A Drug Screening Revealed Novel Potential Agents against Malignant Pleural Mesothelioma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Mesothelioma Cell Lines
2.2. Compound Library Screen and Cell-Titer Assay
2.3. Chemicals
2.4. MTT (3-(4,5-Dimethylthiazolyl-2)-2,5-Diphenyltetrazolium Bromide), Sulphorodamine B (SRB), Colony Formation (CFA), and Caspase 3/7 Activation Assays
2.5. Spheroid Formation Assay
2.6. Statistical Analysis
3. Results
3.1. Preliminary Cytotoxicity Screening
3.2. Dose-Response Cytotoxicity Assays
3.3. Proliferation, Caspase Activation, and Colony Formation Assays
3.4. Evaluation of CM, EM, OB, and TB on a Panel of Epithelioid MPM Cells
3.5. Effect of CM, EM, OB, and TB on 3D Spheroids Derived from MPM Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Markowitz, S. Asbestos-related lung cancer and malignant mesothelioma of the pleura: Selected current issues. Semin. Respir. Crit. Care Med. 2015, 36, 334–346. [Google Scholar] [CrossRef] [PubMed]
- Kindler, H.L.; Ismaila, N.; Armato, S.G., III; Bueno, R.; Hesdorffer, M.; Jahan, T.; Jones, C.M.; Miettinen, M.; Pass, H.; Rimner, A.; et al. Treatment of Malignant Pleural Mesothelioma: American Society of Clinical Oncology Clinical Practice Guideline. J Clin. Oncol. 2018, 36, 1343–1373. [Google Scholar] [CrossRef] [PubMed]
- Szolkowska, M.; Blasinska-Przerwa, K.; Knetki-Wroblewska, M.; Rudzinski, P.; Langfort, R. Malignant pleural mesothelioma: Main topics of American Society of Clinical Oncology clinical practice guidelines for diagnosis and treatment. J. Thorac. Dis. 2018, 10, S1966–S1970. [Google Scholar] [CrossRef] [PubMed]
- Zalcman, G.; Mazieres, J.; Margery, J.; Greillier, L.; Audigier-Valette, C.; Moro-Sibilot, D.; Molinier, O.; Corre, R.; Monnet, I.; Gounant, V.; et al. Bevacizumab for newly diagnosed pleural mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): A randomised, controlled, open-label, phase 3 trial. Lancet 2016, 387, 1405–1414. [Google Scholar] [CrossRef]
- Grosso, F.; Roveta, A.; Gallizzi, G.; Belletti, M. Management of recurrent pleural mesothelioma: Successful rechallenge with nintedanib in combination with chemotherapy. Clin. Case Rep. 2018, 6, 2000–2004. [Google Scholar] [CrossRef] [PubMed]
- Scagliotti, G.V.; Gaafar, R.; Nowak, A.K.; Nakano, T.; van Meerbeeck, J.; Popat, S.; Vogelzang, N.J.; Grosso, F.; Aboelhassan, R.; Jakopovic, M.; et al. Nintedanib in combination with pemetrexed and cisplatin for chemotherapy-naive patients with advanced malignant pleural mesothelioma (LUME-Meso): A double-blind, randomised, placebo-controlled phase 3 trial. Lancet Respir. Med. 2019, 7, 569–580. [Google Scholar] [CrossRef]
- Nowak, A.K.; McDonnell, A.; Cook, A. Immune checkpoint inhibition for the treatment of mesothelioma. Expert Opin. Biol. Ther. 2019, 19, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Hann, C.L.; Scherpereel, A.; Hellyer, J.A.; Wakelee, H.A. Role of Immunotherapy in Small Cell Lung Cancer, Thymic Epithelial Tumors, and Mesothelioma. Am. Soc. Clin. Oncol. Educ. Book 2019, 39, 543–552. [Google Scholar] [CrossRef] [PubMed]
