Induction of Fatigue by Specific Anthracycline Cancer Drugs through Disruption of the Circadian Pacemaker
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Cell Culture
2.3. Fractionation Assay
2.4. Western Blot
2.5. Microscopy
2.6. Animals
2.7. Behavioral Activity
2.8. EEG/EMG Surgery
2.9. EEG/EMG Recording
2.10. Cytostatic Treatment
2.11. Data and Statistical Analysis
3. Results
3.1. Doxorubicin-Treated Mice Develop Fatigue-Like Symptoms
3.2. Anthracycline Variants Have Diverse Underlying Mechanism of Action
3.3. Sleep–Wake Patterns Were Not Affected by Chemotherapy Treatment
3.4. Doxorubicin-Treated Mice Exhibit a Disrupted Circadian Clock
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cella, D.; Davis, K.; Breitbart, W.; Curt, G.; Coalition, F.T.F. Cancer-Related Fatigue: Prevalence of Proposed Diagnostic Criteria in a United States Sample of Cancer Survivors. J. Clin. Oncol. 2001, 19, 3385–3391. [Google Scholar] [CrossRef] [PubMed]
- Hofman, M.; Ryan, J.L.; Figueroa-Moseley, C.D.; Jean-Pierre, P.; Morrow, G.R. Cancer-Related Fatigue: The Scale of the Problem. Oncol. 2007, 12 (Suppl. S1), 4–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Servaes, P.; Gielissen, M.F.M.; Verhagen, S.; Bleijenberg, G. The course of severe fatigue in disease-free breast cancer patients: A longitudinal study. Psycho Oncol. 2006, 16, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A.L.; Nail, L.M.; Chen, R.N.; Meek, P.; Barsevick, A.M.; King, M.E.; Jones, L.S. Fatique Patterns Observed in Patients Receiving Chemotherapy and Radiotherapy. Cancer Investig. 2000, 18, 11–19. [Google Scholar] [CrossRef]
- Stone, P.; Richardson, A.; Ream, E.; Smith, A.G.; Kerr, D.J.; Kearney, N. Cancer-related fatigue: Inevitable, unimportant and untreatable? Results of a multi-centre patient survey. Ann. Oncol. 2000, 11, 971–976. [Google Scholar] [CrossRef]
- Yang, S.; Chu, S.; Gao, Y.; Ai, Q.; Liu, Y.; Li, X.; Chen, N. A Narrative Review of Cancer-Related Fatigue (CRF) and Its Possible Pathogenesis. Cells 2019, 8, 738. [Google Scholar] [CrossRef] [Green Version]
- Bower, J.E.; Lamkin, D.M. Inflammation and cancer-related fatigue: Mechanisms, contributing factors, and treatment implications. Brain Behav. Immun. 2012, 30, S48–S57. [Google Scholar] [CrossRef] [Green Version]
- Prigozin, A.; Uziely, B.; Musgrave, C.F. The Relationship Between Symptom Severity and Symptom Interference, Education, Age, Marital Status, and Type of Chemotherapy Treatment in Israeli Women with Early-Stage Breast Cancer. Oncol. Nurs. Forum 2010, 37, E411–E418. [Google Scholar] [CrossRef] [Green Version]
- Bower, J.E. Cancer-related fatigue—mechanisms, risk factors, and treatments. Nat. Rev. Clin. Oncol. 2014, 11, 597–609. [Google Scholar] [CrossRef]
- Tewey, K.M.; Rowe, T.C.; Yang, L.; Halligan, B.D.; Liu, L.F. Adriamycin-Induced DNA Damage Mediated by Mammalian DNA Topoisomerase II. Science 1984, 226, 466–468. [Google Scholar] [CrossRef]
- Nitiss, J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer 2009, 9, 338–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Zanden, S.Y.; Qiao, X.; Neefjes, J. New insights into the activities and toxicities of the old anticancer drug doxorubicin. FEBS J. 2020, 288, 6095–6111. [Google Scholar] [CrossRef] [PubMed]
- Pang, B.; Qiao, X.; Janssen, L.; Velds, A.; Groothuis, T.; Kerkhoven, R.; Nieuwland, M.; Ovaa, H.; Rottenberg, S.; van Tellingen, O.; et al. Drug-induced histone eviction from open chromatin contributes to the chemotherapeutic effects of doxorubicin. Nat. Commun. 2013, 4, 1908–1913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, F.; Kemp, C.J.; Henikoff, S. Doxorubicin Enhances Nucleosome Turnover around Promoters. Curr. Biol. 2013, 23, 782–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, X.; van der Zanden, S.Y.; Wander, D.P.A.; Borràs, D.M.; Song, J.-Y.; Li, X.; van Duikeren, S.; van Gils, N.; Rutten, A.; van Herwaarden, T.; et al. Uncoupling DNA damage from chromatin damage to detoxify doxorubicin. Proc. Natl. Acad. Sci. USA 2020, 117, 15182–15192. [Google Scholar] [CrossRef]
