Phosphatidylserine: The Unique Dual-Role Biomarker for Cancer Imaging and Therapy
Abstract
:Simple Summary
Abstract
1. Introduction: Biomarkers in Cancer Imaging and Therapy
2. PS: Cellular Distribution and Roles
3. PS as a Cancer Biomarker
3.1. Heterogeneity in Surface PS Exposure on Membranes May Indicate a Susceptibility of Cancer Cells to Cancer Treatments at Different Stages
3.2. SapC-DOPS Nanovesicles Can Target Cancer Surface PS
3.2.1. Optical Cancer Imaging Using PS-Targeting SapC-DOPS Nanovesicles
3.2.2. Magnetic Resonance Imaging (MRI) Using PS-Targeting SapC-DOPS Nanovesicles
3.2.3. Postron Emission Tomography/Single Photon Emission Computed Tomography (PET/SPECT) Imaging Using PS-Targeting SapC-DOPS Nanovesicles
4. PS in Targeted Cancer Therapies
4.1. Therapies Using PS-Specific Targeting Agents
4.2. Application of Electric Fields to Enhance PS-Targeted Therapies
4.2.1. General Considerations for Using Electric Field-Based Therapies
4.2.2. Tumor-Treating Fields
4.2.3. Electroporation
4.3. Surface PS Modulation via Electric Fields Is a Novel Approach to Increase Efficacies of Anticancer Therapies
5. Conclusions and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Sugie, T. Immunotherapy for metastatic breast cancer. Chin. Clin. Oncol. 2018, 7, 28. [Google Scholar] [CrossRef] [PubMed]
- Steven, A.; Fisher, S.A.; Robinson, B.W. Immunotherapy for lung cancer. Respirology 2016, 21, 821–833. [Google Scholar] [CrossRef] [Green Version]
- Ayodele, O.; Razak, A.R.A. Immunotherapy in soft-tissue sarcoma. Curr. Oncol. 2020, 27, 17–23. [Google Scholar] [CrossRef]
- Merz, J.; Bossart, M.; Bamberg, F.; Eisenblaetter, M. Revised FIGO Staging for Cervical Cancer-A New Role for MRI. RoFo Fortschr. Auf Dem Geb. Der Rontgenstrahlen Und Der Nukl. 2020, 192, 937–944. [Google Scholar] [CrossRef]
- Jadvar, H.; Ballas, L.K.; Choyke, P.L.; Fanti, S.; Gulley, J.L.; Herrmann, K.; Hope, T.A.; Klitzke, A.K.; Oldan, J.D.; Pomper, M.G.; et al. Appropriate Use Criteria for Imaging Evaluation of Biochemical Recurrence of Prostate Cancer After Definitive Primary Treatment. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2020, 61, 552–562. [Google Scholar] [CrossRef] [Green Version]
- Kalimuthu, S.; Jeong, J.H.; Oh, J.M.; Ahn, B.C. Drug Discovery by Molecular Imaging and Monitoring Therapy Response in Lymphoma. Int. J. Mol. Sci. 2017, 18, 1639. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.cancer.gov/search/results?swKeyword=biomarker (accessed on 19 May 2022).
- Liu, D. Cancer biomarkers for targeted therapy. Biomark. Res. 2019, 7, 25. [Google Scholar] [CrossRef]
- Ludwig, J.A.; Weinstein, J.N. Biomarkers in Cancer Staging, Prognosis and Treatment Selection. Nat. Rev. Cancer 2005, 5, 845–856. [Google Scholar] [CrossRef]
- Grivas, P.D.; Melas, M.; Papavassiliou, A.G. The biological complexity of urothelial carcinoma: Insights into carcinogenesis, targets and biomarkers of response to therapeutic approaches. Semin. Cancer Biol. 2015, 35, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.D.; Gercel-Taylor, C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol. 2008, 110, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Mar-Aguilar, F.; Mendoza-Ramirez, J.A.; Malagon-Santiago, I.; Espino-Silva, P.K.; Santuario-Facio, S.K.; Ruiz-Flores, P.; Rodriguez-Padilla, C.; Resendez-Perez, D. Serum circulating microRNA profiling for identification of potential breast cancer biomarkers. Dis. Markers 2013, 34, 163–169. [Google Scholar] [CrossRef]
- Ibanez de Caceres, I.; Battagli, C.; Esteller, M.; Herman, J.G.; Dulaimi, E.; Edelson, M.I.; Bergman, C.; Ehya, H.; Eisenberg, B.L.; Cairns, P. Tumor cell-specific BRCA1 and RASSF1A hypermethylation in serum, plasma, and peritoneal fluid from ovarian cancer patients. Cancer Res. 2004, 64, 6476–6481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, M.; Chen, J.Y.; Weissman-Tsukamoto, R.; Volkmer, J.-P.; Ho, P.Y.; McKenna, K.M.; Cheshier, S.; Zhang, M.; Guo, N.; Gip, P.; et al. Macrophages eat cancer cells using their own calreticulin as a guide: Roles of TLR and Btk. Proc. Natl. Acad. Sci. USA 2015, 112, 2145–2150. [Google Scholar] [CrossRef] [Green Version]
- Manel Esteller, M.T.; Sanchez-Cespedes, M.; Capella, G.; Peinado, M.A.; Watkins, D.N.; Issa, J.-P.J.; Sidransky, D.; Baylin, S.B.; Herman, J.G. Inactivation of the DNA Repair Gene O6-Methylguanine-DNA Methyltransferase by Promoter Hypermethylation Is Associated with G to A Mutations in K-ras in Colorectal Tumorigenesis. Cancer Res. 2000, 60, 2368–2371. [Google Scholar]
