Management of Hematologic Malignancies in the Era of COVID-19 Pandemic: Pathogenetic Mechanisms, Impact of Obesity, Perspectives, and Challenges
Abstract
:Simple Summary
Abstract
1. Introduction
2. Overview of Obesity-Related Hematologic Neoplasms
3. Association between Obesity and Hematologic Cancers with COVID-19 Outcomes
3.1. COVID-19 and Obesity
3.2. COVID-19 Outcomes in Obesity-Related Hematologic Malignancies
4. Obesity, Related Hematologic Malignancies and Severe COVID-19: Pathogenetic Considerations
5. Vaccination against SARS-CoV-2 in Patients with Hematologic Malignancy
6. Blood Product Transfusion in the Era of COVID-19
7. Medical Therapy against COVID-19 among Individuals with Hematologic Malignancies
8. Influence of the COVID-19 Pandemic on the Treatment of Malignant Hematologic Disease
9. Lifestyle Changes (Diet and Exercise) and Cancer Survivorship in the Era of the COVID-19 Pandemic
10. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Chudasama, Y.V.; Gillies, C.L.; Zaccardi, F.; Coles, B.; Davies, M.J.; Seidu, S.; Khunti, K. Impact of COVID-19 on routine care for chronic diseases: A global survey of views from healthcare professionals. Diabetes Metab. Syndr. 2020, 14, 965–967. [Google Scholar] [CrossRef] [PubMed]
- Fekadu, G.; Bekele, F.; Tolossa, T.; Fetensa, G.; Turi, E.; Getachew, M.; Abdisa, E.; Assefa, L.; Afeta, M.; Demisew, W.; et al. Impact of COVID-19 pandemic on chronic diseases care follow-up and current perspectives in low resource settings: A narrative review. Int. J. Physiol. Pathophysiol. Pharmacol. 2021, 13, 86–93. [Google Scholar] [PubMed]
- Dalamaga, M.; Christodoulatos, G.S.; Karampela, I.; Vallianou, N.; Apovian, C.M. Understanding the Co-Epidemic of Obesity and COVID-19: Current Evidence, Comparison with Previous Epidemics, Mechanisms, and Preventive and Therapeutic Perspectives. Curr. Obes. Rep. 2021, 10, 214–243. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Chen, L.; Chen, L.; Yuan, G.; Fang, Y.; Chen, W.; Wu, D.; Liang, B.; Lu, X.; Ma, Y.; et al. COVID-19 in persons with haematological cancers. Leukemia 2020, 34, 1637–1645. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, Y.; Huang, Y.M.; Wang, M.; Ling, W.; Sui, Y.; Zhao, H.L. Obesity in patients with COVID-19: A systematic review and meta-analysis. Metabolism 2020, 113, 154378. [Google Scholar] [CrossRef]
- Vallianou, N.G.; Evangelopoulos, A.; Kounatidis, D.; Stratigou, T.; Christodoulatos, G.S.; Karampela, I.; Dalamaga, M. Diabetes Mellitus and SARS-CoV-2 Infection: Pathophysiologic Mechanisms and Implications in Management. Curr. Diabetes Rev. 2021, 17, e123120189797. [Google Scholar] [CrossRef]
- Avgerinos, K.I.; Spyrou, N.; Mantzoros, C.S.; Dalamaga, M. Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metabolism 2019, 92, 121–135. [Google Scholar] [CrossRef]
- Dalamaga, M.; Christodoulatos, G.S. Adiponectin as a biomarker linking obesity and adiposopathy to hematologic malignancies. Horm. Mol. Biol. Clin. Investig. 2015, 23, 5–20. [Google Scholar] [CrossRef]
- Lichtman, M.A. Obesity and the risk for a hematological malignancy: Leukemia, lymphoma, or myeloma. Oncologist 2010, 15, 1083–1101. [Google Scholar] [CrossRef] [Green Version]
- Larsson, S.C.; Wolk, A. Body mass index and risk of non-Hodgkin’s and Hodgkin’s lymphoma: A meta-analysis of prospective studies. Eur. J. Cancer 2011, 47, 2422–2430. [Google Scholar] [CrossRef]
- Strongman, H.; Brown, A.; Smeeth, L.; Bhaskaran, K. Body mass index and Hodgkin’s lymphoma: UK population-based cohort study of 5.8 million individuals. Br. J. Cancer 2019, 120, 768–770. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Wolk, A. Overweight and obesity and incidence of leukemia: A meta-analysis of cohort studies. Int. J. Cancer 2008, 122, 1418–1421. [Google Scholar] [CrossRef] [PubMed]
- Mazzarella, L.; Botteri, E.; Matthews, A.; Gatti, E.; Di Salvatore, D.; Bagnardi, V.; Breccia, M.; Montesinos, P.; Bernal, T.; Gil, C.; et al. Obesity is a risk factor for acute promyelocytic leukemia: Evidence from population and cross-sectional studies and correlation with FLT3 mutations and polyunsaturated fatty acid metabolism. Haematologica 2020, 105, 1559–1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georgakopoulou, R.; Andrikopoulou, A.; Sergentanis, T.N.; Fiste, O.; Zagouri, F.; Gavriatopoulou, M.; Psaltopoulou, T.; Kastritis, E.; Terpos, E.; Dimopoulos, M.A. Overweight/Obesity and Monoclonal Gammopathy of Undetermined Significance. Clin. Lymphoma Myeloma Leuk. 2021, 21, 361–367. [Google Scholar] [CrossRef]
- Landgren, O.; Rajkumar, S.V.; Pfeiffer, R.M.; Kyle, R.A.; Katzmann, J.A.; Dispenzieri, A.; Cai, Q.; Goldin, L.R.; Caporaso, N.E.; Fraumeni, J.F.; et al. Obesity is associated with an increased risk of monoclonal gammopathy of undetermined significance among black and white women. Blood 2010, 116, 1056–1059. [Google Scholar] [CrossRef] [Green Version]
- Thordardottir, M.; Lindqvist, E.K.; Lund, S.H.; Costello, R.; Burton, D.; Korde, N.; Mailankody, S.; Eiriksdottir, G.; Launer, L.J.; Gudnason, V.; et al. Obesity and risk of monoclonal gammopathy of undetermined significance and progression to multiple myeloma: A population-based study. Blood Adv. 2017, 1, 2186–2192. [Google Scholar] [CrossRef]
- Pylypchuk, R.D.; Schouten, L.J.; Goldbohm, R.A.; Schouten, H.C.; van den Brandt, P.A. Body mass index, height, and risk of lymphatic malignancies: A prospective cohort study. Am. J. Epidemiol. 2009, 170, 297–307. [Google Scholar] [CrossRef]
- Calle, E.E.; Rodriguez, C.; Walker-Thurmond, K.; Thun, M.J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 2003, 348, 1625–1638. [Google Scholar] [CrossRef] [Green Version]
- Kyrgiou, M.; Kalliala, I.; Markozannes, G.; Gunter, M.J.; Paraskevaidis, E.; Gabra, H.; Martin-Hirsch, P.; Tsilidis, K.K. Adiposity and cancer at major anatomical sites: Umbrella review of the literature. BMJ 2017, 356, j477. [Google Scholar] [CrossRef] [Green Version]
- Bhaskaran, K.; Douglas, I.; Forbes, H.; dos-Santos-Silva, I.; Leon, D.A.; Smeeth, L. Body-mass index and risk of 22 specific cancers: A population-based cohort study of 5.24 million UK adults. Lancet 2014, 384, 755–765. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Lim, U.; Park, Y.; Mayne, S.T.; Wang, R.; Hartge, P.; Hollenbeck, A.R.; Schatzkin, A. Obesity, lifestyle factors, and risk of myelodysplastic syndromes in a large US cohort. Am. J. Epidemiol. 2009, 169, 1492–1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwabkey, Z.; Al Ali, N.; Sallman, D.; Kuykendall, A.; Talati, C.; Sweet, K.; Lancet, J.; Padron, E.; Komrokji, R. Impact of obesity on survival of patients with myelodysplastic syndromes. Hematology 2021, 26, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Leiba, A.; Duek, A.; Afek, A.; Derazne, E.; Leiba, M. Obesity and related risk of myeloproliferative neoplasms among israeli adolescents. Obesity 2017, 25, 1187–1190. [Google Scholar] [CrossRef] [PubMed]
- Strom, S.S.; Yamamura, Y.; Kantarijian, H.M.; Cortes-Franco, J.E. Obesity, weight gain, and risk of chronic myeloid leukemia. Cancer Epidemiol. Biomark. Prev. 2009, 18, 1501–1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncombe, A.S.; Anderson, L.A.; James, G.; de Vocht, F.; Fritschi, L.; Mesa, R.; Clarke, M.; McMullin, M.F. Modifiable Lifestyle and Medical Risk Factors Associated With Myeloproliferative Neoplasms. Hemasphere 2020, 4, e327. [Google Scholar] [CrossRef]
- Leal, A.D.; Thompson, C.A.; Wang, A.H.; Vierkant, R.A.; Habermann, T.M.; Ross, J.A.; Mesa, R.A.; Virnig, B.A.; Cerhan, J.R. Anthropometric, medical history and lifestyle risk factors for myeloproliferative neoplasms in the Iowa Women’s Health Study cohort. Int. J. Cancer 2014, 134, 1741–1750. [Google Scholar] [CrossRef] [Green Version]
- Larsson, S.C.; Wolk, A. Obesity and risk of non-Hodgkin’s lymphoma: A meta-analysis. Int. J. Cancer 2007, 121, 1564–1570. [Google Scholar] [CrossRef]
