Current Trend of Artificial Intelligence Patents in Digital Pathology: A Systematic Evaluation of the Patent Landscape
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Database Search
2.2. Data Search and Retrieval
2.3. Data Analysis
3. Results
3.1. Database Search
3.2. Global Trend of AI and DP Filing over the Years
3.3. Top Assignee Countries
3.4. Top Assignees
3.5. Subject Categorization of Patents
3.5.1. WSI
3.5.2. Segmentation
3.5.3. Classification
3.5.4. CNNs
3.5.5. Machine Learning
3.5.6. Training
3.5.7. Detection
3.5.8. Annotation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chong, Y.; Kim, D.C.; Jung, C.K.; Kim, D.-C.; Song, S.Y.; Joo, H.J.; Yi, S.-Y.; Medical Informatics Study Group of the Korean Society of Pathologists. Recommendations for pathologic practice using digital pathology: Consensus report of the Korean Society of Pathologists. J. Pathol. Transl. Med. 2020, 54, 437–452. [Google Scholar] [CrossRef]
- Nam, S.; Chong, Y.; Jung, C.K.; Kwak, T.-Y.; Lee, J.Y.; Park, J.; Rho, M.J.; Go, H. Introduction to digital pathology and computer-aided pathology. J. Pathol. Transl. Med. 2020, 54, 125–134. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Baxter, S.L.; Xu, J.; Xu, J.; Zhou, X.; Zhang, K. The practical implementation of artificial intelligence technologies in medicine. Nat. Med. 2019, 25, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Somashekhar, S.P.; Sepúlveda, M.J.; Puglielli, S.; Norden, A.D.; Shortliffe, E.H.; Rohit Kumar, C.; Rauthan, A.; Arun Kumar, N.; Patil, P.; Rhee, K.; et al. Watson for Oncology and breast cancer treatment recommendations: Agreement with an expert multidisciplinary tumor board. Ann. Oncol. 2018, 29, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Dheeba, J.; Albert Singh, N.; Tamil Selvi, S. Computer-aided detection of breast cancer on mammograms: A swarm intelligence optimized wavelet neural network approach. J. Biomed. Inform. 2014, 49, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Thakur, N.; Yoon, H.; Chong, Y. Current Trends of Artificial Intelligence for Colorectal Cancer Pathology Image Analysis: A Systematic Review. Cancers 2020, 12, 1884. [Google Scholar] [CrossRef] [PubMed]
- Chong, Y.; Lee, J.Y.; Kim, Y.; Choi, J.; Yu, H.; Park, G.; Cho, M.Y.; Thakur, N. A machine-learning expert-supporting system for diagnosis prediction of lymphoid neoplasms using a probabilistic decision-tree algorithm and immunohistochemistry profile database. J. Pathol. Transl. Med. 2020, 54, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Wood, L. Markets Reach and Global Digital Pathology Systems Market Report 2021: Market. Available online: https://www.globenewswire.com/news-release/2021/08/20/2284044/28124/en/Global-Digital-Pathology-Systems-Market-Report-2021-Market-to-Reach-US-1-4-Billion-by-2027-AI-Steps-in-to-Widen-the-Scope-Span-of-Digital-Pathology.html (accessed on 3 April 2022).
