy after radioactive iodine treatment for well differentiated thyroid carcinomas. J. Endocrinol. Investig. 1998, 21, 662–667. [Google Scholar] [CrossRef] [PubMed]
- Ayala, C.; Navarro, E.; Rodríguez, J.R.; Silva, H.; Venegas, E.; Astorga, R. Conception after iodine-131 therapy for differentiated thyroid cancer. Thyroid 1998, 8, 1009–1011. [Google Scholar] [CrossRef]
- Smith, M.B.; Xue, H.; Takahashi, H.; Cangir, A.; Andrassy, R.J. Iodine 131 thyroid ablation in female children and adolescents: Long-term risk of infertility and birth defects. Ann. Surg. Oncol. 1994, 1, 128–131. [Google Scholar] [CrossRef]
- Casara, D.; Rubello, D.; Saladini, G.; Piotto, A.; Pelizzo, M.R.; Girelli, M.E.; Busnardo, B. Pregnancy after high therapeutic doses of iodine-131 in differentiated thyroid cancer: Potential risks and recommendations. Eur. J. Nucl. Med. 1993, 20, 192–194. [Google Scholar] [CrossRef]
- Liu, D.; Wei, Y.; Zhao, Y.; Li, R.; Yan, J.; Qiao, J. Obstetric outcomes in thyroid cancer survivors: A retrospective cohort study. Int. J. Gynaecol. Obstet. 2021, 155, 119–124. [Google Scholar] [CrossRef]
- Li, Z.; Qiu, Y.; Fei, Y.; Xing, Z.; Zhu, J.; Su, A. Prevalence of and risk factors for hypothyroidism after hemithyroidectomy: A systematic review and meta-analysis. Endocrine 2020, 70, 243–255. [Google Scholar] [CrossRef]
- McGriff, N.J.; Csako, G.; Gourgiotis, L.; Lori, C.G.; Pucino, F.; Sarlis, N.J. Effects of thyroid hormone suppression therapy on adverse clinical outcomes in thyroid cancer. Ann. Med. 2002, 34, 554–564. [Google Scholar] [CrossRef] [PubMed]
- Krassas, G.E.; Pontikides, N.; Kaltsas, T.; Papadopoulou, P.; Paunkovic, J.; Paunkovic, N.; Duntas, L.H. Disturbances of menstruation in hypothyroidism. Clin. Endocrinol. 1999, 50, 655–659. [Google Scholar] [CrossRef] [PubMed]
- Bérard, A.; Abbas-Chorfa, F.; Kassai, B.; Vial, T.; Nguyen, K.A.; Sheehy, O.; Schott, A.M. The French Pregnancy Cohort: Medication use during pregnancy in the French population. PLoS ONE 2019, 14, e0219095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gindler, J.; Li, Z.; Berry, R.J.; Zheng, J.; Correa, A.; Sun, X.; Wong, L.; Cheng, L.; Erickson, J.D.; Wang, Y.; et al. Folic acid supplements during pregnancy and risk of miscarriage. Lancet 2001, 358, 796–800. [Google Scholar] [CrossRef]
- Okui, T. An Analysis of the Trend of Fetal Mortality Rates among Working and Jobless Households in Japan, 1995–2019. Int. J. Environ. Res. Public Health 2021, 18, 4810. [Google Scholar] [CrossRef]
- Braem, M.G.; Onland-Moret, N.C.; Schouten, L.J.; Kruitwagen, R.F.; Lukanova, A.; Allen, N.E.; Wark, P.A.; Tjønneland, A.; Hansen, L.; Braüner, C.M.; et al. Multiple miscarriages are associated with the risk of ovarian cancer: Results from the European Prospective Investigation into Cancer and Nutrition. PLoS ONE 2012, 7, e37141. [Google Scholar]
- Paul, P.J. Maternal Age at Marriage and Adverse Pregnancy Outcomes: Findings from the India Human Development Survey, 2011–2012. Pediatr. Adolesc. Gynecol. 2018, 31, 620–624. [Google Scholar] [CrossRef]
- World Health Organization Global Survey on Maternal and Perinatal Health. Available online: https://www.who.int/reproductivehealth/topics/best_practices/globalsurveyoriginal/en/ (accessed on 16 December 2021).
- Centers for Disease Control and Prevention. Monthly Vital Statistics Report. Available online: https://www.cdc.gov/nchs/data/mvsr/supp/mv43_05s.pdf (accessed on 16 December 2021).