- de Gooijer, C.J.; Borm, F.J.; Scherpereel, A.; Baas, P. Immunotherapy in Malignant Pleural Mesothelioma. Front. Oncol. 2020, 10, 187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolini, F.; Bocchini, M.; Bronte, G.; Delmonte, A.; Guidoboni, M.; Crinò, L.; Mazza, M. Malignant Pleural Mesothelioma: State-of-the-Art on Current Therapies and Promises for the Future. Front. Oncol. 2020, 9, 1519. [Google Scholar] [CrossRef] [PubMed]
- Meirson, T.; Pentimalli, F.; Cerza, F.; Baglio, G.; Gray, S.G.; Correale, P.; Krstic-Demonacos, M.; Markel, G.; Giordano, A.; Bomze, D.; et al. Comparison of 3 Randomized Clinical Trials of Frontline Therapies for Malignant Pleural Mesothelioma. JAMA Netw. Open 2022, 5, e221490. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Xu, D.; Schmid, R.A.; Peng, R.-W. Biomarker-guided targeted and immunotherapies in malignant pleural mesothelioma. Ther. Adv. Med. Oncol. 2020, 12, 1758835920971421. [Google Scholar] [CrossRef]
- Kulkarni, N.S.; Vaidya, B.; Parvathaneni, V.; Bhanja, D.; Gupta, V. Repurposing Quinacrine for Treatment of Malignant Mesothelioma: In-Vitro Therapeutic and Mechanistic Evaluation. Int. J. Mol. Sci. 2020, 21, 6306. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.K.; Chan, A.; Parvathaneni, V.; Gupta, V. Metformin-loaded chitosomes for treatment of malignant pleural mesothelioma—A rare thoracic cancer. Int. J. Biol. Macromol. 2020, 160, 128–141. [Google Scholar] [CrossRef] [PubMed]
- Dell’Anno, I.; Martin, S.A.; Barbarino, M.; Melani, A.; Silvestri, R.; Bottaro, M.; Paolicchi, E.; Corrado, A.; Cipollini, M.; Melaiu, O.; et al. Drug-repositioning screening identified fludarabine and risedronic acid as potential therapeutic compounds for malignant pleural mesothelioma. Invest. New Drugs 2020, 39, 644–657. [Google Scholar] [CrossRef] [PubMed]
- Barbarino, M.; Cesari, D.; Bottaro, M.; Luzzi, L.; Namagerdi, A.; Bertolino, F.M.; Bellan, C.; Proietti, F.; Somma, P.; Micheli, M.; et al. PRMT5 silencing selectively affects MTAP-deleted mesothelioma: In vitro evidence of a novel promising approach. J. Cell. Mol. Med. 2020, 24, 5565–5577. [Google Scholar] [CrossRef] [Green Version]
- Holbeck, S.L.; Collins, J.M.; Doroshow, J.H. Analysis of Food and Drug Administration-approved anticancer agents in the NCI60 panel of human tumor cell lines. Mol. Cancer Ther. 2010, 9, 1451–1460. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.A.; McCarthy, A.; Barber, L.J.; Burgess, D.J.; Parry, S.; Lord, C.J.; Ashworth, A. Methotrexate induces oxidative DNA damage and is selectively lethal to tumour cells with defects in the DNA mismatch repair gene MSH2. EMBO Mol. Med. 2009, 1, 323–337. [Google Scholar] [CrossRef]
- Guillotin, D.; Austin, P.; Begum, R.; Freitas, M.O.; Merve, A.; Brend, T.; Short, S.; Marino, S.; Martin, S.A. Drug-Repositioning Screens Identify Triamterene as a Selective Drug for the Treatment of DNA Mismatch Repair Deficient Cells. Clin. Cancer Res. 2017, 23, 2880–2890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- US National Library of Medicine. ClinicalTrials.gov Home Page. Available online: https://clinicaltrials.gov/ct2/show/NCT00952016 (accessed on 8 May 2022).