- Willett, E.V.; Morton, L.M.; Hartge, P.; Becker, N.; Bernstein, L.; Boffetta, P.; Bracci, P.; Cerhan, J.; Chiu, B.C.; Cocco, P.; et al. Non-Hodgkin lymphoma and obesity: A pooled analysis from the InterLymph Consortium. Int. J. Cancer 2008, 122, 2062–2070. [Google Scholar] [CrossRef] [Green Version]
- Carda, J.P.; Santos, L.; Mariz, J.M.; Monteiro, P.; Goncalves, H.M.; Raposo, J.; Gomes da Silva, M. Management of ibrutinib treatment in patients with B-cell malignancies: Clinical practice in Portugal and multidisciplinary recommendations. Hematology 2021, 26, 785–798. [Google Scholar] [CrossRef]
- Da Cunha Junior, A.D.; Zanette, D.L.; Pericole, F.V.; Olalla Saad, S.T.; Barreto Campello Carvalheira, J. Obesity as a Possible Risk Factor for Progression from Monoclonal Gammopathy of Undetermined Significance Progression into Multiple Myeloma: Could Myeloma Be Prevented with Metformin Treatment? Adv. Hematol. 2021, 2021, 6615684. [Google Scholar] [CrossRef]
- Bruno, D.S.; Berger, N.A. Impact of bariatric surgery on cancer risk reduction. Ann. Transl. Med. 2020, 8, S13. [Google Scholar] [CrossRef] [PubMed]
- Look, A.R.G.; Yeh, H.C.; Bantle, J.P.; Cassidy-Begay, M.; Blackburn, G.; Bray, G.A.; Byers, T.; Clark, J.M.; Coday, M.; Egan, C.; et al. Intensive Weight Loss Intervention and Cancer Risk in Adults with Type 2 Diabetes: Analysis of the Look AHEAD Randomized Clinical Trial. Obesity 2020, 28, 1678–1686. [Google Scholar] [CrossRef]
- Tao, W.; Santoni, G.; von Euler-Chelpin, M.; Ljung, R.; Lynge, E.; Pukkala, E.; Ness-Jensen, E.; Romundstad, P.; Tryggvadottir, L.; Lagergren, J. Cancer Risk After Bariatric Surgery in a Cohort Study from the Five Nordic Countries. Obes. Surg. 2020, 30, 3761–3767. [Google Scholar] [CrossRef] [PubMed]
- Gurunathan, U.; Myles, P.S. Limitations of body mass index as an obesity measure of perioperative risk. Br. J. Anaesth. 2016, 116, 319–321. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Tsilingiris, D.; Dalamaga, M. The non-linear relationship between muscle mass and BMI calls into question the use of BMI as a major criterion for eligibility for bariatric surgery. Metabol. Open 2022, 13, 100164. [Google Scholar] [CrossRef]
- Hagstrom, H.; Andreasson, A.; Carlsson, A.C.; Jerkeman, M.; Carlsten, M. Body composition measurements and risk of hematological malignancies: A population-based cohort study during 20 years of follow-up. PLoS ONE 2018, 13, e0202651. [Google Scholar] [CrossRef]
- Dalamaga, M.; Crotty, B.H.; Fargnoli, J.; Papadavid, E.; Lekka, A.; Triantafilli, M.; Karmaniolas, K.; Migdalis, I.; Dionyssiou-Asteriou, A.; Mantzoros, C.S. B-cell chronic lymphocytic leukemia risk in association with serum leptin and adiponectin: A case-control study in Greece. Cancer Causes Control 2010, 21, 1451–1459. [Google Scholar] [CrossRef] [Green Version]
- Dalamaga, M.; Karmaniolas, K.; Chamberland, J.; Nikolaidou, A.; Lekka, A.; Dionyssiou-Asteriou, A.; Mantzoros, C.S. Higher fetuin-A, lower adiponectin and free leptin levels mediate effects of excess body weight on insulin resistance and risk for myelodysplastic syndrome. Metabolism 2013, 62, 1830–1839. [Google Scholar] [CrossRef]
- Dalamaga, M.; Karmaniolas, K.; Lekka, A.; Antonakos, G.; Thrasyvoulides, A.; Papadavid, E.; Spanos, N.; Dionyssiou-Asteriou, A. Platelet markers correlate with glycemic indices in diabetic, but not diabetic-myelodysplastic patients with normal platelet count. Dis. Markers 2010, 29, 55–61. [Google Scholar] [CrossRef]
- Dalamaga, M.; Karmaniolas, K.; Matekovits, A.; Migdalis, I.; Papadavid, E. Cutaneous manifestations in relation to immunologic parameters in a cohort of primary myelodysplastic syndrome patients. J. Eur. Acad. Dermatol. Venereol. 2008, 22, 543–548. [Google Scholar] [CrossRef]
- Dalamaga, M.; Karmaniolas, K.; Nikolaidou, A.; Chamberland, J.; Hsi, A.; Dionyssiou-Asteriou, A.; Mantzoros, C.S. Adiponectin and resistin are associated with risk for myelodysplastic syndrome, independently from the insulin-like growth factor-I (IGF-I) system. Eur. J. Cancer 2008, 44, 1744–1753. [Google Scholar] [CrossRef]
- Dalamaga, M.; Karmaniolas, K.; Panagiotou, A.; Hsi, A.; Chamberland, J.; Dimas, C.; Lekka, A.; Mantzoros, C.S. Low circulating adiponectin and resistin, but not leptin, levels are associated with multiple myeloma risk: A case-control study. Cancer Causes Control 2009, 20, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Dalamaga, M.; Karmaniolas, K.; Papadavid, E.; Pelecanos, N.; Migdalis, I. Association of thyroid disease and thyroid autoimmunity with multiple myeloma risk: A case-control study. Leuk. Lymphoma 2008, 49, 1545–1552. [Google Scholar] [CrossRef] [PubMed]
- Dalamaga, M.; Nikolaidou, A.; Karmaniolas, K.; Hsi, A.; Chamberland, J.; Dionyssiou-Asteriou, A.; Mantzoros, C.S. Circulating adiponectin and leptin in relation to myelodysplastic syndrome: A case-control study. Oncology 2007, 73, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Dalamaga, M.; Polyzos, S.A.; Karmaniolas, K.; Chamberland, J.; Lekka, A.; Triantafilli, M.; Migdalis, I.; Papadavid, E.; Mantzoros, C.S. Fetuin-A levels and free leptin index are reduced in patients with chronic lymphocytic leukemia: A hospital-based case-control study. Leuk. Lymphoma 2016, 57, 577–584. [Google Scholar] [CrossRef]
- Li, B.; Jones, L.L.; Geiger, T.L. IL-6 Promotes T Cell Proliferation and Expansion under Inflammatory Conditions in Association with Low-Level RORgammat Expression. J. Immunol. 2018, 201, 2934–2946. [Google Scholar] [CrossRef]
- Pronk, C.J.; Veiby, O.P.; Bryder, D.; Jacobsen, S.E. Tumor necrosis factor restricts hematopoietic stem cell activity in mice: Involvement of two distinct receptors. J. Exp. Med. 2011, 208, 1563–1570. [Google Scholar] [CrossRef] [Green Version]
- Schuettpelz, L.G.; Link, D.C. Regulation of hematopoietic stem cell activity by inflammation. Front. Immunol. 2013, 4, 204. [Google Scholar] [CrossRef] [Green Version]
- Tie, R.; Li, H.; Cai, S.; Liang, Z.; Shan, W.; Wang, B.; Tan, Y.; Zheng, W.; Huang, H. Interleukin-6 signaling regulates hematopoietic stem cell emergence. Exp. Mol. Med. 2019, 51, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, M.; Passegue, E. TNF-alpha Coordinates Hematopoietic Stem Cell Survival and Myeloid Regeneration. Cell Stem Cell 2019, 25, 357–372. [Google Scholar] [CrossRef] [Green Version]
- Gainsford, T.; Willson, T.A.; Metcalf, D.; Handman, E.; McFarlane, C.; Ng, A.; Nicola, N.A.; Alexander, W.S.; Hilton, D.J. Leptin can induce proliferation, differentiation, and functional activation of hemopoietic cells. Proc. Natl. Acad. Sci. USA 1996, 93, 14564–14568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papathanassoglou, E.; El-Haschimi, K.; Li, X.C.; Matarese, G.; Strom, T.; Mantzoros, C. Leptin receptor expression and signaling in lymphocytes: Kinetics during lymphocyte activation, role in lymphocyte survival, and response to high fat diet in mice. J. Immunol. 2006, 176, 7745–7752. [Google Scholar] [CrossRef] [PubMed]
- Konopleva, M.; Mikhail, A.; Estrov, Z.; Zhao, S.; Harris, D.; Sanchez-Williams, G.; Kornblau, S.M.; Dong, J.; Kliche, K.O.; Jiang, S.; et al. Expression and function of leptin receptor isoforms in myeloid leukemia and myelodysplastic syndromes: Proliferative and anti-apoptotic activities. Blood 1999, 93, 1668–1676. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, J.N.; Birmann, B.M.; Teras, L.R.; Pfeiffer, R.M.; Wang, Y.; Albanes, D.; Baris, D.; Colditz, G.A.; De Roos, A.J.; Giles, G.G.; et al. Low Levels of Circulating Adiponectin Are Associated with Multiple Myeloma Risk in Overweight and Obese Individuals. Cancer Res. 2016, 76, 1935–1941. [Google Scholar] [CrossRef] [Green Version]
- Tamara, A.; Tahapary, D.L. Obesity as a predictor for a poor prognosis of COVID-19: A systematic review. Diabetes Metab. Syndr. 2020, 14, 655–659. [Google Scholar] [CrossRef]