- China State Council. China’s New Generation of Artificial Intelligence Development Plan. 20 July 2020. [Google Scholar]
- Abadi, H.H.N.; Pecht, M. Artificial Intelligence Trends Based on the Patents Granted by the United States Patent and Trademark Office. IEEE Access 2020, 8, 81633–81643. [Google Scholar] [CrossRef]
- Krestel, R.; Chikkamath, R.; Hewel, C.; Risch, J. A survey on deep learning for patent analysis. World Pat. Inf. 2021, 65, 102035. [Google Scholar] [CrossRef]
- Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc. Neurol. 2017, 2, 230. [Google Scholar] [CrossRef] [PubMed]
- Cucoranu, I.C.; Parwani, A.V.; Vepa, S.; Weinstein, R.S.; Pantanowitz, L. Digital pathology: A systematic evaluation of the patent landscape. J. Pathol. Inf. 2014, 5, 16. [Google Scholar] [CrossRef] [PubMed]
- Bacus, J.V.; Bacus, J.W. Method and Apparatus for Acquiring and Reconstructing Magnified Specimen Images from a Computer-Controlled Microscope. U.S. Patent 6,101,265, 8 August 2000. [Google Scholar]
- Bacus, J.V.; Bacus, J.W. Method and Apparatus for Creating a Virtual Microscope Slide. U.S. Patent 6,272,235, 7 August 2001. [Google Scholar]
- Soenksen, D.G. Fully Automatic Rapid Microscope Slide Scanner. U.S. Patent 6,711,283, 23 March 2004. [Google Scholar]
- Soenksen, D.G. Fully Automatic Rapid Microscope Slide Scanner. U.S. Patent 6,917,696, 12 July 2005. [Google Scholar]
- Soenksen, D.G. Fully Automatic Rapid Microscope Slide Scanner. U.S. Patent 7,457,446, 25 November 2008. [Google Scholar]
- Soenksen, D.G. Fully Automatic Rapid Microscope Slide Scanner. U.S. Patent 8,055,042, 8 November 2011. [Google Scholar]
- Soenksen, D.G. Fully Automatic Rapid Microscope Slide Scanner. U.S. Patent 7,978,894, 12 July 2011. [Google Scholar]
- Soenksen, D.G. Fully Automatic Rapid Microscope Slide Scanner. U.S. Patent 8,385,619, 26 February 2013. [Google Scholar]
- Soenksen, D.G. Fully Automatic Rapid Microscope Slide Scanner. U.S. Patent 8,755,579, 17 June 2014. [Google Scholar]
- Soenksen, D.G. Fully Automatic Rapid Microscope Slide Scanner. U.S. Patent 9,386,211, 5 July 2016. [Google Scholar]
- Soenksen, D.G. Fully Automatic Rapid Microscope Slide Scanner. U.S. Patent 9,851,550, 26 December 2017. [Google Scholar]
- Sarkar, A.; Martin, J.; Atchiso, J. Method Including Generating and Displaying a Focus Assist Image Indicating a Degree of Focus for a Plurality of Blocks Obtained by Dividing a Frame of Image Signal. U.S. Patent 10,181,180, 9 November 2019. [Google Scholar]
- Bredno, J.; Chefd’hotel, C.; Chen, T.; Chukka, S.; Nguyen, K. Adaptive Classification for Whole Slide Tissue Segmentation. U.S. Patent 10,898,222, 7 February 2021. [Google Scholar]
- Bredno, J.; Chefd’hotel, C.; Chen, T.; Chukka, S.; Nguyen, K. Adaptive Classification for Whole Slide Tissue Segmentation. U.S. Patent 10,102,418, 16 October 2018. [Google Scholar]
- Chukka, S.; Chivate, S.S.; Patil, S.H.; Sabata, B.; Sertel, O.; Sarkar, A. Tissue Object-Based Machine Learning System for Automated Scoring of Digital Whole Slides. U.S. Patent 10,176,579, 8 January 2019. [Google Scholar]
- Cosatto, E.; Malon, C.; Graf, H.P. Cloud-Based Digital Pathology. U.S. Patent 8,897,537, 25 November 2014. [Google Scholar]
- Mouton, P.R.; Phoulady, H.A.G.; Hall, D.; Lawrence, O. Automated Stereology for Determining Tissue Characteristics. U.S. Patent 11,004,199, 11 May 2021. [Google Scholar]
- Erler, B.S.M.; Alberto, M. Method and Apparatus for Providing Preferentially Segmented Digital Images. U.S. Patent 5,687,251, 11 November 1997. [Google Scholar]