- Statistics Korea. Available online: https://kostat.go.kr/portal/korea/kor_nw/1/2/3/index.board?bmode=read&bSeq=&aSeq=377055&pageNo=2&rowNum=10&navCount=10&currPg=&searchInfo=&sTarget=title&sTxt=) (accessed on 16 December 2021).
- Kyozuka, H.; Yasuda, S.; Murata, T.; Fukuda, T.; Yamaguchi, A.; Kanno, A.; Sato, A.; Ogata, Y.; Hosoya, M.; Yasumura, S.; et al. Adverse obstetric outcomes in early-diagnosed gestational diabetes mellitus: The Japan Environment and Children’s Study. J. Diabetes Investig. 2021, 12, 2071–2079. [Google Scholar] [CrossRef]
- An Official Website of the European Union. EUROCAT. Available online: https://eu-rd-platform.jrc.ec.europa.eu/eurocat/eurocat-data/prevalence/export_en (accessed on 16 December 2021).
- Seo, G.H.; Kim, T.H.; Chung, J.H. Antithyroid Drugs and Congenital Malformations: A Nationwide Korean Cohort Study. Ann. Intern. Med. 2018, 168, 405–413. [Google Scholar] [CrossRef]
- Sawka, A.M.; Lea, J.; Alshehri, B.; Straus, S.; Tsang, R.W.; Brierley, J.D.; Thabane, L.; Rotstein, L.; Gafni, A.; Ezzat, S.; et al. A systematic review of the gonadal effects of therapeutic radioactive iodine in male thyroid cancer survivors. Clin. Endocrinol. 2008, 68, 610–617. [Google Scholar] [CrossRef]
- Bourcigaux, N.; Rubino, C.; Berthaud, I.; Toubert, M.E.; Donadille, B.; Leenhardt, L.; Petrot-Keller, I.; Brailly-Tabard, S.; Fromigué, J.; de Vathaire, F.; et al. Impact on testicular function of a single ablative activity of 3.7 GBq radioactive iodine for differentiated thyroid carcinoma. Hum. Reprod. 2018, 33, 1408–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyer, S.; Vini, L.; O’Connell, M.; Pratt, B.; Harmer, C. Testicular dose and fertility in men following I(131) therapy for thyroid cancer. Clin. Endocrinol. 2002, 56, 755–758. [Google Scholar] [CrossRef] [PubMed]
- Mazzaferri, E.L. Gonadal damage from 131I therapy for thyroid cancer. Clin. Endocrinol. 2002, 57, 313–314. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.; Engel, S.M.; Weaver, M.A.; Zevallos, J.P.; Nichols, H.B. Birth rates after radioactive iodine treatment for differentiated thyroid cancer. Int. J. Cancer 2017, 141, 2291–2295. [Google Scholar] [CrossRef]
- Yaish, I.; Azem, F.; Gutfeld, O.; Silman, Z.; Serebro, M.; Sharon, O.; Shefer, G.; Limor, R.; Stern, N.; Tordjman, K.M. A Single Radioactive Iodine Treatment Has a Deleterious Effect on Ovarian Reserve in Women with Thyroid Cancer: Results of a Prospective Pilot Study. Thyroid 2018, 28, 522–527. [Google Scholar] [CrossRef]
- Navarro, P.; Rocher, S.; Miró-Martínez, P.; Oltra-Crespo, S. Radioactive iodine and female fertility. Sci. Rep. 2022, 12, 3704. [Google Scholar] [CrossRef]
- Oktay, K.; Harvey, B.E.; Partridge, A.H.; Quinn, G.P.; Reinecke, J.; Taylor, H.S.; Wallace, W.H.; Wang, E.T.; Loren, A.W. Fertility Preservation in Patients With Cancer: ASCO Clinical Practice Guideline Update. J. Clin. Oncol. 2018, 36, 1994–2001. [Google Scholar] [CrossRef]
- Iijima, S. Effects of fetal involvement of inadvertent radioactive iodine therapy for the treatment of thyroid diseases during an unsuspected pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 259, 53–59. [Google Scholar] [CrossRef]
- International Commission on Radiological Protection. Radiation effects in the embryo and fetus. In ICRP Publication 103; Valentin, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 37, p. 57. [Google Scholar]
- Wassner, A.J.; Smith, J.R. Hypothyroidism. In Nelson Textbook of Pediatrics, 21st ed.; Kliegman, R.M., St. Geme, J.W., III, Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 2914–2922. [Google Scholar]
- Berg, G.E.; Nyström, E.H.; Jacobsson, L.; Lindberg, S.; Lindstedt, R.G.; Mattsson, S.; Niklasson, C.A.; Norén, A.H.; Westphal, O.G. Radioiodine treatment of hyperthyroidism in a pregnant woman. J. Nucl. Med. 1998, 39, 357–361. [Google Scholar]
- Berg, G.E.; Jacobsson, L.; Nyström, E.; Gleisner, K.S.; Tennvall, J. Consequences of inadvertent radioactive treatment of Graves’ disease and thyroid cancer in undiagnosed pregnancy. Can we rely on routine pregnancy testing? Acta Oncol. 2008, 47, 145–149. [Google Scholar] [CrossRef]
- Otake, M.; Schull, W.J. Radiation-related brain damage and growth retardation among the prenatally exposed atomic bomb survivors. Int. J. Radiat. Biol. 1998, 74, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Radiation and Pregnancy: A Fact Sheet for Clinicians. Available online: https://www.cdc.gov/nceh/radiation/emergencies/prenatalphysician.htm (accessed on 11 April 2022).