- Vallabhapurapu, S.D.; Blanco, V.M.; Sulaiman, M.K.; Vallabhapurapu, S.L.; Chu, Z.; Franco, R.S.; Qi, X. Variation in human cancer cell external phosphatidylserine is regulated by flippase activity and intracellular calcium. Oncotarget 2015, 6, 34375–34388. [Google Scholar] [CrossRef] [Green Version]
- Schutters, K.; Reutelingsperger, C. Phosphatidylserine targeting for diagnosis and treatment of human diseases. Apoptosis 2010, 15, 1072–1082. [Google Scholar] [CrossRef] [Green Version]
- Burstyn-Cohen, T.; Maimon, A. TAM receptors, Phosphatidylserine, inflammation, and Cancer. Cell Commun. Signal. 2019, 17, 156. [Google Scholar] [CrossRef] [Green Version]
- Naeini, M.B.; Bianconi, V.; Pirro, M.; Sahebkar, A. The role of phosphatidylserine recognition receptors in multiple biological functions. Cell. Mol. Biol. Lett. 2020, 25, 23. [Google Scholar] [CrossRef]
- Tan, L.T.; Chan, K.G.; Pusparajah, P.; Lee, W.L.; Chuah, L.H.; Khan, T.M.; Lee, L.H.; Goh, B.H. Targeting Membrane Lipid a Potential Cancer Cure? Front. Pharm. 2017, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- Kou, Y.; Zou, L.; Liu, R.; Zhao, X.; Wang, Y.; Zhang, C.; Dong, Z.; Kou, J.; Bi, Y.; Fu, L.; et al. Intravascular cells and circulating microparticles induce procoagulant activity via phosphatidylserine exposure in heart failure. J. Thromb. Thrombolysis 2019, 48, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Blanco, V.M.; Latif, T.; Chu, Z.; Qi, X. Imaging and Therapy of Pancreatic Cancer with Phosphatidylserine-Targeted Nanovesicles. Transl. Oncol. 2015, 8, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Kidd, P.M. Alzheimer’s disease, amnestic mild cognitive impairment, and age-associated memory impairment: Current understanding and progress toward integrative prevention. Altern. Med. Rev. A J. Clin. Ther. 2008, 13, 85–115. [Google Scholar]
- Hernández-Alvarez, M.I.; Sebastián, D.; Vives, S.; Ivanova, S.; Bartoccioni, P.; Kakimoto, P.; Plana, N.; Veiga, S.R.; Hernández, V.; Vasconcelos, N.; et al. Deficient Endoplasmic Reticulum-Mitochondrial Phosphatidylserine Transfer Causes Liver Disease. Cell 2019, 177, 881–895.e17. [Google Scholar] [CrossRef]
- Kim, H.-Y.; Huang, B.X.; Spector, A.A. Phosphatidylserine in the brain: Metabolism and function. Prog. Lipid Res. 2014, 56, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagata, S.; Sakuragi, T.; Segawa, K. Flippase and scramblase for phosphatidylserine exposure. Curr. Opin. Immunol. 2020, 62, 31–38. [Google Scholar] [CrossRef]
- Birge, R.B.; Boeltz, S.; Kumar, S.; Carlson, J.; Wanderley, J.; Calianese, D.; Barcinski, M.; Brekken, R.A.; Huang, X.; Hutchins, J.T.; et al. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death Differ. 2016, 23, 962–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dayoub, A.S.; Brekken, R.A. TIMs, TAMs, and PS- antibody targeting: Implications for cancer immunotherapy. Cell Commun. Signal. 2020, 18, 29. [Google Scholar] [CrossRef] [Green Version]
- Calianese, D.C.; Birge, R.B. Biology of phosphatidylserine (PS): Basic physiology and implications in immunology, infectious disease, and cancer. Cell Commun. Signal. 2020, 18, 41. [Google Scholar] [CrossRef] [Green Version]
- N’Guessan, K.F.; Patel, P.H.; Qi, X. SapC-DOPS–a Phosphatidylserine-targeted Nanovesicle for selective Cancer therapy. Cell Commun. Signal. 2020, 18, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- N’Guessan, K.F.; Davis, H.W.; Chu, Z.; Vallabhapurapu, S.D.; Lewis, C.S.; Franco, R.S.; Olowokure, O.; Ahmad, S.A.; Yeh, J.J.; Bogdanov, V.Y.; et al. Enhanced Efficacy of Combination of Gemcitabine and Phosphatidylserine-Targeted Nanovesicles against Pancreatic Cancer. Mol. Ther. 2020, 28, 1876–1886. [Google Scholar] [CrossRef]
- Davis, H.W.; Vallabhapurapu, S.D.; Chu, Z.; Vallabhapurapu, S.L.; Franco, R.S.; Mierzwa, M.; Kassing, W.; Barrett, W.L.; Qi, X. Enhanced phosphatidylserine-selective cancer therapy with irradiation and SapC-DOPS nanovesicles. Oncotarget 2019, 10, 856–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, H.W.; Kaynak, A.; Vallabhapurapu, S.D.; Qi, X. Targeting of elevated cell surface phosphatidylserine with saposin C-dioleoylphosphatidylserine nanodrug as individual or combination therapy for pancreatic cancer. World J. Gastrointest. Oncol. 2021, 13, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Riedl, S.; Rinner, B.; Asslaber, M.; Schaider, H.; Walzer, S.; Novak, A.; Lohner, K.; Zweytick, D. In search of a novel target-phosphatidylserine exposed by non-apoptotic tumor cells and metastases of malignancies with poor treatment efficacy. Biochim. Et Biophys. Acta 2011, 1808, 2638–2645. [Google Scholar] [CrossRef] [Green Version]