- Yip, S.H.; Sha, I.; Bolesla, L.O. Artificial Intelligence Segmentation of Tissue Images. U.S. Patent 10,991,097, 2021. [Google Scholar]
- Wang, S.; Dai, S.; Nakamura, A.O.; Jun, T.Y. Systems and Methods for Segmenting Digital Images. U.S. Patent 8,345,976, 1 January 2013. [Google Scholar]
- Sarkar, A.M.; Atchison, J.J. Foreground Segmentation and Nucleus Ranking for Scoring Dual ISH Images. U.S. Patent 10,475,190, 12 November 2019. [Google Scholar]
- Sarkar, A.M.; Atchison, J.J. Foreground Segmentation and Nucleus Ranking for Scoring Dual ISH Images. U.S. Patent 10,909,687, 2 February 2021. [Google Scholar]
- Gholap, A.J.; Gurunath, K.A. Automated Method of Predicting Efficacy of Immunotherapy Approaches. U.S. Patent 10,586,376, 10 March 2020. [Google Scholar]
- West, D.R.S.; Coleman, C.; Yeo, M.J.; Brian, H.; William, H. Computing Technologies for Image Operations. U.S. Patent 10,614,285, 7 April 2020. [Google Scholar]
- Al-Kofahi, Y.; Rusu, M. System and Method for Single Channel Whole Cell Segmentation. U.S. Patent 10,789,451, 29 September 2020. [Google Scholar]
- Dietrich, D.; Bhandarkar, M.; Reiner, D.S. Cluster-Based Classification of High-Resolution Data. U.S. Patent 8,873,836, 28 October 2014. [Google Scholar]
- Cosatto, E.; Laquerre, P.-F.; Malon, C.; Graf, H.-P.; Melvin, I. Computationally Efficient Whole Tissue Classifier for Histology Slides. U.S. Patent 9,224,106, 29 December 2015. [Google Scholar]
- Madabhushi, A.; Nirschl, J.J.; Janowczyk, A.; Peyster, E.G.; Feldman, M.D.; Margulies, K.B. Histomorphometric Classifier to Predict Cardiac Failure from Whole-Slide Hematoxylin and Eosin Stained Images. U.S. Patent 10,528,848, 7 January 2020. [Google Scholar]
- Fuchs, T.; Campanella, G. Systems and Methods for Multiple Instance Learning for Classification and Localization in Biomedical Imaging. U.S. Patent 10,810,736, 20 October 2020. [Google Scholar]
- Madabhushi, A.; Janowczyk, A. Quality Control for Digital Pathology Slides. U.S. Patent 10,861,156, 8 December 2020. [Google Scholar]
- Madabhushi, A.; Wang, X.; Vaidya, P.; Velcheti, V. Predicting Recurrence in Early Stage Non-Small Cell Lung Cancer (NSCLC) with Integrated Radiomic and Pathomic Features. U.S. Patent 10,846,367, 24 November 2020. [Google Scholar]
- Madabhushi, A.; Wang, X.; Velcheti, V. Predicting Recurrence in Early Stage Non-Small Cell Lung Cancer (NSCLC) Using Spatial Arrangement of Clusters of Tumor Infiltrating Lymphocytes and Cancer Nuclei. U.S. Patent 10,956,795, 23 March 2021. [Google Scholar]
- Barnes, M.; Bifulco, C.; Chen, T.; Tubbs, A. Image Processing Method and System for Analyzing a Multi-Channel Image Obtained from a Biological Tissue Sample Being Stained by Multiple Stains. U.S. Patent 10,275,880, 30 April 2019. [Google Scholar]
- Madabhushi, A.; Roa, A.A.C.; Gonzalez, F. High-Throughput Adaptive Sampling for Whole-Slide Histopathology Image Analysis. U.S. Patent 10,049,450, 14 August 2018. [Google Scholar]
- Madabhushi, A.; Lu, C. Predicting Cancer Progression Using Cell Run Length Features. U.S. Patent 10,503,959, 10 December 2019. [Google Scholar]
- Reicher, M.A.; Trambert, M.; Fram, E.K. Computer-Aided Analysis and Rendering of Medical Images Using User-Defined Rules. U.S. Patent 9,934,568, 3 April 2018. [Google Scholar]
- Song, B.; Jaber, M. Few-Shot Learning Based Image Recognition of Whole Slide Image at Tissue Level. U.S. Patent 10,769,788, 8 September 2020. [Google Scholar]