- Wander, D.P.A.; van der Zanden, S.Y.; van der Marel, G.A.; Overkleeft, H.S.; Neefjes, J.; Codée, J.D.C. Doxorubicin and Aclarubicin: Shuffling Anthracycline Glycans for Improved Anticancer Agents. J. Med. Chem. 2020, 63, 12814–12829. [Google Scholar] [CrossRef]
- Zombeck, J.A.; Fey, E.G.; Lyng, G.D.; Sonis, S.T. A clinically translatable mouse model for chemotherapy-related fatigue. Comp. Med. 2013, 63, 491–497. [Google Scholar]
- Borniger, J.C.; Gaudier-Diaz, M.M.; Zhang, N.; Nelson, R.J.; DeVries, A.C. Cytotoxic chemotherapy increases sleep and sleep fragmentation in non-tumor-bearing mice. Brain Behav. Immun. 2014, 47, 218–227. [Google Scholar] [CrossRef]
- Meijer, J.H.; Robbers, Y. Wheel running in the wild. Proc. R. Soc. B Boil. Sci. 2014, 281, 20140210. [Google Scholar] [CrossRef] [Green Version]
- Gu, C.; Coomans, C.P.; Hu, K.; Scheer, F.A.J.L.; Stanley, H.E.; Meijer, J.H. Lack of exercise leads to significant and reversible loss of scale invariance in both aged and young mice. Proc. Natl. Acad. Sci. USA 2015, 112, 2320–2324. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, K.A.; Grant, C.V.; Jordan, K.R.; Vickery, S.S.; Pyter, L.M. Voluntary wheel running ameliorates select paclitaxel chemotherapy-induced sickness behaviors and associated melanocortin signaling. Behav. Brain Res. 2020, 399, 113041. [Google Scholar] [CrossRef] [PubMed]
- Ray, M.A.; Trammell, R.A.; Verhulst, S.; Ran, S.; Toth, L.A. Development of a mouse model for assessing fatigue during chemotherapy. Comp. Med. 2011, 61, 119–130. [Google Scholar] [PubMed]
- Wood, L.J.; Nail, L.M.; Perrin, N.A.; Elsea, C.R.; Fischer, A.; Druker, B.J. The Cancer Chemotherapy Drug Etoposide (VP-16) Induces Proinflammatory Cytokine Production and Sickness Behavior–like Symptoms in a Mouse Model of Cancer Chemotherapy–Related Symptoms. Biol. Res. Nurs. 2006, 8, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, K.A.; Grant, C.V.; Jordan, K.R.; Obrietan, K.; Pyter, L.M. Paclitaxel chemotherapy disrupts behavioral and molecular circadian clocks in mice. Brain Behav. Immun. 2021, 99, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Panagiotou, M.; Papagiannopoulos, K.; Rohling, J.H.T.; Meijer, J.H.; DeBoer, T. How Old Is Your Brain? Slow-Wave Activity in Non-rapid-eye-movement Sleep as a Marker of Brain Rejuvenation After Long-Term Exercise in Mice. Front. Aging Neurosci. 2018, 10, 233. [Google Scholar] [CrossRef] [PubMed]
- De Boer, T.; Ruijgrok, G.; Meijer, J.H. Short light-dark cycles affect sleep in mice. Eur. J. Neurosci. 2007, 26, 3518–3523. [Google Scholar] [CrossRef] [PubMed]
- Panagiotou, M.; Vyazovskiy, V.V.; Meijer, J.H.; DeBoer, T. Differences in electroencephalographic non-rapid-eye movement sleep slow-wave characteristics between young and old mice. Sci. Rep. 2017, 7, 43656. [Google Scholar] [CrossRef] [Green Version]
- Stenvers, D.J.; Van Dorp, R.; Foppen, E.; Mendoza, J.; Opperhuizen, A.-L.; Fliers, E.; Bisschop, P.H.; Meijer, J.H.; Kalsbeek, A.; Deboer, T. Dim light at night disturbs the daily sleep-wake cycle in the rat. Sci. Rep. 2016, 6, 35662. [Google Scholar] [CrossRef] [Green Version]
- De Jong, N.; Candel, M.J.J.M.; Schouten, H.C.; Abu-Saad, H.H.; Courtens, A.M. Prevalence and course of fatigue in breast cancer patients receiving adjuvant chemotherapy. Ann. Oncol. 2004, 15, 896–905. [Google Scholar] [CrossRef]
- Gabizon, A.; Meshorer, A.; Barenholz, Y. Comparative long-term study of the toxicities of free and liposome-associated dox-orubicin in mice after intravenous administration. J. Natl. Cancer Inst. 1986, 77, 459–469. [Google Scholar]