- Tsilingiris, D.; Dalamaga, M.; Liu, J. SARS-CoV-2 adipose tissue infection and hyperglycemia: A further step towards the understanding of severe COVID-19. Metabol. Open 2022, 13, 100163. [Google Scholar] [CrossRef]
- Battisti, S.; Pedone, C.; Napoli, N.; Russo, E.; Agnoletti, V.; Nigra, S.G.; Dengo, C.; Mughetti, M.; Conte, C.; Pozzilli, P.; et al. Computed Tomography Highlights Increased Visceral Adiposity Associated With Critical Illness in COVID-19. Diabetes Care 2020, 43, e129–e130. [Google Scholar] [CrossRef]
- Chandarana, H.; Dane, B.; Mikheev, A.; Taffel, M.T.; Feng, Y.; Rusinek, H. Visceral adipose tissue in patients with COVID-19: Risk stratification for severity. Abdom. Radiol. 2021, 46, 818–825. [Google Scholar] [CrossRef]
- Watanabe, M.; Risi, R.; Tuccinardi, D.; Baquero, C.J.; Manfrini, S.; Gnessi, L. Obesity and SARS-CoV-2: A population to safeguard. Diabetes Metab. Res. Rev. 2020, 36, e3325. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.; Piernas, C.; Astbury, N.M.; Hippisley-Cox, J.; O’Rahilly, S.; Aveyard, P.; Jebb, S.A. Associations between body-mass index and COVID-19 severity in 6.9 million people in England: A prospective, community-based, cohort study. Lancet Diabetes Endocrinol. 2021, 9, 350–359. [Google Scholar] [CrossRef]
- Kompaniyets, L.; Goodman, A.B.; Belay, B.; Freedman, D.S.; Sucosky, M.S.; Lange, S.J.; Gundlapalli, A.V.; Boehmer, T.K.; Blanck, H.M. Body Mass Index and Risk for COVID-19-Related Hospitalization, Intensive Care Unit Admission, Invasive Mechanical Ventilation, and Death—United States, March-December 2020. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 355–361. [Google Scholar] [CrossRef]
- Sjogren, L.; Stenberg, E.; Thuccani, M.; Martikainen, J.; Rylander, C.; Wallenius, V.; Olbers, T.; Kindblom, J.M. Impact of obesity on intensive care outcomes in patients with COVID-19 in Sweden-A cohort study. PLoS ONE 2021, 16, e0257891. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Nayak, L.; Kulkarni, U.P.; Mehra, N.; Yanamandra, U.; Kayal, S.; Damodar, S.; John, J.M.; Mehta, P.; Singh, S.; et al. Outcomes of patients with hematologic malignancies and COVID-19 from the Hematologic Cancer Registry of India. Blood Cancer J. 2022, 12, 2. [Google Scholar] [CrossRef]
- Pagano, L.; Salmanton-Garcia, J.; Marchesi, F.; Busca, A.; Corradini, P.; Hoenigl, M.; Klimko, N.; Koehler, P.; Pagliuca, A.; Passamonti, F.; et al. COVID-19 infection in adult patients with hematological malignancies: A European Hematology Association Survey (EPICOVIDEHA). J. Hematol. Oncol. 2021, 14, 168. [Google Scholar] [CrossRef]
- Levy, I.; Lavi, A.; Zimran, E.; Grisariu, S.; Aumann, S.; Itchaki, G.; Berger, T.; Raanani, P.; Harel, R.; Aviv, A.; et al. COVID-19 among patients with hematological malignancies: A national Israeli retrospective analysis with special emphasis on treatment and outcome. Leuk. Lymphoma 2021, 62, 3384–3393. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Suarez, J.; de la Cruz, J.; Cedillo, A.; Llamas, P.; Duarte, R.; Jimenez-Yuste, V.; Hernandez-Rivas, J.A.; Gil-Manso, R.; Kwon, M.; Sanchez-Godoy, P.; et al. Impact of hematologic malignancy and type of cancer therapy on COVID-19 severity and mortality: Lessons from a large population-based registry study. J. Hematol. Oncol. 2020, 13, 133. [Google Scholar] [CrossRef] [PubMed]
- Vijenthira, A.; Gong, I.Y.; Fox, T.A.; Booth, S.; Cook, G.; Fattizzo, B.; Martin-Moro, F.; Razanamahery, J.; Riches, J.C.; Zwicker, J.; et al. Outcomes of patients with hematologic malignancies and COVID-19: A systematic review and meta-analysis of 3377 patients. Blood 2020, 136, 2881–2892. [Google Scholar] [CrossRef]
- Wang, Q.; Berger, N.A.; Xu, R. When hematologic malignancies meet COVID-19 in the United States: Infections, death and disparities. Blood Rev. 2021, 47, 100775. [Google Scholar] [CrossRef]
- Lee, L.Y.W.; Cazier, J.B.; Starkey, T.; Briggs, S.E.W.; Arnold, R.; Bisht, V.; Booth, S.; Campton, N.A.; Cheng, V.W.T.; Collins, G.; et al. COVID-19 prevalence and mortality in patients with cancer and the effect of primary tumour subtype and patient demographics: A prospective cohort study. Lancet Oncol. 2020, 21, 1309–1316. [Google Scholar] [CrossRef]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef]
- Romero Starke, K.; Reissig, D.; Petereit-Haack, G.; Schmauder, S.; Nienhaus, A.; Seidler, A. The isolated effect of age on the risk of COVID-19 severe outcomes: A systematic review with meta-analysis. BMJ Glob. Health 2021, 6, e006434. [Google Scholar] [CrossRef] [PubMed]
- Henkens, M.; Raafs, A.G.; Verdonschot, J.A.J.; Linschoten, M.; van Smeden, M.; Wang, P.; van der Hooft, B.H.M.; Tieleman, R.; Janssen, M.L.F.; Ter Bekke, R.M.A.; et al. Age is the main determinant of COVID-19 related in-hospital mortality with minimal impact of pre-existing comorbidities, a retrospective cohort study. BMC Geriatr. 2022, 22, 184. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, V.; Gadi, N.; Spihlman, A.P.; Wu, S.C.; Choi, C.H.; Moulton, V.R. Aging, Immunity, and COVID-19: How Age Influences the Host Immune Response to Coronavirus Infections? Front. Physiol. 2020, 11, 571416. [Google Scholar] [CrossRef] [PubMed]
- Buikema, A.R.; Buzinec, P.; Paudel, M.L.; Andrade, K.; Johnson, J.C.; Edmonds, Y.M.; Jhamb, S.K.; Chastek, B.; Raja, H.; Cao, F.; et al. Racial and ethnic disparity in clinical outcomes among patients with confirmed COVID-19 infection in a large US electronic health record database. EClinicalMedicine 2021, 39, 101075. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Reid, S.A.; French, B.; Hennessy, C.; Hwang, C.; Gatson, N.T.; Duma, N.; Mishra, S.; Nguyen, R.; Hawley, J.E.; et al. Racial Disparities in COVID-19 Outcomes Among Black and White Patients With Cancer. JAMA Netw. Open 2022, 5, e224304. [Google Scholar] [CrossRef]
- Arnautovic, J.; Mazhar, A.; Souther, B.; Mikhijan, G.; Boura, J.; Huda, N. Cardiovascular Factors Associated with Septic Shock Mortality Risks. Spartan Med. Res. J. 2018, 3, 6516. [Google Scholar] [CrossRef] [PubMed]
- Mahalingam, M.; Moore, J.X.; Donnelly, J.P.; Safford, M.M.; Wang, H.E. Frailty Syndrome and Risk of Sepsis in the REasons for Geographic And Racial Differences in Stroke (REGARDS) Cohort. J. Intensive Care Med. 2019, 34, 292–300. [Google Scholar] [CrossRef]
- Nunes, J.P. Arterial hypertension and sepsis. Rev. Port. Cardiol. 2003, 22, 1375–1379. [Google Scholar]
- Papadimitriou-Olivgeris, M.; Aretha, D.; Zotou, A.; Koutsileou, K.; Zbouki, A.; Lefkaditi, A.; Sklavou, C.; Marangos, M.; Fligou, F. The Role of Obesity in Sepsis Outcome among Critically Ill Patients: A Retrospective Cohort Analysis. BioMed. Res. Int. 2016, 2016, 5941279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Ren, J.; Wang, G.; Liu, Q.; Guo, K.; Li, J. Association Between Diabetes Mellitus and Outcomes of Patients with Sepsis: A Meta-Analysis. Med. Sci. Monit. 2017, 23, 3546–3555. [Google Scholar] [CrossRef] [Green Version]
- Osuchowski, M.F.; Winkler, M.S.; Skirecki, T.; Cajander, S.; Shankar-Hari, M.; Lachmann, G.; Monneret, G.; Venet, F.; Bauer, M.; Brunkhorst, F.M.; et al. The COVID-19 puzzle: Deciphering pathophysiology and phenotypes of a new disease entity. Lancet Respir. Med. 2021, 9, 622–642. [Google Scholar] [CrossRef]
- Andersen, C.J.; Murphy, K.E.; Fernandez, M.L. Impact of Obesity and Metabolic Syndrome on Immunity. Adv. Nutr. 2016, 7, 66–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silzle, T.; Blum, S.; Schuler, E.; Kaivers, J.; Rudelius, M.; Hildebrandt, B.; Gattermann, N.; Haas, R.; Germing, U. Lymphopenia at diagnosis is highly prevalent in myelodysplastic syndromes and has an independent negative prognostic value in IPSS-R-low-risk patients. Blood Cancer J. 2019, 9, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray-Coquard, I.; Cropet, C.; Van Glabbeke, M.; Sebban, C.; Le Cesne, A.; Judson, I.; Tredan, O.; Verweij, J.; Biron, P.; Labidi, I.; et al. Lymphopenia as a prognostic factor for overall survival in advanced carcinomas, sarcomas, and lymphomas. Cancer Res. 2009, 69, 5383–5391. [Google Scholar] [CrossRef] [Green Version]