- Fuchs, T.; Campanella, G. Systems and Methods for Multiple Instance Learning for Classification and Localization in Biomedical Imaging. U.S. Patent 10,445,879, 15 October 2019. [Google Scholar]
- Agaian, S.; Mosquera-Lopez, C.M.; Greenblatt, A. Systems and Methods for Quantitative Analysis of Histopathology Images Using Multiclassifier Ensemble Schemes. U.S. Patent 10,055,551, 21 August 2018. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Roth, H.R.; Lu, L.; Seff, A.; Cherry, K.M.; Hoffman, J.; Wang, S.; Liu, J.; Turkbey, E.; Summers, R.M. A New 2.5D Representation for Lymph Node Detection Using Random Sets of Deep Convolutional Neural Network Observations; Spring: Cham, Switzerland, 2014; pp. 520–527. [Google Scholar]
- Farabet, C.; Couprie, C.; Najman, L.; Lecun, Y. Learning hierarchical features for scene labeling. IEEE Trans. Pattern. Anal. Mach. Intell. 2013, 35, 1915–1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collobert, R.; Weston, J. A unified architecture for natural language processing: Deep neural networks with multitask learning. In Proceedings of the ICML ‘08, Helsinki, Finland, 5–9 July 2008. [Google Scholar]
- Sakamoto, T.; Furukawa, T.; Lami, K.; Pham, H.H.N.; Uegami, W.; Kuroda, K.; Kawai, M.; Sakanashi, H.; Cooper, L.A.D.; Bychkov, A.; et al. A narrative review of digital pathology and artificial intelligence: Focusing on lung cancer. Transl. Lung Cancer Res. 2020, 9, 2255–2276. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Wang, S.; Nakamura, A.; Ohashi, T.; Yokono, J. Digital Image Analysis Using Multi-Step Analysis. U.S. Patent 8,351,676, 8 January 2013. [Google Scholar]
- Cosatto, E.; Malon, C.; Graf, H.P. Interactive Analytics of Digital Histology Slides. U.S. Patent 8,934,718, 13 January 2015. [Google Scholar]
- Cosatto, E.; Laquerre, P.-F.; Malon, C.; Graf, H.-P. Whole Tissue Classifier for Histology Biopsy Slides. U.S. Patent 9,060,685, 23 June 2015. [Google Scholar]
- Douglas, R.E. Method and Apparatus for Generating an Artificial Intelligence 3D Dataset and Performing Interactive Manipulation and Rendering of the Dataset. U.S. Patent 10,950,338, 16 March 2021. [Google Scholar]
- Wirch, E.W.; Andryushkin, A.; Wingard II, R.Y.; Lee, N.; Scourtas, A.O.; Wilbur, D.C. Multi-Sample Whole Slide Image Processing in Digital Pathology via Multi-Resolution Registration and Machine Learning. U.S. Patent 10,943,346, 9 March 2021. [Google Scholar]
- Znamenskiy, D.N.; Sigdel, K.; Van Driel, M. Learning Annotation of Objects in Image. U.S. Patent 10,885,392, 5 January 2021. [Google Scholar]
- Smith, R.B.; Murdock, M.C. Machine Learning Classification and Training for Digital Microscopy Cytology Images. U.S. Patent 10,552,663, 4 February 2020. [Google Scholar]
- Yousfi, R.; Schueffler, P.; Fresneau, T.; Tsema, A. Systems and Methods of Automatically Processing Electronic Images across Regions. U.S. Patent 11,211,160, 28 December 2021. [Google Scholar]
- Madabhushi, A.; Lu, C. Predicting Cancer Recurrence Using Local Co-Occurrence of Cell Morphology (LoCoM). U.S. Patent 10,783,627, 22 September 2020. [Google Scholar]
- Beck, A.H.; Khosla, A. Systems and Methods for Training a Model to Predict Survival Time for a Patient. U.S. Patent 10,650,929, 12 May 2020. [Google Scholar]
- Beck, A.H.; Khosla, A. Systems and Methods for Predicting Tissue Characteristics for a Pathology Image Using a Statistical Model. U.S. Patent 11,080,855, 3 August 2021. [Google Scholar]
- Yao, L.; Prosky, J.; Poblenz, E.C.; Lyman, K. Global Multi-Label Generating System. U.S. Patent 10,943,681, 9 March 2021. [Google Scholar]