- Li, Y.; Qin, F.; Wang, S.-M.; Guo, R.-X.; Zhang, Y.-F.; Gu, Y.-C.; Shi, Q.-W. Chemical studies on Taxus Canadensis. Chem. Biodivers. 2013, 10, 1729–1753. [Google Scholar] [CrossRef]
- Gao, F.; Wang, D.; Huang, X. Synthesis, isolation, stereostructure and cytotoxicity of paclitaxel analogs from cephalomannine. Fitoterapia 2013, 90, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Oberlies, N.H.; Kroll, D.J. Camptothecin and taxol: Historic achievements in natural products research. J. Nat. Prod. 2004, 67, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, S.B. Mechanism of action of taxol. Trends Pharmacol. Sci. 1992, 13, 134–136. [Google Scholar] [CrossRef]
- Galletti, E.; Magnani, M.; Renzulli, M.L.; Botta, M. Paclitaxel and docetaxel resistance: Molecular mechanisms and development of new generation taxanes. ChemMedChem 2007, 2, 920–942. [Google Scholar] [CrossRef] [PubMed]
- Sugarbaker, P.H.; Stuart, O.A. Unusually favorable outcome of 6 consecutive patients with diffuse malignant peritoneal mesothelioma treated with repeated doses of intraperitoneal paclitaxel. A case series. Surg. Oncol. 2020, 33, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Yee, R.; Cui, P.; Tian, L.; Zhang, S.; Shi, W.; Sullivan, D.; Zhu, B.; Zhang, W.; Zhang, Y. Identification of Agents Active against Methicillin-Resistant Staphylococcus aureus USA300 from a Clinical Compound Library. Pathogens 2017, 6, 44. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Landuyt, B.; Klaassen, H.; Geldhof, P.; Luyten, W. Screening of a drug repurposing library with a nematode motility assay identifies promising anthelmintic hits against Cooperia oncophora and other ruminant parasites. Vet. Parasitol. 2019, 265, 15–18. [Google Scholar] [CrossRef]
- Yousfi, H.; Ranque, S.; Cassagne, C.; Rolain, J.-M.; Bittar, F. Identification of repositionable drugs with novel antimycotic activity by screening the Prestwick Chemical Library against emerging invasive moulds. J. Glob. Antimicrob. Resist. 2020, 21, 314–317. [Google Scholar] [CrossRef]
- Chan, C.-Y.; Prudom, C.; Raines, S.M.; Charkhzarrin, S.; Melman, S.D.; De Haro, L.P.; Allen, C.; Lee, S.A.; Sklar, L.A.; Parra, K.J. Inhibitors of V-ATPase proton transport reveal uncoupling functions of tether linking cytosolic and membrane domains of V0 subunit a (Vph1p). J. Biol. Chem. 2012, 287, 10236–10250. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Gao, J.J.; Landao-Bassonga, E.; Pavlos, N.J.; Qin, A.; Steer, J.H.; Zheng, M.H.; Dong, Y.; Cheng, T.S. Thonzonium bromide inhibits RANKL-induced osteoclast formation and bone resorption in vitro and prevents LPS-induced bone loss in vivo. Biochem. Pharmacol. 2016, 104, 118–130. [Google Scholar] [CrossRef]
- Zucali, P.A.; Ceresoli, G.L.; De Vincenzo, F.; Simonelli, M.; Lorenzi, E.; Gianoncelli, L.; Santoro, A. Advances in the biology of malignant pleural mesothelioma. Cancer Treat. Rev. 2011, 37, 543–558. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, M.; Nair, S. New vistas in malignant mesothelioma: MicroRNA architecture and NRF2/MAPK signal transduction. Life Sci. 2020, 257, 118123. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.R. Ipecacuanha: The South American vomiting root. J. R. Coll. Physicians Edinb. 2008, 38, 355–360. [Google Scholar] [PubMed]
- Akinboye, E.S.; Bakare, O. Biological Activities of Emetine. Open Nat. Prod. J. 2011, 4, 8–15. [Google Scholar] [CrossRef]
- Villalba-Magdaleno, J.D.; Rojas, R.; Gomez, C.; Shibayama, M.; Carrero, J.C.; D., G. Emetine produce Entamoeba histological death by inducing a programmed cell death. Am. J. Infect. Dis. 2007, 3, 110–114. [Google Scholar] [CrossRef] [Green Version]