- Sewell, R.L. Lymphocyte abnormalities in myeloma. Br. J. Haematol. 1977, 36, 545–551. [Google Scholar] [CrossRef]
- Tanaka, S.; Isoda, F.; Ishihara, Y.; Kimura, M.; Yamakawa, T. T lymphopaenia in relation to body mass index and TNF-alpha in human obesity: Adequate weight reduction can be corrective. Clin. Endocrinol. 2001, 54, 347–354. [Google Scholar] [CrossRef]
- Huang, I.; Pranata, R. Lymphopenia in severe coronavirus disease-2019 (COVID-19): Systematic review and meta-analysis. J. Intensive Care 2020, 8, 36. [Google Scholar] [CrossRef]
- Li, W.; Lin, F.; Dai, M.; Chen, L.; Han, D.; Cui, Y.; Pan, P. Early predictors for mechanical ventilation in COVID-19 patients. Ther. Adv. Respir. Dis. 2020, 14, 1753466620963017. [Google Scholar] [CrossRef]
- Tan, L.; Wang, Q.; Zhang, D.; Ding, J.; Huang, Q.; Tang, Y.Q.; Wang, Q.; Miao, H. Lymphopenia predicts disease severity of COVID-19: A descriptive and predictive study. Signal Transduct. Target Ther. 2020, 5, 33. [Google Scholar] [CrossRef]
- Rahimmanesh, I.; Kouhpayeh, S.; Azizi, Y.; Khanahmad, H. Conceptual Framework for SARS-CoV-2-Related Lymphopenia. Adv. Biomed. Res. 2022, 11, 16. [Google Scholar] [CrossRef]
- Garbo, R.; Valent, F.; Gigli, G.L.; Valente, M. Pre-Existing Lymphopenia Increases the Risk of Hospitalization and Death after SARS-CoV-2 Infection. Infect. Dis. Rep. 2022, 14, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Goupil, R.; Brachemi, S.; Nadeau-Fredette, A.C.; Deziel, C.; Troyanov, Y.; Lavergne, V.; Troyanov, S. Lymphopenia and treatment-related infectious complications in ANCA-associated vasculitis. Clin. J. Am. Soc. Nephrol. 2013, 8, 416–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortega-Loubon, C.; Cano-Hernandez, B.; Poves-Alvarez, R.; Munoz-Moreno, M.F.; Roman-Garcia, P.; Balbas-Alvarez, S.; de la Varga-Martinez, O.; Gomez-Sanchez, E.; Gomez-Pesquera, E.; Lorenzo-Lopez, M.; et al. The Overlooked Immune State in Candidemia: A Risk Factor for Mortality. J. Clin. Med. 2019, 8, 1512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alahyari, S.; Rajaeinejad, M.; Jalaeikhoo, H.; Amani, D. Regulatory T Cells in Immunopathogenesis and Severity of COVID-19: A Systematic Review. Arch. Iran. Med. 2022, 25, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, T.; Calvi, L.M.; Becker, M.W.; Liesveld, J.L. Flaming and fanning: The Spectrum of inflammatory influences in myelodysplastic syndromes. Blood Rev. 2019, 36, 57–69. [Google Scholar] [CrossRef]
- Bosseboeuf, A.; Allain-Maillet, S.; Mennesson, N.; Tallet, A.; Rossi, C.; Garderet, L.; Caillot, D.; Moreau, P.; Piver, E.; Girodon, F.; et al. Pro-inflammatory State in Monoclonal Gammopathy of Undetermined Significance and in Multiple Myeloma Is Characterized by Low Sialylation of Pathogen-Specific and Other Monoclonal Immunoglobulins. Front. Immunol. 2017, 8, 1347. [Google Scholar] [CrossRef] [Green Version]
- Craver, B.M.; El Alaoui, K.; Scherber, R.M.; Fleischman, A.G. The Critical Role of Inflammation in the Pathogenesis and Progression of Myeloid Malignancies. Cancers 2018, 10, 104. [Google Scholar] [CrossRef] [Green Version]
- Purdue, M.P.; Hofmann, J.N.; Kemp, T.J.; Chaturvedi, A.K.; Lan, Q.; Park, J.H.; Pfeiffer, R.M.; Hildesheim, A.; Pinto, L.A.; Rothman, N. A prospective study of 67 serum immune and inflammation markers and risk of non-Hodgkin lymphoma. Blood 2013, 122, 951–957. [Google Scholar] [CrossRef] [Green Version]
- Sanada, F.; Taniyama, Y.; Muratsu, J.; Otsu, R.; Shimizu, H.; Rakugi, H.; Morishita, R. Source of Chronic Inflammation in Aging. Front. Cardiovasc. Med. 2018, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Pietrobon, A.J.; Teixeira, F.M.E.; Sato, M.N. I mmunosenescence and Inflammaging: Risk Factors of Severe COVID-19 in Older People. Front. Immunol. 2020, 11, 579220. [Google Scholar] [CrossRef]
- Nogueira, B.M.D.; Machado, C.B.; Montenegro, R.C.; MEA, D.E.M.; Moreira-Nunes, C.A. Telomere Length and Hematological Disorders: A Review. In Vivo 2020, 34, 3093–3101. [Google Scholar] [CrossRef] [PubMed]
- Gielen, M.; Hageman, G.J.; Antoniou, E.E.; Nordfjall, K.; Mangino, M.; Balasubramanyam, M.; de Meyer, T.; Hendricks, A.E.; Giltay, E.J.; Hunt, S.C.; et al. Body mass index is negatively associated with telomere length: A collaborative cross-sectional meta-analysis of 87 observational studies. Am. J. Clin. Nutr. 2018, 108, 453–475. [Google Scholar] [CrossRef] [PubMed]
- Johnscher, G.; Woenckhaus, C.; Nicolas, J.C.; Pons, M.; Descomps, B.; Crastes de Paulet, A. Specific modification of 17 beta-estradiol dehydrogenase from human placenta by nicotinamide- (5-bromoacetyl-4-methylimidazole) dinucleotide. FEBS Lett. 1976, 61, 176–179. [Google Scholar] [CrossRef] [Green Version]
- Aviv, A. Telomeres and COVID-19. FASEB J. 2020, 34, 7247–7252. [Google Scholar] [CrossRef] [PubMed]
- Tsilingiris, D.; Tentolouris, A.; Eleftheriadou, I.; Tentolouris, N. Telomere length, epidemiology and pathogenesis of severe COVID-19. Eur. J. Clin. Investig. 2020, 50, e13376. [Google Scholar] [CrossRef]
- Sanchez-Vazquez, R.; Guio-Carrion, A.; Zapatero-Gaviria, A.; Martinez, P.; Blasco, M.A. Shorter telomere lengths in patients with severe COVID-19 disease. Aging 2021, 13, 1–15. [Google Scholar] [CrossRef]
- Wang, Q.; Codd, V.; Raisi-Estabragh, Z.; Musicha, C.; Bountziouka, V.; Kaptoge, S.; Allara, E.; Angelantonio, E.D.; Butterworth, A.S.; Wood, A.M.; et al. Shorter leukocyte telomere length is associated with adverse COVID-19 outcomes: A cohort study in UK Biobank. EBioMedicine 2021, 70, 103485. [Google Scholar] [CrossRef]
- Mongelli, A.; Barbi, V.; Gottardi Zamperla, M.; Atlante, S.; Forleo, L.; Nesta, M.; Massetti, M.; Pontecorvi, A.; Nanni, S.; Farsetti, A.; et al. Evidence for Biological Age Acceleration and Telomere Shortening in COVID-19 Survivors. Int. J. Mol. Sci. 2021, 22, 6151. [Google Scholar] [CrossRef]
- Nie, M.; Yang, L.; Bi, X.; Wang, Y.; Sun, P.; Yang, H.; Liu, P.; Li, Z.; Xia, Y.; Jiang, W. Neutrophil Extracellular Traps Induced by IL8 Promote Diffuse Large B-cell Lymphoma Progression via the TLR9 Signaling. Clin. Cancer Res. 2019, 25, 1867–1879. [Google Scholar] [CrossRef]
- Podaza, E.; Sabbione, F.; Risnik, D.; Borge, M.; Almejun, M.B.; Colado, A.; Fernandez-Grecco, H.; Cabrejo, M.; Bezares, R.F.; Trevani, A.; et al. Neutrophils from chronic lymphocytic leukemia patients exhibit an increased capacity to release extracellular traps (NETs). Cancer Immunol. Immunother 2017, 66, 77–89. [Google Scholar] [CrossRef]
- D’Abbondanza, M.; Martorelli, E.E.; Ricci, M.A.; De Vuono, S.; Migliola, E.N.; Godino, C.; Corradetti, S.; Siepi, D.; Paganelli, M.T.; Maugeri, N.; et al. Increased plasmatic NETs by-products in patients in severe obesity. Sci. Rep. 2019, 9, 14678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skendros, P.; Mitsios, A.; Chrysanthopoulou, A.; Mastellos, D.C.; Metallidis, S.; Rafailidis, P.; Ntinopoulou, M.; Sertaridou, E.; Tsironidou, V.; Tsigalou, C.; et al. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J. Clin. Investig. 2020, 130, 6151–6157. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Wang, M.; Wang, H.; Hu, D.; Zipfel, P.F.; Hu, Y. How Does Complement Affect Hematological Malignancies: From Basic Mechanisms to Clinical Application. Front. Immunol. 2020, 11, 593610. [Google Scholar] [CrossRef]
- Shim, K.; Begum, R.; Yang, C.; Wang, H. Complement activation in obesity, insulin resistance, and type 2 diabetes mellitus. World J. Diabetes 2020, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- WHO. Who Sage Roadmap for Prioritizing Uses of COVID-19 Vaccines in the Context of Limited Supply. Available online: https://www.who.int/docs/default-source/immunization/sage/covid/sage-prioritization-roadmap-covid19-vaccines.pdf (accessed on 11 February 2022).