- Lesniak, J.M. Identifying and Excluding Blurred Areas of Images of Stained Tissue to Improve Cancer Scoring. U.S. Patent 10,565,479, 18 February 2020. [Google Scholar]
- Lesniak, J.M. Identifying and Excluding Blurred Areas of Images of Stained Tissue to Improve Cancer Scoring. U.S. Patent 10,438,096, 8 October 2019. [Google Scholar]
- Kamen, A.; Sun, S.; Chen, T.; Mansi, T.; Gigler, A.M.; Charalampaki, P.; Fleischer, M.; Comaniciu, D. System and Method for Surgical Guidance and Intra-Operative Pathology through Endo-Microscopic Tissue Differentiation. U.S. Patent 10,635,924, 28 April 2020. [Google Scholar]
- Gur, D.; Zheng, B. Image Quality Based Adaptive Optimization of Computer Aided Detection Schemes. U.S. Patent 6,278,793, 21 August 2001. [Google Scholar]
- Lange, H.; Krueger, J.; Young, G.D.; Johnson, T.; Voelker, F.; Potts, S. Cell-Based Tissue Analysis. U.S. Patent 9,488,639, 8 November 2016. [Google Scholar]
- Bachelet, I.; Pollak, J.J.; Levner, D.; Bilu, Y.; Yorav-Raphael, N. Apparatus and Method for Analyzing a Bodily Sample. U.S. Patent 10,843,190, 24 November 2020. [Google Scholar]
- Eshel, Y.S.; Lezmy, N.; Gluck, D.; Houri Yafin, A.; Pollak, J.J. Methods and Apparatus for Detecting an Entity in a Bodily Sample. U.S. Patent 10,663,712, 26 May 2020. [Google Scholar]
- Gurcan, M.; Frankel, W.; Chen, W.; Ahmad Fauzi, M.F. Automated Identification of Tumor Buds. U.S. Patent 10,977,794, 13 April 2021. [Google Scholar]
- Tizhoosh, H.R. Systems and Methods for Barcode Annotations for Digital Images. U.S. Patent 10,628,736, 30 March 2017. [Google Scholar]
- Chukka, S.; Nguyen, K.; Chen, T. Computer Scoring Based on Primary Stain and Immunohistochemistry Images. U.S. Patent 10,977,791, 26 December 2019. [Google Scholar]
- Reicher, M.A.; Fram, E.K. Systems and User Interfaces for Automated Generation of Matching 2D Series of Medical Images and Efficient Annotation of Matching 2D Medical Images. U.S. Patent 10,127,662, 13 November 2018. [Google Scholar]
Inventors | Affiliations | Number of Patents |
---|---|---|
Fuchs Thomas | PAIGE.AI | 25 |
El-Zehiry Noha | Siemens | 25 |
Arar Nuri Murat | IBM | 13 |
Barnes Michael | Ventana | 11 |
Rusko Laszlo | GE Company | 10 |
Madabhushi Anant | Case Western Reserve Univ. | 10 |
Jianhua Yao | TENCENT | 8 |
Stephen Reserve | TEMPUS LABS | 8 |
Van Driel Marc | Philips | 8 |
Timothy Burton | Analytics For Life | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ailia, M.J.; Thakur, N.; Abdul-Ghafar, J.; Jung, C.K.; Yim, K.; Chong, Y. Current Trend of Artificial Intelligence Patents in Digital Pathology: A Systematic Evaluation of the Patent Landscape. Cancers 2022, 14, 2400. https://doi.org/10.3390/cancers14102400
Ailia MJ, Thakur N, Abdul-Ghafar J, Jung CK, Yim K, Chong Y. Current Trend of Artificial Intelligence Patents in Digital Pathology: A Systematic Evaluation of the Patent Landscape. Cancers. 2022; 14(10):2400. https://doi.org/10.3390/cancers14102400
Chicago/Turabian StyleAilia, Muhammad Joan, Nishant Thakur, Jamshid Abdul-Ghafar, Chan Kwon Jung, Kwangil Yim, and Yosep Chong. 2022. "Current Trend of Artificial Intelligence Patents in Digital Pathology: A Systematic Evaluation of the Patent Landscape" Cancers 14, no. 10: 2400. https://doi.org/10.3390/cancers14102400
APA StyleAilia, M. J., Thakur, N., Abdul-Ghafar, J., Jung, C. K., Yim, K., & Chong, Y. (2022). Current Trend of Artificial Intelligence Patents in Digital Pathology: A Systematic Evaluation of the Patent Landscape. Cancers, 14(10), 2400. https://doi.org/10.3390/cancers14102400