- Ogasawara, A.; Tinianow, J.N.; Vanderbilt, A.N.; Gill, H.S.; Yee, S.; Flores, J.E.; Williams, S.P.; Ashkenazi, A.; Marik, J. ImmunoPET imaging of phosphatidylserine in pro-apoptotic therapy treated tumor models. Nucl. Med. Biol. 2013, 40, 15–22. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, H.; Belzile, O.; Thorpe, P.; Zhao, D. Phosphatidylserine-targeted bimodal liposomal nanoparticles for in vivo imaging of breast cancer in mice. J. Control. Release 2014, 183, 114–123. [Google Scholar] [CrossRef]
- Petrovsky, A.; Schellenberger, E.; Josephson, L.; Weissleder, R.; Bogdanov, A.J. Near-infrared fluorescent imaging of tumor apoptosis. Cancer Res. 2003, 63, 1936–1942. [Google Scholar]
- Zhao, D.; Stafford, J.H.; Zhou, H.; Thorpe, P.E. Near-infrared Optical Imaging of Exposed Phosphatidylserine in a Mouse Glioma Model. Transl. Oncol. 2011, 4, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Jennewein, M.; Lewis, M.A.; Zhao, D.; Tsyganov, E.; Slavine, N.; He, J.; Watkins, L.; Kodibagkar, V.D.; O’Kelly, S.; Kulkarni, P.; et al. Vascular imaging of solid tumors in rats with a radioactive arsenic-labeled antibody that binds exposed phosphatidylserine. Clin. Cancer Res. 2008, 14, 1377–1385. [Google Scholar] [CrossRef] [Green Version]
- Ungethüm, L.; Chatrou, M.; Kusters, D.; Schurgers, L.; Reutelingsperger, C.P. Molecular Imaging of Cell Death in Tumors. Increasing Annexin A5 Size Reduces Contribution of Phosphatidylserine-Targeting Function to Tumor Uptake. PLoS ONE 2014, 9, e96749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belhocine, T.Z.; Blankenberg, F.G.; Kartachova, M.S.; Stitt, L.W.; Vanderheyden, J.-L.; Hoebers, F.J.P.; Van de Wiele, C. 99mTc-Annexin A5 quantification of apoptotic tumor response: A systematic review and meta-analysis of clinical imaging trials. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 2083–2097. [Google Scholar] [CrossRef] [PubMed]
- Loose, D.; Vermeersch, H.; De Vos, F.; Deron, P.; Slegers, G.; Van de Wiele, C. Prognostic value of 99mTc-HYNIC annexin-V imaging in squamous cell carcinoma of the head and neck. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Haeckel, A.; Ascher, L.; Beindorff, N.; Prasad, S.; Garczyńska, K.; Guo, J.; Schellenberger, E. Long-circulating XTEN864-annexin A5 fusion protein for phosphatidylserine-related therapeutic applications. Apoptosis 2021, 26, 534–547. [Google Scholar] [CrossRef]
- Gong, J.; Archer, R.; Brown, M.; Fisher, S.; Chang, C.; Peacock, M.; Hughes, C.; Freimark, B. Measuring response to therapy by near-infrared imaging of tumors using a phosphatidylserine-targeting antibody fragment. Mol. Imaging 2013, 12, 244–256. [Google Scholar] [CrossRef]
- Qi, X.; Chu, Z.; Mahller, Y.Y.; Stringer, K.F.; Witte, D.P.; Cripe, T.P. Cancer-selective targeting and cytotoxicity by liposomal-coupled lysosomal saposin C protein. Clin. Cancer Res. 2009, 15, 5840–5851. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.; Leonova, T.; Grabowski, G.A. Functional human saposins expressed in Escherichia coli. Evidence for binding and activation properties of saposins C with acid beta-glucosidase. J. Biol. Chem. 1994, 269, 16746–16753. [Google Scholar] [CrossRef]
- Qi, X.; Grabowski, G.A. Differential membrane interactions of saposins A and C: Implications for the functional specificity. J. Biol. Chem. 2001, 276, 27010–27017. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Grabowski, G.A.; Qi, X. Phospholipid vesicle fusion induced by saposin C. Arch. Biochem. Biophys. 2003, 415, 43–53. [Google Scholar] [CrossRef]
- Qi, X.; Chu, Z. Fusogenic domain and lysines in saposin C. Arch. Biochem. Biophys. 2004, 424, 210–218. [Google Scholar] [CrossRef]