- Butsch, W.S.; Hajduk, A.; Cardel, M.I.; Donahoo, W.T.; Kyle, T.K.; Stanford, F.C.; Zeltser, L.M.; Kotz, C.M.; Jastreboff, A.M. COVID-19 vaccines are effective in people with obesity: A position statement from The Obesity Society. Obesity 2021, 29, 1575–1579. [Google Scholar] [CrossRef] [PubMed]
- Townsend, M.J.; Kyle, T.K.; Stanford, F.C. COVID-19 Vaccination and Obesity: Optimism and Challenges. Obesity 2021, 29, 634–635. [Google Scholar] [CrossRef]
- Stampfer, S.D.; Goldwater, M.S.; Jew, S.; Bujarski, S.; Regidor, B.; Daniely, D.; Chen, H.; Xu, N.; Li, M.; Green, T.; et al. Response to mRNA vaccination for COVID-19 among patients with multiple myeloma. Leukemia 2021, 35, 3534–3541. [Google Scholar] [CrossRef]
- Malard, F.; Gaugler, B.; Gozlan, J.; Bouquet, L.; Fofana, D.; Siblany, L.; Eshagh, D.; Adotevi, O.; Laheurte, C.; Ricard, L.; et al. Weak immunogenicity of SARS-CoV-2 vaccine in patients with hematologic malignancies. Blood Cancer J. 2021, 11, 142. [Google Scholar] [CrossRef]
- Teh, J.S.K.; Coussement, J.; Neoh, Z.C.F.; Spelman, T.; Lazarakis, S.; Slavin, M.A.; Teh, B.W. Immunogenicity of COVID-19 vaccines in patients with hematologic malignancies: A systematic review and meta-analysis. Blood Adv. 2022, 6, 2014–2034. [Google Scholar] [CrossRef]
- Thakkar, A.; Gonzalez-Lugo, J.D.; Goradia, N.; Gali, R.; Shapiro, L.C.; Pradhan, K.; Rahman, S.; Kim, S.Y.; Ko, B.; Sica, R.A.; et al. Seroconversion rates following COVID-19 vaccination among patients with cancer. Cancer Cell 2021, 39, 1081–1090.e2. [Google Scholar] [CrossRef]
- Greenberger, L.M.; Saltzman, L.A.; Senefeld, J.W.; Johnson, P.W.; DeGennaro, L.J.; Nichols, G.L. Antibody response to SARS-CoV-2 vaccines in patients with hematologic malignancies. Cancer Cell 2021, 39, 1031–1033. [Google Scholar] [CrossRef] [PubMed]
- Le Bourgeois, A.; Coste-Burel, M.; Guillaume, T.; Peterlin, P.; Garnier, A.; Bene, M.C.; Chevallier, P. Safety and Antibody Response After 1 and 2 Doses of BNT162b2 mRNA Vaccine in Recipients of Allogeneic Hematopoietic Stem Cell Transplant. JAMA Netw. Open 2021, 4, e2126344. [Google Scholar] [CrossRef] [PubMed]
- Salvini, M.; Maggi, F.; Damonte, C.; Mortara, L.; Bruno, A.; Mora, B.; Brociner, M.; Mattarucchi, R.; Ingrassia, A.; Sirocchi, D.; et al. Immunogenicity of anti-SARS-CoV-2 Comirnaty vaccine in patients with lymphomas and myeloma who underwent autologous stem cell transplantation. Bone Marrow Transpl. 2022, 57, 137–139. [Google Scholar] [CrossRef] [PubMed]
- Rimar, D.; Slobodin, G.; Paz, A.; Henig, I.; Zuckerman, T. SARS-COV-2 vaccination after stem cell transplantation for scleroderma. Ann. Rheum. Dis. 2021, 80, 1354–1355. [Google Scholar] [CrossRef]
- Tamariz-Amador, L.E.; Battaglia, A.M.; Maia, C.; Zherniakova, A.; Guerrero, C.; Zabaleta, A.; Burgos, L.; Botta, C.; Fortuno, M.A.; Grande, C.; et al. Immune biomarkers to predict SARS-CoV-2 vaccine effectiveness in patients with hematological malignancies. Blood Cancer J. 2021, 11, 202. [Google Scholar] [CrossRef]
- Earle, K.A.; Ambrosino, D.M.; Fiore-Gartland, A.; Goldblatt, D.; Gilbert, P.B.; Siber, G.R.; Dull, P.; Plotkin, S.A. Evidence for antibody as a protective correlate for COVID-19 vaccines. Vaccine 2021, 39, 4423–4428. [Google Scholar] [CrossRef]
- Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.J.; Triccas, J.A.; Davenport, M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 1205–1211. [Google Scholar] [CrossRef]
- CDC. COVID-19 Vaccines for Moderately or Severely Immunocompromised People. Available online: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/recommendations/immuno.html (accessed on 2 March 2022).
- Benotmane, I.; Bruel, T.; Planas, D.; Fafi-Kremer, S.; Schwartz, O.; Caillard, S. A fourth dose of the mRNA-1273 SARS-CoV-2 vaccine improves serum neutralization against the Delta variant in kidney transplant recipients. Kidney Int. 2022, 101, 1073–1076. [Google Scholar] [CrossRef]
- Regev-Yochay, G.; Gonen, T.; Gilboa, M.; Mandelboim, M.; Indenbaum, V.; Amit, S.; Meltzer, L.; Asraf, K.; Cohen, C.; Fluss, R.; et al. 4th Dose COVID mRNA Vaccines’ Immunogenicity & Efficacy Against Omicron VOC. MedRxiv 2022. [Google Scholar] [CrossRef]
- Re, D.; Seitz-Polski, B.; Brglez, V.; Carles, M.; Graca, D.; Benzaken, S.; Liguori, S.; Zahreddine, K.; Delforge, M.; Bailly-Maitre, B.; et al. Humoral and cellular responses after a third dose of SARS-CoV-2 BNT162b2 vaccine in patients with lymphoid malignancies. Nat. Commun. 2022, 13, 864. [Google Scholar] [CrossRef]
- Wood, E.M.; McQuilten, Z.K. Outpatient transfusions for myelodysplastic syndromes. Hematol. Am. Soc. Hematol. Educ. Program 2020, 2020, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Bakkour, S.; Saa, P.; Groves, J.A.; Montalvo, L.; Di Germanio, C.; Best, S.M.; Grebe, E.; Livezey, K.; Linnen, J.M.; Strauss, D.; et al. Minipool testing for SARS-CoV-2 RNA in United States blood donors. Transfusion 2021, 61, 2384–2391. [Google Scholar] [CrossRef] [PubMed]
- Cappy, P.; Candotti, D.; Sauvage, V.; Lucas, Q.; Boizeau, L.; Gomez, J.; Enouf, V.; Chabli, L.; Pillonel, J.; Tiberghien, P.; et al. No evidence of SARS-CoV-2 transfusion transmission despite RNA detection in blood donors showing symptoms after donation. Blood 2020, 136, 1888–1891. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.J.; Koo, J.W.; Roh, S.K.; Kim, Y.K.; Suh, J.S.; Moon, J.H.; Sohn, S.K.; Baek, D.W. COVID-19 transmission and blood transfusion: A case report. J. Infect. Public. Health 2020, 13, 1678–1679. [Google Scholar] [CrossRef]
- Kwon, S.Y.; Kim, E.J.; Jung, Y.S.; Jang, J.S.; Cho, N.S. Post-donation COVID-19 identification in blood donors. Vox. Sang. 2020, 115, 601–602. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.K.; Leung, J.N.S.; Cheng, P.; Lung, D.C.; To, K.K.W.; Tsang, D.N.C. Absence of SARS-CoV-2 viraemia in a blood donor with COVID-19 post-donation. Transfus. Med. 2021, 31, 223–224. [Google Scholar] [CrossRef]
- Liapis, K.; Papoutselis, M.; Vrachiolias, G.; Misidou, C.; Spanoudakis, E.; Bezirgiannidou, Z.; Pentidou, A.; Konstantinidis, T.; Kotsianidis, I. Blood and platelet transfusion from a donor with presymptomatic COVID-19. Ann. Hematol. 2021, 100, 2133–2134. [Google Scholar] [CrossRef]
- Sekeres, M.A.; Steensma, D.P.; DeZern, A.; Roboz, G.; Garcia-Manero, G.; Komrokji, R. COVID-19 and Myelodysplastic Syndromes: Frequently Asked Questions. Available online: https://www.hematology.org/covid-19/covid-19-and-myelodysplastic-syndromes (accessed on 26 February 2022).