- Buls, N.; Covens, P.; Nieboer, K.; Van Schuerbeek, P.; Devacht, P.; Eloot, L.; de Mey, J. Dealing with pregnancy in radiology: A thin line between science, social and regulatory aspects. JBR BTR 2009, 92, 271–279. [Google Scholar] [PubMed]
- Radiation Protection of Pregnant Women in Nuclear Medicine. IAEA Radiation Protection of Patients (RPOP). Available online: https://www.iaea.org/resources/rpop/health-professionals/nuclear-medicine/pregnant-women (accessed on 11 April 2022).
- International Commission on Radiological Protection. Pregnancy and medical radiation. In ICRP Publication 84; Valentin, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2000; Volume 30, pp. 1–43. [Google Scholar]
Study [Reference] | Region | Study Design | Participants | No. of Total Participants | No. of Patients with RAI | Age | Pregnant Outcomes |
---|---|---|---|---|---|---|---|
Liu et al. 2021 [42] | China | Case-control design | Data form the University Hospital in Beijing | 562 women Cases: 154 women with thyroid cancer Controls: 308 matched controls without thyroid cancer | 5 women | Median age at pregnancy: Patients with thyroid cancer: 33 Controls: 32 | Pregnant women with thyroid cancer compared to those without thyroid cancer Preterm delivery: 5.84% vs. 7.47% Adjusted OR with 95% CI (Reference group: women without thyroid cancer) Preterm delivery: 0.73 (0.32–1.67) |
Yasuoka et al. 2021 [21] | Japan | Case series design | Data from major tertiary institutions in Japan | 341 women with thyroid cancer | NA | NA | Miscarriage: 5 of 314 pregnancies Preterm delivery: 25 of 314 pregnancies |
Kim et al. 2020 [20] | Korea | Case series design * | Data from Health Insurance Review and Assessment database | 10,842 pregnancies in women with thyroid cancer Cases :4884 with RAITControls: 5958 without RAIT | 4884 pregnancies | Mean (SD): 33.3 (4.4) | Pregnant women without RAI compared to those with RAI Abortion: 30.7% vs. 32.1% Preterm deliveries: 12.8% vs. 12.9% Congenital malformations: 8.9% vs. 9.0% Adjusted OR with 95% CI (Reference group: patients with RAI dose ≤1.11 GBq) Abortion 1.12–3.7 GBq: 1.11 (0.91–1.36) ≥3.8 GBq: 1.02 (0.85–1.22) Preterm delivery 1.12–3.7 GBq: 0.79 (0.58–1.08) ≥3.8 GBq: 0.82 (0.63–1.08) Congenital malformation 1.12–3.7 GBq: 1.06 (0.72–1.56) ≥3.8 GBq: 1.08 (0.76–1.52) |
Nies et al. 2020 [22] | The Netherlands | Case series design | A nationwide, long-term follow-up study on childhood differentiated thyroid cancer in the Netherlands | 56 women with thyroid cancer (64 pregnancies) | 56 women | Median age at first pregnancy (IQR) 25.5 (22.5–30.0) | Miscarriage: 8 of 56 women (64 pregnancies) after RAIT Congenital malformation: 7 of 45 pregnancies after RAIT |
Blackburn et al. 2018 [25] | USA | Case-control design | The Utah Population Database, which links data from the Utah Cancer Registry | 9753 women Cases: 1832 women with thyroid cancer Controls 7921 matched control without thyroid cancer) | 947 women | Median age 36 | Miscarriage: 25 of 1832 women by 1–5 years after thyroid cancer diagnosis and 63 of 7921 women in general population cohort Preterm deliveries: 57 of 1832 women by 1–5 years after thyroid cancer diagnosis and 175 of 7921 women in general population cohort |
Beksaç et al. 2018 [26] | Turkey | Case series design | The clinical records of 8 pregnant women who received treatment for PTC before their pregnancy | 8 women with thyroid cancer | 8 women | Mean age 34.3 years | Miscarriage: 1 of 8 pregnancies after thyroid cancer treatment Preterm delivery: 1 or 7 pregnancies after thyroid cancer treatment Congenital malformation: 1 or 7 pregnancies after thyroid cancer treatment |