- Merschjohann, K.; Sporer, F.; Steverding, D.; Wink, M. In vitro effects of alkaloids on bloodstream forms of Trypanosoma brucei and T. congolense. Planta Med. 2001, 67, 623–627. [Google Scholar] [CrossRef]
- Uzor, P.F. Recent developments on potential new applications of emetine as anti-cancer agent. EXCLI J. 2016, 15, 323–328. [Google Scholar] [CrossRef]
- Silva, E.; Soares-da-Silva, P. New insights into the regulation of Na+, K+-ATPase by ouabain. Int. Rev. Cell. Mol. Biol. 2012, 294, 99–132. [Google Scholar] [CrossRef]
- Askari, A. The sodium pump and digitalis drugs: Dogmas and fallacies. Pharmacol. Res. Perspect. 2019, 7, e00505. [Google Scholar] [CrossRef] [Green Version]
- Cerella, C.; Dicato, M.; Diederich, M. Assembling the puzzle of anti-cancer mechanisms triggered by cardiac glycosides. Mitochondrion 2013, 13, 225–234. [Google Scholar] [CrossRef]
- Correale, P.; Pentimalli, F.; Nardone, V.; Giordano, A.; Mutti, L. CONFIRM trial: What is the real efficacy of second-line immunotherapy in mesothelioma? Lancet Oncol. 2022, 23, e13. [Google Scholar] [CrossRef]
MeT-5A | Mero-14 | Mero-25 | IST-Mes2 | NCI-H28 | MSTO-211H | −Log10(∑(IC50)) | |
---|---|---|---|---|---|---|---|
Cephalomannine | 0.01 | 0.01 | 0.01 | 0.01 | 0.04 | 0.01 | 1.05 |
Pralatrexate | 0.02 | 0.01 | 0.01 | 0.02 | 0.07 | 0.01 | 0.85 |
Ouabain | 0.05 | 0.02 | 0.01 | 0.01 | 0.01 | 0.05 | 0.82 |
Alexidine HCl | 0.09 | 0.09 | 0.07 | 0.06 | 0.04 | 0.08 | 0.37 |
Gemcitabine | 0.00 | 0.14 | 0.01 | 0.04 | 0.23 | 0.01 | 0.37 |
Cytarabine | 0.09 | 0.38 | 0.12 | 0.03 | 0.07 | 0.05 | 0.13 |
Vinorelbine | 0.06 | 0.01 | 0.01 | 0.01 | 0.98 | 0.01 | −0.03 |
Thonzonium Br | 0.74 | 0.19 | 0.17 | 0.05 | 0.21 | 0.07 | −0.16 |
Emetine | 0.73 | 0.07 | 0.03 | 0.06 | 0.63 | 0.08 | −0.18 |
Pyrithione zinc | 0.27 | 0.67 | 0.90 | 0.07 | 0.71 | 0.37 | −0.48 |
Cetrimonium Br | 0.90 | 0.88 | 0.33 | 0.39 | 1.01 | 0.01 | −0.55 |
Fenbendazole | 0.46 | 0.60 | 0.27 | 0.86 | 1.22 | 0.17 | −0.55 |
Pentamidine | 1.54 | 0.47 | 1.25 | 0.52 | 0.18 | 0.10 | −0.61 |
Niclosamide | 0.82 | 0.69 | 0.78 | 0.86 | 0.76 | 0.40 | −0.63 |
Pitavastatin Ca | 0.11 | 0.07 | 3.22 | 0.90 | 0.25 | 0.11 | −0.67 |
Ciclopirox | 0.12 | 0.91 | 0.91 | 1.00 | 1.71 | 0.22 | −0.69 |
Terfenadine | 1.35 | 0.53 | 1.24 | 1.06 | 1.43 | 0.16 | −0.76 |
Penfluridol | 1.27 | 1.08 | 1.04 | 0.64 | 1.33 | 0.44 | −0.76 |
Albendazole | 0.88 | 0.48 | 0.44 | 0.41 | 5.22 | 0.11 | −0.88 |
Digoxigenin | 0.19 | 0.71 | 0.97 | 0.24 | 2.70 | 5.66 | −1.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dell’Anno, I.; Melani, A.; Martin, S.A.; Barbarino, M.; Silvestri, R.; Cipollini, M.; Giordano, A.; Mutti, L.; Nicolini, A.; Luzzi, L.; et al. A Drug Screening Revealed Novel Potential Agents against Malignant Pleural Mesothelioma. Cancers 2022, 14, 2527. https://doi.org/10.3390/cancers14102527
Dell’Anno I, Melani A, Martin SA, Barbarino M, Silvestri R, Cipollini M, Giordano A, Mutti L, Nicolini A, Luzzi L, et al. A Drug Screening Revealed Novel Potential Agents against Malignant Pleural Mesothelioma. Cancers. 2022; 14(10):2527. https://doi.org/10.3390/cancers14102527
Chicago/Turabian StyleDell’Anno, Irene, Alessandra Melani, Sarah A. Martin, Marcella Barbarino, Roberto Silvestri, Monica Cipollini, Antonio Giordano, Luciano Mutti, Andrea Nicolini, Luca Luzzi, and et al. 2022. "A Drug Screening Revealed Novel Potential Agents against Malignant Pleural Mesothelioma" Cancers 14, no. 10: 2527. https://doi.org/10.3390/cancers14102527
APA StyleDell’Anno, I., Melani, A., Martin, S. A., Barbarino, M., Silvestri, R., Cipollini, M., Giordano, A., Mutti, L., Nicolini, A., Luzzi, L., Aiello, R., Gemignani, F., & Landi, S. (2022). A Drug Screening Revealed Novel Potential Agents against Malignant Pleural Mesothelioma. Cancers, 14(10), 2527. https://doi.org/10.3390/cancers14102527