- Carson, J.L.; Stanworth, S.J.; Dennis, J.A.; Trivella, M.; Roubinian, N.; Fergusson, D.A.; Triulzi, D.; Doree, C.; Hebert, P.C. Transfusion thresholds for guiding red blood cell transfusion. Cochrane Database Syst. Rev. 2021, 12, CD002042. [Google Scholar] [CrossRef]
- Hammami, E.; Hadhri, M.; Fekih Salem, S.; Ben Lakhal, F.; El Borgi, W.; Gouider, E. COVID-19 induced blood supply shortage: A Tunisian blood deposit perspective. Transfus Clin. Biol. 2022, 29, 102–104. [Google Scholar] [CrossRef]
- Delabranche, X.; Kientz, D.; Tacquard, C.; Bertrand, F.; Roche, A.C.; Tran Ba Loc, P.; Humbrecht, C.; Sirlin, F.; Pivot, X.; Collange, O.; et al. Impact of COVID-19 and lockdown regarding blood transfusion. Transfusion 2021, 61, 2327–2335. [Google Scholar] [CrossRef]
- Tripathi, P.P.; Kumawat, V.; Patidar, G.K. Donor’s Perspectives on Blood Donation During COVID-19 Pandemic. Indian J. Hematol. Blood Transfus. 2021, 30, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Velazquez-Kennedy, K.; Luna, A.; Sanchez-Tornero, A.; Jimenez-Chillon, C.; Jimenez-Martin, A.; Valles Carboneras, A.; Tenorio, M.; Garcia Garcia, I.; Lopez-Jimenez, F.J.; Moreno-Jimenez, G. Transfusion support in COVID-19 patients: Impact on hospital blood component supply during the outbreak. Transfusion 2021, 61, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Chen, D.; Chen, X.; Wei, Y. Estimation of the number of blood donors during the COVID-19 incubation period across China and analysis of prevention and control measures for blood transfusion transmission. Transfusion 2020, 60, 1778–1784. [Google Scholar] [CrossRef] [PubMed]
- Stanworth, S.J.; New, H.V.; Apelseth, T.O.; Brunskill, S.; Cardigan, R.; Doree, C.; Germain, M.; Goldman, M.; Massey, E.; Prati, D.; et al. Effects of the COVID-19 pandemic on supply and use of blood for transfusion. Lancet Haematol. 2020, 7, e756–e764. [Google Scholar] [CrossRef]
- Al-Riyami, A.Z.; Abdella, Y.E.; Badawi, M.A.; Panchatcharam, S.M.; Ghaleb, Y.; Maghsudlu, M.; Satti, M.; Lahjouji, K.; Merenkov, Z.; Adwan, A.; et al. The impact of COVID-19 pandemic on blood supplies and transfusion services in Eastern Mediterranean Region. Transfus. Clin. Biol. 2021, 28, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Loua, A.; Kasilo, O.M.J.; Nikiema, J.B.; Sougou, A.S.; Kniazkov, S.; Annan, E.A. Impact of the COVID-19 pandemic on blood supply and demand in the WHO African Region. Vox. Sang. 2021, 116, 774–784. [Google Scholar] [CrossRef]
- Osaro, E.; Charles, A.T. The challenges of meeting the blood transfusion requirements in Sub-Saharan Africa: The need for the development of alternatives to allogenic blood. J. Blood Med. 2011, 2, 7–21. [Google Scholar] [CrossRef] [Green Version]
- Mirski, M.A.; Frank, S.M.; Kor, D.J.; Vincent, J.L.; Holmes, D.R., Jr. Restrictive and liberal red cell transfusion strategies in adult patients: Reconciling clinical data with best practice. Crit. Care 2015, 19, 202. [Google Scholar] [CrossRef] [Green Version]
- Karampela, I.; Vallianou, N.G.; Tsilingiris, D.; Christodoulatos, G.S.; Muscogiuri, G.; Barrea, L.; Vitale, G.; Dalamaga, M. Could inhaled corticosteroids be the game changers in the prevention of severe COVID-19? A review of current evidence. Panminerva Med. 2021. [Google Scholar] [CrossRef]
- Vallianou, N.G.; Tsilingiris, D.; Christodoulatos, G.S.; Karampela, I.; Dalamaga, M. Anti-viral treatment for SARS-CoV-2 infection: A race against time amidst the ongoing pandemic. Metabol. Open 2021, 10, 100096. [Google Scholar] [CrossRef]
- NIH. Prioritization of Anti-SARS-CoV-2 Therapies for the Treatment and Prevention of COVID-19 When There Are Logistical or Supply Constraints. Available online: https://www.covid19treatmentguidelines.nih.gov/therapies/statement-on-patient-prioritization-for-outpatient-therapies/ (accessed on 24 February 2022).
- NHS. Who Is at High Risk from Coronavirus (COVID-19). Available online: https://www.nhs.uk/conditions/coronavirus-covid-19/people-at-higher-risk/who-is-at-high-risk-from-coronavirus/ (accessed on 25 February 2022).
- Agarwal, A.; Rochwerg, B.; Lamontagne, F.; Siemieniuk, R.A.; Agoritsas, T.; Askie, L.; Lytvyn, L.; Leo, Y.S.; Macdonald, H.; Zeng, L.; et al. A living WHO guideline on drugs for covid-19. BMJ 2020, 370, m3379. [Google Scholar] [CrossRef] [PubMed]
- Bathish, J.; Zabida, A.; Eisenberg, L.; Ben-Meir, L.C.; Zeidman, A. Steroid Treatment in Hematologic Patients with COVID-19: Experience of 2 cases. Arch. Hematol. Case Rep. Rev. 2020, 5, 028–033. [Google Scholar] [CrossRef]
- Dell’Isola, G.B.; Felicioni, M.; Ferraro, L.; Capolsini, I.; Cerri, C.; Gurdo, G.; Mastrodicasa, E.; Massei, M.S.; Perruccio, K.; Brogna, M.; et al. Case Report: Remdesivir and Convalescent Plasma in a Newly Acute B Lymphoblastic Leukemia Diagnosis With Concomitant Sars-CoV-2 Infection. Front. Pediatr. 2021, 9, 712603. [Google Scholar] [CrossRef] [PubMed]
- Klank, D.; Hoffmann, M.; Claus, B.; Zinke, F.; Bergner, R.; Paschka, P. Monoclonal Antibodies for the Prevention and Treatment of COVID-19 Disease in Patients With Hematological Malignancies: Two Case Reports and a Literature Review. Hemasphere 2021, 5, e651. [Google Scholar] [CrossRef]
- Saultier, P.; Ninove, L.; Szepetowski, S.; Veneziano, M.; Visentin, S.; Barlogis, V.; Saba Villarroel, P.M.; Amroun, A.; Loosveld, M.; de Lamballerie, X.; et al. Monoclonal antibodies for the treatment of COVID-19 in a patient with high-risk acute leukaemia. Br. J. Haematol. 2022, 196, e1–e3. [Google Scholar] [CrossRef]
- Biernat, M.M.; Kolasinska, A.; Kwiatkowski, J.; Urbaniak-Kujda, D.; Biernat, P.; Janocha-Litwin, J.; Szymczyk-Nuzka, M.; Bursy, D.; Kalicinska, E.; Simon, K.; et al. Early Administration of Convalescent Plasma Improves Survival in Patients with Hematological Malignancies and COVID-19. Viruses 2021, 13, 436. [Google Scholar] [CrossRef]
- Jeyaraman, P.; Agrawal, N.; Bhargava, R.; Bansal, D.; Ahmed, R.; Bhurani, D.; Bansal, S.; Rastogi, N.; Borah, P.; Naithani, R.; et al. Convalescent plasma therapy for severe COVID-19 in patients with hematological malignancies. Transfus. Apher. Sci. 2021, 60, 103075. [Google Scholar] [CrossRef]
- Thompson, M.A.; Henderson, J.P.; Shah, P.K.; Rubinstein, S.M.; Joyner, M.J.; Choueiri, T.K.; Flora, D.B.; Griffiths, E.A.; Gulati, A.P.; Hwang, C.; et al. Association of Convalescent Plasma Therapy With Survival in Patients With Hematologic Cancers and COVID-19. JAMA Oncol. 2021, 7, 1167–1175. [Google Scholar] [CrossRef]
- Group, R.C. Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): A randomised controlled, open-label, platform trial. Lancet 2021, 397, 2049–2059. [Google Scholar] [CrossRef]
- Sanchez-Ramon, S.; Dhalla, F.; Chapel, H. Challenges in the Role of Gammaglobulin Replacement Therapy and Vaccination Strategies for Hematological Malignancy. Front. Immunol. 2016, 7, 317. [Google Scholar] [CrossRef] [Green Version]
- Kyriazopoulou, E.; Poulakou, G.; Milionis, H.; Metallidis, S.; Adamis, G.; Tsiakos, K.; Fragkou, A.; Rapti, A.; Damoulari, C.; Fantoni, M.; et al. Early treatment of COVID-19 with anakinra guided by soluble urokinase plasminogen receptor plasma levels: A double-blind, randomized controlled phase 3 trial. Nat. Med. 2021, 27, 1752–1760. [Google Scholar] [CrossRef] [PubMed]