Hartnett et al. 2017 [27] | USA | Case-control design | Cancer registries in the states of Georgia, North Carolina, and Tennessee | 4,032,219 women Cases: 970 women with thyroid cancer Controls: 4,031,349 matched control without cancer | NA | NA | Adjusted risk ratio (95% CI) for preterm deliveries: 1.0 (0.8, 1.2) |
Metallo et al. 2016 [28] | France | Case series design * | Data form the University Hospital in Nancy | 45 women with thyroid cancer RAIT ≤3.85 GBq: 18 women >3.85 GBq: 27 women | 45 women | Mean (SD) Patients with RAIT ≤3.85 GBq: 27.7 (6.7) >3.85 GBq: 36.1 (11.1) | Miscarriage: 1of 18 patients with RAIT ≤3.85 GBq and 5 of 27 patients with RAIT >3.85 GBq Congenital anomaly was not observed in this study. |
Ko et al. 2016 [14] | Taiwan | Case series design * | The National Health Insurance Research Database in Taiwan | 1491 women with thyroid cancer Cases: 775 patients with RAIT Controls: 716 without RAIT | 775 women | NA | Abortion: 71 of 716 patients with RAIT and 85 of 775 patients without RAIT Preterm delivery: 29 of 716 patients with RAIT and 41 of 775 patients without RAIT Adjusted HR (95% CI) (patients without RAIT vs. patients with RAIT) Abortion: 0.67 (0.49–0.93) Preterm delivery: 1.32 (0.81–2.15) |
Fard-Esfahani et al. 2009 [29] | Iran | Case series design * | Data from one institution in Iran | 227 pregnancies in women with thyroid cancer Cases: 126 pregnancies after RAIT Controls: 101 pregnancies before RAIT | 126 pregnancies in 100 women | NA | Miscarriage: 13 of 126 pregnancies after I131 treatment (10/100 women) and 17 of 101 pregnancy before thyroid cancer treatment |
Garsi et al. 2008 [30] | France and Italy | Case-control design | Data from three institutions in France and one institution in Italy | 2673 pregnancies in 1126 patients with thyroid cancer Cases: 595 pregnancies after thyroid cancer treatment Controls: 2078 pregnancies before thyroid cancer treatment, | 483 pregnancies | NA | Miscarriage: 193 of 1854 pregnancies before thyroid cancer treatment, 92 of 475 pregnancies after thyroid cancer treatment (75 of 389 pregnancies after I131 treatment) Preterm delivery: 114 of 1633 live births before thyroid cancer treatment, 44 of 376 live births after thyroid cancer treatment (40 of 309 live births after I131 treatment) Congenital malformation: 68 of 1633 live births before thyroid cancer treatment, 11 of 376 live births after thyroid cancer treatment (9 of 309 live births after I131 treatment) |
Brandao et al. 2007 [31] | Brazil | Case-control design | Data from three institutions in Brazil | 126 pregnancies Cases: 66 pregnancies after RAIT Controls: 60 pregnancies in healthy women | 66 pregnancies (48 women) | NA | Abortion: 6/66 pregnancies after RAIT and 7/60 pregnancies in healthy women Preterm delivery: 1/66 pregnancies after RAIT and 6/60 pregnancies in healthy women Congenital malformation: 1/66 pregnancies after RAIT. Congenital malformation was not observed in healthy women |
Rosário et al. 2006 [32] | Brazil | Case series design | Data from one institution in Brazil | 78 pregnancies after RAIT | 78 pregnancies | NA | Miscarriage: 4 of 78 pregnancies after RAIT Preterm delivery: 3 or 78 pregnancies after RAIT Congenital malformation: 1 or 78 pregnancies after RAIT |
Balenovic et al. 2006 [33] | Croatia | Case series design | Data from one institution in Croatia | 26 women after RAIT (40 pregnancies) | 26 women (40 pregnancies) | NA | Miscarriage: 2 of 26 women after RAIT (5 of 40 pregnancies) Congenital malformation was not observed (0/35 births) |
Bal et al. 2005 [34] | India | Case series design | Data from one institution in India | 50 pregnancies after RAIT in 40 women | 50 pregnancies | NA | Miscarriage: 3 of 50 pregnancies after RAIT Preterm delivery: 1 or 50 pregnancies after RAIT Congenital malformation was not observed |