- Liu, A.; Wenzel, N.; Qi, X. Role of lysine residues in membrane anchoring of saposin C. Arch. Biochem. Biophys. 2005, 443, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Davis, H.W.; Hussain, N.; Qi, X. Detection of cancer cells using SapC-DOPS nanovesicles. Mol. Cancer 2016, 15, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, A.; Qi, X. Molecular Dynamics Simulation of Saposin C-Membrane Binding. Open Struct. Biol. J. 2008, 2, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Abu-Baker, S.; Qi, X.; Newstadt, J.; Lorigan, G.A. Structural changes in a binary mixed phospholipid bilayer of DOPG and DOPS upon saposin C interaction at acidic pH utilizing 31P and 2H solid-state NMR spectroscopy. Biochim. Et Biophys. Acta 2005, 1717, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Kato, Y.; Ozawa, S.; Miyamoto, C.; Maehata, Y.; Suzuki, A.; Maeda, T.; Baba, Y. Acidic extracellular microenvironment and cancer. Cancer Cell Int. 2013, 13, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojton, J.; Chu, Z.; Mathsyaraja, H.; Meisen, W.H.; Denton, N.; Kwon, C.H.; Chow, L.M.; Palascak, M.; Franco, R.; Bourdeau, T.; et al. Systemic delivery of SapC-DOPS has antiangiogenic and antitumor effects against glioblastoma. Mol. Ther. J. Am. Soc. Gene Ther. 2013, 21, 1517–1525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, Z.; Abu-Baker, S.; Palascak, M.B.; Ahmad, S.A.; Franco, R.S.; Qi, X. Targeting and cytotoxicity of SapC-DOPS nanovesicles in pancreatic cancer. PLoS ONE 2013, 8, e75507. [Google Scholar] [CrossRef] [Green Version]
- Blanco, V.M.; Chu, Z.; Vallabhapurapu, S.D.; Sulaiman, M.K.; Kendler, A.; Rixe, O.; Warnick, R.E.; Franco, R.S.; Qi, X. Phosphatidylserine-selective targeting and anticancer effects of SapC-DOPS nanovesicles on brain tumors. Oncotarget 2014, 5, 7105–7118. [Google Scholar] [CrossRef] [Green Version]
- Unruh, D.; Ünlü, B.; Lewis, C.S.; Qi, X.; Chu, Z.; Sturm, R.; Keil, R.; Ahmad, S.A.; Sovershaev, T.; Adam, M.; et al. Antibody-based targeting of alternatively spliced tissue factor: A new approach to impede the primary growth and spread of pancreatic ductal adenocarcinoma. Oncotarget 2016, 7, 25264–25275. [Google Scholar] [CrossRef] [Green Version]
- Blanco, V.M.; Chu, Z.; LaSance, K.; Gray, B.D.; Pak, K.Y.; Rider, T.; Greis, K.D.; Qi, X. Optical and nuclear imaging of glioblastoma with phosphatidylserine-targeted nanovesicles. Oncotarget 2016, 7, 32866–32875. [Google Scholar] [CrossRef]
- Unruh, D.; Turner, K.; Srinivasan, R.; Kocatürk, B.; Qi, X.; Chu, Z.; Aronow, B.J.; Plas, D.R.; Gallo, C.A.; Kalthoff, H.; et al. Alternatively spliced tissue factor contributes to tumor spread and activation of coagulation in pancreatic ductal adenocarcinoma. Int. J. Cancer 2014, 134, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Winter, P.M.; Pearce, J.; Chu, Z.; McPherson, C.M.; Takigiku, R.; Lee, J.H.; Qi, X. Imaging of brain tumors with paramagnetic vesicles targeted to phosphatidylserine. J. Magn. Reson. Imaging 2015, 41, 1079–1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaimal, V.; Chu, Z.; Mahller, Y.Y.; Papahadjopoulos-Sternberg, B.; Cripe, T.P.; Holland, S.K.; Qi, X. Saposin C coupled lipid nanovesicles enable cancer-selective optical and magnetic resonance imaging. Mol. Imaging Biol. 2011, 13, 886–897. [Google Scholar] [CrossRef] [PubMed]
- Blanco, V.M.; Curry, R.; Qi, X. SapC-DOPS nanovesicles: A novel targeted agent for the imaging and treatment of glioblastoma. Oncoscience 2015, 2, 102–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filonov, G.S.; Piatkevich, K.D.; Ting, L.M.; Zhang, J.; Kim, K.; Verkhusha, V.V. Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat. Biotechnol. 2011, 29, 757–761. [Google Scholar] [CrossRef]
- Urano, Y.; Asanuma, D.; Hama, Y.; Koyama, Y.; Barrett, T.; Kamiya, M.; Nagano, T.; Watanabe, T.; Hasegawa, A.; Choyke, P.L.; et al. Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes. Nat. Med. 2009, 15, 104–109. [Google Scholar] [CrossRef] [Green Version]
- Thurber, G.M.; Yang, K.S.; Reiner, T.; Kohler, R.H.; Sorger, P.; Mitchison, T.; Weissleder, R. Single-cell and subcellular pharmacokinetic imaging allows insight into drug action in vivo. Nat. Commun. 2013, 4, 1504. [Google Scholar] [CrossRef] [Green Version]
- Chu, Z.; LaSance, K.; Blanco, V.; Kwon, C.H.; Kaur, B.; Frederick, M.; Thornton, S.; Lemen, L.; Qi, X. In vivo optical imaging of brain tumors and arthritis using fluorescent SapC-DOPS nanovesicles. J. Vis. Exp. 2014, 87, e51187. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Habib, A.A.; Mintz, A.; Li, K.C.; Zhao, D. Phosphatidylserine-Targeted Nanotheranostics for Brain Tumor Imaging and Therapeutic Potential. Mol. Imaging 2017, 16, 1536012117708722. [Google Scholar] [CrossRef] [Green Version]