- Busca, A. Viral infections in patients with hematological malignancies. Leuk. Suppl. 2012, 1, S24–S25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brudno, J.N.; Kochenderfer, J.N. Recent advances in CAR T-cell toxicity: Mechanisms, manifestations and management. Blood Rev. 2019, 34, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.Y.C.; Quach, T.T.T. COVID-19 cytokine storm syndrome: A threshold concept. Lancet Microbe 2021, 2, e49–e50. [Google Scholar] [CrossRef]
- Le, R.Q.; Li, L.; Yuan, W.; Shord, S.S.; Nie, L.; Habtemariam, B.A.; Przepiorka, D.; Farrell, A.T.; Pazdur, R. FDA Approval Summary: Tocilizumab for Treatment of Chimeric Antigen Receptor T Cell-Induced Severe or Life-Threatening Cytokine Release Syndrome. Oncologist 2018, 23, 943–947. [Google Scholar] [CrossRef] [Green Version]
- Isidori, A.; de Leval, L.; Gergis, U.; Musto, P.; Porcu, P. Management of Patients With Hematologic Malignancies During the COVID-19 Pandemic: Practical Considerations and Lessons to Be Learned. Front. Oncol. 2020, 10, 1439. [Google Scholar] [CrossRef]
- Hus, I.; Salomon-Perzynski, A.; Tomasiewicz, K.; Robak, T. The management of hematologic malignancies during the COVID-19 pandemic. Expert Opin Pharm. 2021, 22, 565–582. [Google Scholar] [CrossRef]
- Ibrahim, A.; Noun, P.; Khalil, C.; Taher, A. Changing Management of Hematological Malignancies With COVID-19: Statement and Recommendations of the Lebanese Society of Hematology and Blood Transfusion. Front. Oncol. 2021, 11, 564383. [Google Scholar] [CrossRef]
- Ljungman, P.; Mikulska, M.; de la Camara, R.; Basak, G.W.; Chabannon, C.; Corbacioglu, S.; Duarte, R.; Dolstra, H.; Lankester, A.C.; Mohty, M.; et al. The challenge of COVID-19 and hematopoietic cell transplantation; EBMT recommendations for management of hematopoietic cell transplant recipients, their donors, and patients undergoing CAR T-cell therapy. Bone Marrow Transpl. 2020, 55, 2071–2076. [Google Scholar] [CrossRef]
- Zeidan, A.M.; Boddu, P.C.; Patnaik, M.M.; Bewersdorf, J.P.; Stahl, M.; Rampal, R.K.; Shallis, R.; Steensma, D.P.; Savona, M.R.; Sekeres, M.A.; et al. Special considerations in the management of adult patients with acute leukaemias and myeloid neoplasms in the COVID-19 era: Recommendations from a panel of international experts. Lancet Haematol. 2020, 7, e601–e612. [Google Scholar] [CrossRef]
- Di Ciaccio, P.; McCaughan, G.; Trotman, J.; Ho, P.J.; Cheah, C.Y.; Gangatharan, S.; Wight, J.; Ku, M.; Quach, H.; Gasiorowski, R.; et al. Australian and New Zealand consensus statement on the management of lymphoma, chronic lymphocytic leukaemia and myeloma during the COVID-19 pandemic. Intern. Med. J. 2020, 50, 667–679. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, K.; Sachs, W.; Boguradzki, P.; Basak, G.W.; Stec, R. Chemotherapy During Active SARS-CoV2 Infection: A Case Report and Review of the Literature. Front. Oncol. 2021, 11, 662211. [Google Scholar] [CrossRef] [PubMed]
- Bader-Larsen, K.S.; Larson, E.A.; Dalamaga, M.; Magkos, F. A Narrative Review of the Safety of Anti-COVID-19 Nutraceuticals for Patients with Cancer. Cancers 2021, 13, 6094. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, C.M.; Denniston, M.M.; Baker, F.; Ainsworth, S.R.; Courneya, K.S.; Hann, D.M.; Gesme, D.H.; Reding, D.; Flynn, T.; Kennedy, J.S. Do adults change their lifestyle behaviors after a cancer diagnosis? Am. J. Health Behav. 2003, 27, 246–256. [Google Scholar] [CrossRef]
- Malalur, P.; Agastya, M.; Wahi-Gururaj, S.; Cross, C.L.; Deauna-Limayo, D.; Kingsley, E.C. Cancer survivorship in hematologic malignancies: Lifestyle changes after diagnosis. Cancer Med. 2021, 10, 1066–1073. [Google Scholar] [CrossRef]
- Satia, J.A.; Walsh, J.F.; Pruthi, R.S. Health behavior changes in white and African American prostate cancer survivors. Cancer Nurs. 2009, 32, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Williams, K.; Steptoe, A.; Wardle, J. Is a cancer diagnosis a trigger for health behaviour change? Findings from a prospective, population-based study. Br. J. Cancer 2013, 108, 2407–2412. [Google Scholar] [CrossRef] [Green Version]
- Yaw, Y.H.; Shariff, Z.M.; Kandiah, M.; Mun, C.Y.; Yusof, R.M.; Othman, Z.; Saibul, N.; Weay, Y.H.; Hashim, Z. Weight changes and lifestyle behaviors in women after breast cancer diagnosis: A cross-sectional study. BMC Public Health 2011, 11, 309. [Google Scholar] [CrossRef] [Green Version]
- Ashing-Giwa, K.T.; Padilla, G.; Tejero, J.; Kraemer, J.; Wright, K.; Coscarelli, A.; Clayton, S.; Williams, I.; Hills, D. Understanding the breast cancer experience of women: A qualitative study of African American, Asian American, Latina and Caucasian cancer survivors. Psychooncology 2004, 13, 408–428. [Google Scholar] [CrossRef]
- Courneya, K.S.; Friedenreich, C.M.; Franco-Villalobos, C.; Crawford, J.J.; Chua, N.; Basi, S.; Norris, M.K.; Reiman, T. Effects of supervised exercise on progression-free survival in lymphoma patients: An exploratory follow-up of the HELP Trial. Cancer Causes Control. 2015, 26, 269–276. [Google Scholar] [CrossRef]
- Orgel, E.; Framson, C.; Buxton, R.; Kim, J.; Li, G.; Tucci, J.; Freyer, D.R.; Sun, W.; Oberley, M.J.; Dieli-Conwright, C.; et al. Caloric and nutrient restriction to augment chemotherapy efficacy for acute lymphoblastic leukemia: The IDEAL trial. Blood Adv. 2021, 5, 1853–1861. [Google Scholar] [CrossRef] [PubMed]
- Schmid, D.; Behrens, G.; Arem, H.; Hart, C.; Herr, W.; Jochem, C.; Matthews, C.E.; Leitzmann, M.F. Pre- and post-diagnosis physical activity, television viewing, and mortality among hematologic cancer survivors. PLoS ONE 2018, 13, e0192078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiskemann, J.; Kleindienst, N.; Kuehl, R.; Dreger, P.; Schwerdtfeger, R.; Bohus, M. Effects of physical exercise on survival after allogeneic stem cell transplantation. Int. J. Cancer 2015, 137, 2749–2756. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.; O’Connor, D.; Murphy, C.; McClean, M.; McMeekin, A.; Prue, G. Impact of COVID-19 on an established physical activity and behaviour change support programme for cancer survivors: An exploratory survey of the Macmillan Move More service for Northern Ireland. Support. Care Cancer 2021, 29, 6135–6143. [Google Scholar] [CrossRef]
- Motton, S.; Vergriete, K.; VanPhi, L.N.; Lambaudie, E.; Berthoumieu, A.; Pous, J.; Delannes, M.; Piscione, J.; Cornou, C.; Bataille, B.; et al. Evaluation of the impact of the COVID-19 lockdown on the quality of life of patients monitored for cancer who practice an adapted physical activity: Rugby for health. J. Cancer Res. Clin. Oncol. 2022, 148, 425–439. [Google Scholar] [CrossRef]
- Di Blasio, A.; Morano, T.; Lancia, F.; Viscioni, G.; Di Iorio, A.; Grossi, S.; Cianchetti, E.; Pippi, R.; Gobbo, S.; Bergamin, M.; et al. Effects of activity tracker-based counselling and live-web exercise on breast cancer survivors’ sleep and waking time during Italy’s COVID-19 lockdown. Home Health Care Serv. Q. 2022, 41, 1–19. [Google Scholar] [CrossRef]
- Tank, M.; Franz, K.; Cereda, E.; Norman, K. Dietary supplement use in ambulatory cancer patients: A survey on prevalence, motivation and attitudes. J. Cancer Res. Clin. Oncol. 2021, 147, 1917–1925. [Google Scholar] [CrossRef]
- Karampela, I.; Sakelliou, A.; Vallianou, N.; Christodoulatos, G.S.; Magkos, F.; Dalamaga, M. Vitamin D and Obesity: Current Evidence and Controversies. Curr. Obes. Rep. 2021, 10, 162–180. [Google Scholar] [CrossRef]