- Bower, J.E.; Ganz, P.A.; Desmond, K.A.; Rowland, J.H.; Meyerowitz, B.E.; Belin, T.R. Fatigue in Breast Cancer Survivors: Occurrence, Correlates, and Impact on Quality of Life. J. Clin. Oncol. 2000, 18, 743–753. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Mills, P.J.; Rissling, M.; Fiorentino, L.; Natarajan, L.; Dimsdale, J.E.; Sadler, G.R.; Parker, B.A.; Ancoli-Israel, S. Fatigue and sleep quality are associated with changes in inflammatory markers in breast cancer patients undergoing chemotherapy. Brain Behav. Immun. 2012, 26, 706–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ancoli-Israel, S.; Moore, P.J.; Jones, V. The relationship between fatigue and sleep in cancer patients: A review. Eur. J. Cancer Care 2001, 10, 245–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dijk, D.; Czeisler, C. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J. Neurosci. 1995, 15, 3526–3538. [Google Scholar] [CrossRef] [PubMed]
- Welsh, D.K.; Engle, E.M.R.A.; Richardson, G.S.; Dement, W.C. Precision of circadian wake and activity onset timing in the mouse. J. Comp. Physiol. A Sens. Neural Behav. Physiol. 1986, 158, 827–834. [Google Scholar] [CrossRef]
- Kangas, M.; Bovbjerg, D.H.; Montgomery, G.H. Cancer-related fatigue: A systematic and meta-analytic review of non-pharmacological therapies for cancer patients. Psychol. Bull. 2008, 134, 700–741. [Google Scholar] [CrossRef] [Green Version]
- Branham, M.T.; Nadin, S.; Vargas-Roig, L.M.; Ciocca, D.R. DNA damage induced by paclitaxel and DNA repair capability of peripheral blood lymphocytes as evaluated by the alkaline comet assay. Mutat. Res. Toxicol. Environ. Mutagen. 2004, 560, 11–17. [Google Scholar] [CrossRef]
- Bower, J.E.; Ganz, P.A.; Desmond, K.A.; Bernaards, C.; Rowland, J.H.; Meyerowitz, B.E.; Belin, T.R. Fatigue in long-term breast carcinoma survivors. Cancer 2006, 106, 751–758. [Google Scholar] [CrossRef]
- Meijer, J.H.; Rietveld, W.J. Neurophysiology of the suprachiasmatic circadian pacemaker in rodents. Physiol. Rev. 1989, 69, 671–707. [Google Scholar] [CrossRef] [Green Version]
- Basso, J.C.; Morrell, J.I. The medial prefrontal cortex and nucleus accumbens mediate the motivation for voluntary wheel running in the rat. Behav. Neurosci. 2015, 129, 457–472. [Google Scholar] [CrossRef]
- Dreher, J.K.; Jackson, D.M. Role of D1 and D2 dopamine receptors in mediating locomotor activity elicited from the nucleus accumbens of rats. Brain Res. 1989, 487, 267–277. [Google Scholar] [CrossRef]
- Rich, T.A. Symptom clusters in cancer patients and their relation to EGFR ligand modulation of the circadian axis. J. Support. Oncol. 2007, 5, 167–174. [Google Scholar] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zanden, S.Y.v.d.; van Leerdam, S.; Tersteeg, M.M.H.; Kastelein, A.; Michel, S.; Neefjes, J.; Meijer, J.H.; Deboer, T. Induction of Fatigue by Specific Anthracycline Cancer Drugs through Disruption of the Circadian Pacemaker. Cancers 2022, 14, 2421. https://doi.org/10.3390/cancers14102421
Wang Y, Zanden SYvd, van Leerdam S, Tersteeg MMH, Kastelein A, Michel S, Neefjes J, Meijer JH, Deboer T. Induction of Fatigue by Specific Anthracycline Cancer Drugs through Disruption of the Circadian Pacemaker. Cancers. 2022; 14(10):2421. https://doi.org/10.3390/cancers14102421
Chicago/Turabian StyleWang, Yumeng, Sabina Y. van der Zanden, Suzanne van Leerdam, Mayke M. H. Tersteeg, Anneke Kastelein, Stephan Michel, Jacques Neefjes, Johanna H. Meijer, and Tom Deboer. 2022. "Induction of Fatigue by Specific Anthracycline Cancer Drugs through Disruption of the Circadian Pacemaker" Cancers 14, no. 10: 2421. https://doi.org/10.3390/cancers14102421
APA StyleWang, Y., Zanden, S. Y. v. d., van Leerdam, S., Tersteeg, M. M. H., Kastelein, A., Michel, S., Neefjes, J., Meijer, J. H., & Deboer, T. (2022). Induction of Fatigue by Specific Anthracycline Cancer Drugs through Disruption of the Circadian Pacemaker. Cancers, 14(10), 2421. https://doi.org/10.3390/cancers14102421