- Kidd, P. Phosphatidylserine; Membrane Nutrient for Memory. A Clinical and Mechanistic Assessment. Altern. Med. Rev. 1996, 1, 70–84. [Google Scholar]
- Abu-Baker, S.; Chu, Z.; Stevens, A.M.; Li, J.; Qi, X. Cytotoxicity and Selectivity in Skin Cancer by SapC-DOPS Nanovesicles. J. Cancer Ther. 2012, 3, 321–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Liou, B.; Chu, Z.; Fannin, V.; Blackwood, R.; Peng, Y.; Grabowski, G.A.; Davis, H.W.; Qi, X. Systemic enzyme delivery by blood-brain barrier-penetrating SapC-DOPS nanovesicles for treatment of neuronopathic Gaucher disease. EBioMedicine 2020, 55, 102735. [Google Scholar] [CrossRef]
- Gerber, D.E.; Horn, L.; Boyer, M.; Sanborn, R.; Natale, R.; Palmero, R.; Bidoli, P.; Bondarenko, I.; Germonpre, P.; Ghizdavescu, D.; et al. Randomized phase III study of docetaxel plus bavituximab in previously treated advanced non-squamous non-small-cell lung cancer. Ann. Oncol. 2018, 29, 1548–1553. [Google Scholar] [CrossRef] [PubMed]
- Grilley-Olson, J.E.; Weiss, J.; Ivanova, A.; Villaruz, L.C.; Moore, D.T.; Stinchcombe, T.E.; Lee, C.; Shan, J.S.; Socinski, M.A. Phase Ib Study of Bavituximab With Carboplatin and Pemetrexed in Chemotherapy-Naive Advanced Nonsquamous Non–Small-Cell Lung Cancer. Clin. Lung Cancer 2018, 19, e481–e487. [Google Scholar] [CrossRef] [PubMed]
- Chalasani, P.; Marron, M.; Roe, D.; Clarke, K.; Iannone, M.; Livingston, R.B.; Shan, J.S.; Stopeck, A.T. A phase I clinical trial of bavituximab and paclitaxel in patients with HER2 negative metastatic breast cancer. Cancer Med. 2015, 4, 1051–1059. [Google Scholar] [CrossRef]
- Desai, T.J.; Udugamasooriya, D.G. A comprehensive lipid binding and activity validation of a cancer-specific peptide-peptoid hybrid PPS1. Biochem. Biophys. Res. Commun. 2017, 486, 545–550. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.P.; Udugamasooriya, D.G. A mini-library system to investigate non-essential residues of lipid-phosphatidylserine (PS) binding peptide-peptoid hybrid PPS1. MedcChemcComm 2017, 8, 2208–2215. [Google Scholar] [CrossRef]
- Liu, Y.-W.; Chen, Y.-Y.; Hsu, C.-Y.; Chiu, T.-Y.; Liu, K.-L.; Lo, C.-F.; Fang, M.-Y.; Huang, Y.-C.; Yeh, T.-K.; Pak, K.Y.; et al. Linker Optimization and Therapeutic Evaluation of Phosphatidylserine-Targeting Zinc Dipicolylamine-based Drug Conjugates. J. Med. Chem. 2019, 62, 6047–6062. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Lo, C.F.; Chiu, T.Y.; Hsu, C.Y.; Yeh, T.K.; Chen, C.P.; Huang, C.L.; Huang, C.Y.; Wang, M.H.; Huang, Y.C.; et al. BPRDP056, a novel small molecule drug conjugate specifically targeting phosphatidylserine for cancer therapy. Transl. Oncol. 2021, 14, 100897. [Google Scholar] [CrossRef]
- Zhao, S.; Chu, Z.; Blanco, V.M.; Nie, Y.; Hou, Y.; Qi, X. SapC-DOPS nanovesicles as targeted therapy for lung cancer. Mol. Cancer Ther. 2015, 14, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Huang, X.; Lynn, K.D.; Thorpe, P.E. Phosphatidylserine-targeting antibody induces M1 macrophage polarization and promotes myeloid-derived suppressor cell differentiation. Cancer Immunol. Res. 2013, 1, 256–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, T.J.; Toombs, J.E.; Minna, J.D.; Brekken, R.A.; Udugamasooriya, D.G. Identification of lipid-phosphatidylserine (PS) as the target of unbiasedly selected cancer specific peptide-peptoid hybrid PPS1. Oncotarget 2016, 7, 30678–30690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De, M.; Ghosh, S.; Sen, T.; Shadab, M.; Banerjee, I.; Basu, S.; Ali, N. A Novel Therapeutic Strategy for Cancer Using Phosphatidylserine Targeting Stearylamine-Bearing Cationic Liposomes. Mol. Ther.-Nucleic. Acids 2018, 10, 9–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De, M.; Ghosh, S.; Asad, M.; Banerjee, I.; Ali, N. Combining doxorubicin with stearylamine-bearing liposomes elicits Th1 cytokine responses and cures metastasis in a mouse model. Cancer Immunol. Immunother. 2020, 69, 1725–1735. [Google Scholar] [CrossRef]
- Beck, A.W.; Luster, T.A.; Miller, A.F.; Holloway, S.E.; Conner, C.R.; Barnett, C.C.; Thorpe, P.E.; Fleming, J.B.; Brekken, R.A. Combination of a monoclonal anti-phosphatidylserine antibody with gemcitabine strongly inhibits the growth and metastasis of orthotopic pancreatic tumors in mice. Int. J. Cancer 2006, 118, 2639–2643. [Google Scholar] [CrossRef]