- Kulling, P.M.; Olson, K.C.; Olson, T.L.; Feith, D.J.; Loughran, T.P., Jr. Vitamin D in hematological disorders and malignancies. Eur. J. Haematol. 2017, 98, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Barnes, P.R.; Williams, C.B.; Davies, R.L.; Childs, C.S.; Hedges, A.; Graham, D. The use of intravenous meptazinol for analgesia in colonoscopy. Postgrad. Med. J. 1985, 61, 221–224. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Lopez, J.; Hernandez-Ibarburu, G.; Alonso, R.; Sanchez-Pina, J.M.; Zamanillo, I.; Lopez-Munoz, N.; Iniguez, R.; Cuellar, C.; Calbacho, M.; Paciello, M.L.; et al. Impact of COVID-19 in patients with multiple myeloma based on a global data network. Blood Cancer J. 2021, 11, 198. [Google Scholar] [CrossRef] [PubMed]
Hematologic Malignancies | Study (Design, Reference) | Collective Main Findings |
---|---|---|
Hodgkin Disease | Meta-analysis [10] Population-based cohort study [11] | HR 1.41 (95% CI, 1.14–1.75) for BMI > 30 kg/m2 J-shaped association with BMI with ↑ incidence above 24.2 kg/m2↑ 10% HR per 5 kg/m2 increase |
Acute Leukemias Lymphocytic Myeloid | Meta-analysis [12] Retrospective cohort study [13] | RR 1.65 (1.16–2.35) for BMI > 30 kg/m2 RR 1.52 (1.19–1.95) for BMI > 30 kg/m2 |
Plasma cell disorders MGUS Waldenström’s Makroglobulinemia Multiple Myeloma | Systematic Review [14] Population-based cohort study [15] Population-based cohort study [16] Prospective cohort study Prospective cohort study [17] Prospective cohort [18] Systematic review [19] | BMI associated MGUS development and progression to MM BMI > 30 kg/m2 associated with MGUS risk Obesity associated with MGUS progression to MM Viseral fat associated with LC-MGUS HR 1.41 (1.01–1.95) per 4 kg/m2 increase in BMI HR 1.41 (1.01–1.95) per 4 kg/m2 increase in BMI RR for MM mortality 1.71 ♂/1.44 ♀ for BMI > 35 kg/m2 vs. <25 kg/m2 |
Non-Hodgkin’s Lymphoma/CLL | Prospective cohort study [18] Meta-analysis [10] Population-based cohort study [20] | RR for NHL mortality 1.49 ♂/1.95 ♀ for BMI > 35 kg/m2 vs. <25 kg/m2 ↑ NHL incidence 1.07 (1.04–1.10)/1.14 (1.04–1.26) mortality per 5 kg/m2 increase in BMI, driven chiefly by ↑ risk of DLBCL CLL RR 1.25 (1.11–1.41) for BMI > 30 kg/m2 |
Myelodysplastic syndromes | Population-based cohort study [21] Retrospective cohort [22] | RR 2.18 (1.51–3.17) for BMI > 30 kg/m2 vs. <25 kg/m2 Higher BMI associated with lower overall survival, particularly in lower-risk MDS |
Chronic myeloproliferative disorders Polycythemia Vera Chronic Myelogenous Leukemia Essential Thrombocythemia | Retrospective cohort study [23] Case–control study [24] Case–control study [25] Prospective cohort study [26] | BMI > 95th percentile among adolescents: aHR for PV 1.81 (1.13–2.92). Independent dose–response effect between adiposity and risk of CML OR for ET among obese 2.59 (1.02–6.58) RR for ET: 1.52 (0.97, 2.38) for BMI > 29.3 vs. <23.4 kg/m2 |
Data Source, Reference | Population of Interest | Main Outcomes |
---|---|---|
Hematologic cancer registry of India [63] | 565 reports of patients of all ages from tertiary Indian centers with HM and laboratory-confirmed COVID-19 between 21 March 2020–20 March 2021 | ↑ mortality (aHR 2.85, 1.58–5.13) and severe disease (aOR 2.73, 1.45–5.12 for AML vs. ALL) No differences between AML and other hematologic diagnoses ↑ mortality among those not in remission (aOR 1.85, 1.18–2.89) No effects of corticosteroid treatment or exposure to monoclonal antibodies |
European Hematology Association Survey [64] | 3,801 patients with HM and laboratory-confirmed COVID-19 from 132 hematology centers across Europe between March 2020–December 2020 | Highest death rates in AML (40%) and MDS (42.3%) Active malignancy associated with ↑mortality (aHR 1.86, 1.62–2.14) Among different HL diagnoses, only AML independently associated with ↑mortality (aHR 2.046, 1.18–3.56 vs. NHL) |
Nationwide retrospective study in Israel [65] | 313 patients with HM and COVID-19 from 16 medical centers | Age > 70 years, arterial hypertension, active treatment associated with adverse outcomes Remdesivir treatment linked to ↓ mortality no effects of other treatment modalities (corticosteroids, enoxaparin, convalescent plasma) |
Data from population-based registry in Madrid, Spain [66] | 833 patients with HM and COVID-19 from 27 medical centers between 28 February 2020 and 25 May 2020 | Overall, 62% severe/critical disease, 33% mortality (highest among AML and MDS patients, 40% and 42.3%, respectively) ↑ risk of death > 60 years, no effect of gender ↑ mortality for AML (aHR 2.22, 1.31–3.74 vs. NHL), Monoclonal antibody treatment and conventional chemotherapy (aHRs vs. nontreatment (aHRs 2.02, 1.14–3.60 and 1.50, 0.99–2.29 vs. no treatment, respectively) ↓ mortality for Ph-negative myeloproliferative disorders and treatment with hypomethylating agents (aHRs 0.33, 0.14–0.81 vs. NHL and 0.47, 0.23–0.94 vs. no treatment, respectively) |
Case–control study from 2 Hospital in Wuhan province, China [4] | 13 cases among 128 hospitalized patients with HM and 16 HCWs with COVID-19 | ↑ mortality for those with HM vs. controls (62% vs. 0, p = 0.002) |
Meta-analysis of 34 studies in adult and 5 in pediatric populations [67] | 3377 patients with HM from 39 studies in total | No effects of recent systemic overall antineoplastic or cytotoxic therapy (RRs 1.17, 0.83–1.64 and 1.29, 0.78–2.15 vs. no treatment, respectively) on COVID-19 mortality |
Case control study from a nationwide database of patient electronic health records in the US [68] | 73 million patients, 517.580 with 8 types of HMs, 420 with SARS-CoV-2 infection up to 1 September 2020 | Significantly ↑ SARS-CoV-2 acquisition rates for HM vs. controls (overall aOR 11.9, 11.3–12.5 for diagnosis < 1 year, 2.3, 2.2–2.4 for prior diagnosis), highest among ALL, ET, MM, AML and lowest for PV ↑ Higher hospitalization and death rates for HM vs. non-HM |
Prospective cohort study among patients enrolled UK Coronavirus Cancer Monitoring project [69] | 227 patients with HM (Leukemia, Lymphoma, MM, others) among 1044 with active cancer and documented SARS-CoV-2 infection between 18 March 2020–8 May 2020 | ↑ risk for adverse outcomes for HM vs. solid tumor patients (aORs for high flow oxygen therapy 1.82, 1.11–2.94, NIV 2.10, 1.14–3.76, ICU 2.73, 1.43–5.11, severe/critical disease 1.57, 1.15–2.15) ↑ in-hospital mortality for HM patients who recently received chemotherapy (1.57, 1.15–2.15 vs. no recent chemotherapy) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsilingiris, D.; Nasiri-Ansari, N.; Spyrou, N.; Magkos, F.; Dalamaga, M. Management of Hematologic Malignancies in the Era of COVID-19 Pandemic: Pathogenetic Mechanisms, Impact of Obesity, Perspectives, and Challenges. Cancers 2022, 14, 2494. https://doi.org/10.3390/cancers14102494
Tsilingiris D, Nasiri-Ansari N, Spyrou N, Magkos F, Dalamaga M. Management of Hematologic Malignancies in the Era of COVID-19 Pandemic: Pathogenetic Mechanisms, Impact of Obesity, Perspectives, and Challenges. Cancers. 2022; 14(10):2494. https://doi.org/10.3390/cancers14102494
Chicago/Turabian StyleTsilingiris, Dimitrios, Narjes Nasiri-Ansari, Nikolaos Spyrou, Faidon Magkos, and Maria Dalamaga. 2022. "Management of Hematologic Malignancies in the Era of COVID-19 Pandemic: Pathogenetic Mechanisms, Impact of Obesity, Perspectives, and Challenges" Cancers 14, no. 10: 2494. https://doi.org/10.3390/cancers14102494
APA StyleTsilingiris, D., Nasiri-Ansari, N., Spyrou, N., Magkos, F., & Dalamaga, M. (2022). Management of Hematologic Malignancies in the Era of COVID-19 Pandemic: Pathogenetic Mechanisms, Impact of Obesity, Perspectives, and Challenges. Cancers, 14(10), 2494. https://doi.org/10.3390/cancers14102494