Chow et al. 2004 [35] | China | Case series design * | Data from one institution in China | 263 pregnancies in 104 women after thyroid cancer treatment Cases: 143 pregnancies after RAIT Controls: 110 pregnancies without RAIT | 143 pregnancies | Mean age (SD) at pregnancy: No RAI: 26.5 (5.4) RAI scanning dose: 30.7 (4.7)RAI ablation does: 31.4 (4.6) | Miscarriage: 18 of 143 pregnancies with RAIT (13 of 116 pregnancies with I131 ablative dose) and 7 of 110 pregnancies without RAIT Preterm delivery: 11 of 143 pregnancies with RAIT (7 of 116 pregnancies with I131 ablative dose) and 1 of 110 pregnancies without RAITCongenital malformation was not observed |
Vini et al. 2002 [37] | UK | Case series design | Data from one institution in UK | 441 pregnancies after thyroid cancer treatment (276 women) | 441 pregnancies (276 women) | NA | Miscarriage:14 of 441 pregnancies after RAIT Preterm delivery: 4 of 427 pregnancies after RAIT Congenital malformation: 0 of 427 pregnancies after RAIT |
Lin et al. 1998 [38] | Taiwan | Case series design | Data from one institution in Taiwan | 58 pregnancies after I131 treatment (37 women) | 58 pregnancies | Mean age at pregnancy (SD): 27.97 (3.49) | Miscarriage: 8 of 58 pregnancies after RAIT Preterm delivery: 3 of 58 pregnancies after RAIT Congenital malformation: 1 of 58 pregnancies after RAIT |
Ayala et al. 1998 [39] | Spain | Case series design | Data from one institution in Spain | 39 pregnancies after I131 treatment (26 women) | 39 pregnancies | Mean age at the time of the first pregnancy: 26.9 | Miscarriage: 2 of 39 pregnancies after RAIT Congenital malformation: 4 of 39 pregnancies after RAIT |
Dottorini et al. 1995 [36] | Italy | Case series design * | Data from one institution in Italy | 84 pregnancies in 64 women with thyroid cancer Cases: 65 pregnancies after RAIT Controls: 19 pregnancies without RAIT | 65 pregnancies | NA | Miscarriage: 3 of 65 pregnancies with RAIT and 1 of 19 pregnancies without RAIT Preterm delivery: 2 of 65 pregnancies with RAIT and 0 of 19 pregnancies without RAIT Congenital malformation: 1 of 65 pregnancies with RAIT and 0 of 19 pregnancies without RAIT |
Smith et al. 1994 [40] | USA | Case series design | Review of The University of Texas M. D. Anderson Cancer Center Tumor Registry | 69 pregnancies in 32 women after RAIT | 69 pregnancies | Mean age at I131 treatment: 18.3 | Miscarriage: 3 of 69 pregnancies after RAIT Preterm delivery: 4 of 69 pregnancies after RAIT Congenital malformation: 2 of 69 pregnancies after RAIT |
Casara et al. 1993 [41] | Italy | Case series design | Data from one institution in Italy | 70 women with RAIT | 70 women | Mean age (SD) at pregnancy: 29 (4.2) | Miscarriage: 2 of 75 pregnancies after RAIT Congenital malformation: 1 of 73 live births |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, S.; Yi, K.H.; Park, Y.J. Risk of Adverse Pregnancy Outcomes in Young Women with Thyroid Cancer: A Systematic Review and Meta-Analysis. Cancers 2022, 14, 2382. https://doi.org/10.3390/cancers14102382
Moon S, Yi KH, Park YJ. Risk of Adverse Pregnancy Outcomes in Young Women with Thyroid Cancer: A Systematic Review and Meta-Analysis. Cancers. 2022; 14(10):2382. https://doi.org/10.3390/cancers14102382
Chicago/Turabian StyleMoon, Shinje, Ka Hee Yi, and Young Joo Park. 2022. "Risk of Adverse Pregnancy Outcomes in Young Women with Thyroid Cancer: A Systematic Review and Meta-Analysis" Cancers 14, no. 10: 2382. https://doi.org/10.3390/cancers14102382
APA StyleMoon, S., Yi, K. H., & Park, Y. J. (2022). Risk of Adverse Pregnancy Outcomes in Young Women with Thyroid Cancer: A Systematic Review and Meta-Analysis. Cancers, 14(10), 2382. https://doi.org/10.3390/cancers14102382