- He, J.; Luster, T.A.; Thorpe, P.E. Radiation-enhanced vascular targeting of human lung cancers in mice with a monoclonal antibody that binds anionic phospholipids. Clin. Cancer Res. 2007, 13, 5211–5218. [Google Scholar] [CrossRef] [Green Version]
- Gray, M.J.; Gong, J.; Hatch, M.M.; Nguyen, V.; Hughes, C.C.; Hutchins, J.T.; Freimark, B.D. Phosphatidylserine-targeting antibodies augment the anti-tumorigenic activity of anti-PD-1 therapy by enhancing immune activation and downregulating pro-oncogenic factors induced by T-cell checkpoint inhibition in murine triple-negative breast cancers. Breast Cancer Res. BCR 2016, 18, 50. [Google Scholar] [CrossRef] [Green Version]
- Freimark, B.D.; Gong, J.; Ye, D.; Gray, M.J.; Nguyen, V.; Yin, S.; Hatch, M.M.; Hughes, C.C.; Schroit, A.J.; Hutchins, J.T.; et al. Antibody-Mediated Phosphatidylserine Blockade Enhances the Antitumor Responses to CTLA-4 and PD-1 Antibodies in Melanoma. Cancer Immunol. Res. 2016, 4, 531–540. [Google Scholar] [CrossRef] [Green Version]
- Wojton, J.; Meisen, W.H.; Jacob, N.K.; Thorne, A.H.; Hardcastle, J.; Denton, N.; Chu, Z.; Dmitrieva, N.; Marsh, R.; Van Meir, E.G.; et al. SapC-DOPS-induced lysosomal cell death synergizes with TMZ in glioblastoma. Oncotarget 2014, 5, 9703–9709. [Google Scholar] [CrossRef] [Green Version]
- Davis, H.W.; Vallabhapurapu, S.D.; Chu, Z.; Wyder, M.A.; Greis, K.D.; Fannin, V.; Sun, Y.; Desai, P.B.; Pak, K.Y.; Gray, B.D.; et al. Biotherapy of Brain Tumors with Phosphatidylserine-Targeted Radioiodinated SapC-DOPS. Nanovesicles 2020, 9, 1960. [Google Scholar] [CrossRef]
- Olowokure, O.; Qi, X. Pancreatic cancer: Current standards, working towards a new therapeutic approach. Expert Rev. Anticancer Ther. 2014, 14, 495–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulaiman, M.K.; Chu, Z.; Blanco, V.M.; Vallabhapurapu, S.D.; Franco, R.S.; Qi, X. SapC-DOPS nanovesicles induce Smac- and Bax-dependent apoptosis through mitochondrial activation in neuroblastomas. Mol. Cancer 2015, 14, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, K.; Zhao, G.; Lu, H.; Zhao, S.; Song, Y.; Qi, X.; Hou, Y. Toll-like receptor 4 can recognize SapC-DOPS to stimulate macrophages to express several cytokines. Inflamm. Res. 2011, 60, 153–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirson, E.D.; Schneiderman, R.S.; Dbaly, V.; Tovarys, F.; Vymazal, J.; Itzhaki, A.; Mordechovich, D.; Gurvich, Z.; Shmueli, E.; Goldsher, D.; et al. Chemotherapeutic treatment efficacy and sensitivity are increased by adjuvant alternating electric fields (TTFields). BMC Med. Phys. 2009, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Ivorra, A.; Rubinsky, B. Historical Review of Irreversible Electroporation in Medicine. In Irreversible Electroporation; Rubinsky, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–21. [Google Scholar]
- Litovitz, T.A. Use of Electromagnetic Fields in Cancer and Other Therapies. U.S. Patent 6,856,839, 15 February 2005. [Google Scholar]
- Rulseh, A.M.; Keller, J.; Klener, J.; Šroubek, J.; Dbalý, V.; Syrůček, M.; Tovaryš, F.; Vymazal, J. Long-term survival of patients suffering from glioblastoma multiforme treated with tumor-treating fields. World J. Surg. Oncol. 2012, 10, 220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stupp, R.; Taillibert, S.; Kanner, A.; Kesari, S.; Toms, S.A.; Barnett, G.H.; Fink, K.L.; Silvani, A.; Lieberman, F.S.; Zhu, J.-J.; et al. Tumor treating fields (TTFields): A novel treatment modality added to standard chemo- and radiotherapy in newly diagnosed glioblastoma—First report of the full dataset of the EF14 randomized phase III trial. J. Clin. Oncol. 2015, 33, 2000. [Google Scholar] [CrossRef]
- Kirson, E.D.; Dbalý, V.; Tovarys, F.; Vymazal, J.; Soustiel, J.F.; Itzhaki, A.; Mordechovich, D.; Steinberg-Shapira, S.; Gurvich, Z.; Schneiderman, R.; et al. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proc. Natl. Acad. Sci. USA 2007, 104, 10152–10157. [Google Scholar] [CrossRef] [Green Version]
- Kirson, E.D.; Gurvich, Z.; Schneiderman, R.; Dekel, E.; Itzhaki, A.; Wasserman, Y.; Schatzberger, R.; Palti, Y. Disruption of Cancer Cell Replication by Alternating Electric Fields. Cancer Res. 2004, 64, 3288–3295. [Google Scholar] [CrossRef] [Green Version]
- Stupp, R.; Wong, E.T.; Kanner, A.A.; Steinberg, D.; Engelhard, H.; Heidecke, V.; Kirson, E.D.; Taillibert, S.; Liebermann, F.; Dbaly, V.; et al. NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: A randomised phase III trial of a novel treatment modality. Eur. J. Cancer 2012, 48, 2192–2202. [Google Scholar] [CrossRef] [Green Version]
- Taphoorn, M.J.B.; Dirven, L.; Kanner, A.A.; Lavy-Shahaf, G.; Weinberg, U.; Taillibert, S.; Toms, S.A.; Honnorat, J.; Chen, T.C.; Sroubek, J.; et al. Influence of Treatment With Tumor-Treating Fields on Health-Related Quality of Life of Patients With Newly Diagnosed Glioblastoma: A Secondary Analysis of a Randomized Clinical Trial. JAMA Oncol. 2018, 4, 495–504. [Google Scholar] [CrossRef]
- Guzauskas, G.F.; Pollom, E.L.; Stieber, V.W.; Wang, B.C.; Garrison, L. Abstract LB-257: Tumor treating fields treatment for patients with newly diagnosed glioblastoma: A cost-effectiveness analysis. Cancer Res. 2018, 78, LB-257. [Google Scholar] [CrossRef]
- Al-Sakere, B.; André, F.; Bernat, C.; Connault, E.; Opolon, P.; Davalos, R.V.; Rubinsky, B.; Mir, L.M. Tumor ablation with irreversible electroporation. PLoS ONE 2007, 2, e1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotnik, T.; Rems, L.; Tarek, M.; Miklavčič, D. Membrane Electroporation and Electropermeabilization: Mechanisms and Models. Annu. Rev. Biophys. 2019, 48, 63–91. [Google Scholar] [CrossRef] [PubMed]
- Vorobiev, E.; Lebovka, N. Fundamentals of Electroporation, Theory and Mathematical Models for Simulation of PEE Processing. In Processing of Foods and Biomass Feedstocks by Pulsed Electric Energy; Springer International Publishing: Cham, Germany, 2020; pp. 27–49. [Google Scholar]
- Mir, L.M.; Belehradek, M.; Domenge, C.; Orlowski, S.; Poddevin, B.; Belehradek, J.J.; Schwaab, G.; Luboinski, B.; Paoletti, C. Electrochemotherapy, a new antitumor treatment: First clinical trial. C R Acad. Sci. III 1991, 313, 613–618. [Google Scholar] [PubMed]
- Skarlatos, I.; Kyrgias, G.; Mosa, E.; Provatopoulou, X.; Spyrou, M.; Theodorou, K.; Lepouras, A.; Gounaris, A.; Koukourakis, M. Electrochemotherapy in cancer patients: First clinical trial in Greece. In Vivo 2011, 25, 265–274. [Google Scholar] [PubMed]
- Sersa, G.; Miklavcic, D.; Cemazar, M.; Rudolf, Z.; Pucihar, G.; Snoj, M. Electrochemotherapy in treatment of tumours. Eur. J. Surg. Oncol. 2008, 34, 232–240. [Google Scholar] [CrossRef] [Green Version]
- Moller, M.G.; Salwa, S.; Soden, D.M.; O’Sullivan, G.C. Electrochemotherapy as an adjunct or alternative to other treatments for unresectable or in-transit melanoma. Expert Rev. Anticancer Ther. 2009, 9, 1611–1630. [Google Scholar] [CrossRef]
- Gehl, J. Electroporation: Theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol. Scand. 2003, 177, 437–447. [Google Scholar] [CrossRef]
- Falk, H.; Matthiessen, L.W.; Wooler, G.; Gehl, J. Calcium electroporation for treatment of cutaneous metastases; a randomized double-blinded phase II study, comparing the effect of calcium electroporation with electrochemotherapy. Acta Oncol. 2018, 57, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Frandsen, S.K.; Gissel, H.; Hojman, P.; Tramm, T.; Eriksen, J.; Gehl, J. Direct Therapeutic Applications of Calcium Electroporation to Effectively Induce Tumor Necrosis. Cancer Res. 2012, 72, 1336–1341. [Google Scholar] [CrossRef] [Green Version]
- Taghian, T.; Narmoneva, D.A.; Kogan, A.B. Modulation of cell function by electric field: A high-resolution analysis. J. R. Soc. Interface 2015, 12, 20150153. [Google Scholar] [CrossRef] [PubMed]
- Kaynak, A.; Davis, H.W.; Narmoneva, D.; Kogan, A.B.; Qi, X. Electric Field Therapy for Glioblastoma: Modulation of Tumor Cell Surface Phosphatidylserine Levels. In Proceedings of the 2018 BMES Annual Meetings, Atlanta, GA, USA, 17–20 October 2018. [Google Scholar]
- Kaynak, A.; Davis, H.W.; Narmoneva, D.; Kogan, A.B.; Qi, X. Electric field-assisted phosphatidylserine exposure level alteration in glioblastoma cells. In Proceedings of the 2019 BMES Annual Meetings, Philadelphia, PA, USA, 16–19 October 2019. [Google Scholar]
PS-Targeting Imaging | ||||
---|---|---|---|---|
Type of Imaging Modality | PS-Targeting Antibody + Imaging Compound | Results | Cancer Type(s) | Refs. |
Optical Imaging | Annexin V-Cy | A 2- to 3-fold stronger near-infrared fluorescent signal was observed in tumors of mice once treated with pro-apoptotic drug, cyclophosphamide. | Gliosarcoma | [39] |
Optical Imaging | PGN635+ 800CW | Successfully imaged the tumor 4 h post-IV injection of PGN635-800 CW. Highest signal observed at 24 h. | Glioblastoma | [40] |
Positron Emission Tomography (PET) | PGN635 + 89Zr | High accumulation 89Zr-PGN635 in treated tumors undergoing apoptosis. Tumor-to-blood ratios of up to 13. | Human colorectal cancer Breast cancer | [37] |
PET | 74As-labeled bavituximab | Tumor–liver ratio was 22 for bavituximab compared with 1.5 for an isotype matched control chimeric antibody 72 h after injection. | Prostate cancer | [41] |
Magnetic resonance imaging (MRI) (9.4T) | PGN635 + Superparamagnetic iron oxide nanoparticles (SPIO) | T2-weighted MRI detected a drastic reduction in signal intensity and T2 values of tumors at 24 h. | Breast cancer | [38] |
PS-Targeted Therapy | ||||
Type | PS-Targeting Drugs or Antibodies | Mechanism | Cancer Type(s) | Refs. |
Proteoliposomal nanovesicles | Saposin C-dioleoylphosphatidylserine (SapC-DOPS) (phase I and II clinical trials) | Caspase-mediated apoptotic and lysosomal-mediated cell death | Brain, Colorectal, GI, Lung, Breast, Skin, Neuroblastoma, Breast Cancer | [47,58,59,61,72,81] |
Monoclonal antibody | Bavituximab (phase III clinical trial) | T-cell-driven adaptive immune pathway activation through M1-TAMs | Prostate cancer Non-Small-Cell Lung Cancer | [74,82] |
Peptide–peptoid hybrid | PPS1D1 (Pre-clinical) | Membrane disruption | Lung Cancer | [77,83] |
Cationic liposomes | Phosphatidylcholine-stearylamine (Pre-clinical) | Caspase-mediated apoptosis | Melanoma Glioblastoma | [84,85] |
Zinc (II) dipicolylamine-based conjugate | Zinc (II) dipicolylamine (Pre-clinical) | Caspase-mediated apoptosis | Colorectal, Pancreas, Prostate, Liver, Breast, Glioblastoma | [80] |
Combinational PS-Targeted Therapy | ||||
Modality | PS-Targeting Antibody + Chemo/Radiation | Detailed Description | Cancer Type(s) | Refs. |
PS-targeting antibody + chemotherapy | 3G4 + gemcitabine | Significant reduction in primary tumor growth and metastatic burden 14-fold increase in macrophage infiltration over controls | Pancreatic Cancer | [86] |
PS-targeting antibody + radiation | 2aG4 + radiation | Focal irradiation increased the percentage of tumor vessels with exposed PS from 4% to 26% 91% reduction in tumor vascularity was observed when 2aG4 was combined with radiation therapy Enhanced monocyte/macrophage infiltration into the tumor mass | Lung Cancer | [87] |
PS-targeting antibody + immune activators and checkpoint inhibitors | mch1N11 + anti-PD-1 or anti CTLA-4 | Elevated fraction of cells expressing proinflammatory cytokines including IL-2, IFN-γ, and TNFα, and increased the ratio of CD8+ T cells to MDSCs and Tregs in tumors | Breast Cancer Melanoma Tumors | [88,89] |
Variables | Tumor Type | Results | Refs. | ||
---|---|---|---|---|---|
Time/ Temperature | EF Intensity | Frequency | |||
72 h/ 18 °C | 1.7 V/cm | (100–500 kHz) | F98 rat glioma cells | A significant reduction in cell viability was observed at all applied frequencies, with the maximal reduction at 200 kHz | [100] |
72 h/ 18 °C, 24 °C, and 28 °C | 1.0 and 1.7 V/cm | (100–500 kHz) | U-87 MG | The maximum reduction in cell viability was observed when the cells were treated with 1.7 V/cm (incubator temperature: 28 °C) at 200 kHz | [100] |
72 h/ 18 °C | 1.7 V/cm | (100–500 kHz) | A2780 human ovarian cancer cells | A significant reduction in cell viability was observed at all applied frequencies, with the maximal reduction at 200 kHz | [100] |
72 h/ 18 °C, 24 °C, and 28 °C | 1.3 and 1.7 V/cm | (100–500 kHz) | OVCAR-3 human ovarian cancer cells | The maximum reduction in cell viability was observed when the cells were treated with 1.7 V/cm (incubator temperature: 18 °C) at 200 kHz | [100] |
24 h/ 34 °C | 1 and 2.5 V/cm | (100–300 kHz) | B16F1 Mouse malignant melanoma | Maximum cell growth inhibition was observed at intensities of 1.35 V/cm with 120 kHz frequency | [101] |
24 h/ 37 °C | 0–3 V/cm | (100–500 kHz) | MDA-MB-231 Human breast carcinoma | Maximum cell growth inhibition was observed at intensities of 1.75 V/cm with 150 kHz frequency | [100] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaynak, A.; Davis, H.W.; Kogan, A.B.; Lee, J.-H.; Narmoneva, D.A.; Qi, X. Phosphatidylserine: The Unique Dual-Role Biomarker for Cancer Imaging and Therapy. Cancers 2022, 14, 2536. https://doi.org/10.3390/cancers14102536
Kaynak A, Davis HW, Kogan AB, Lee J-H, Narmoneva DA, Qi X. Phosphatidylserine: The Unique Dual-Role Biomarker for Cancer Imaging and Therapy. Cancers. 2022; 14(10):2536. https://doi.org/10.3390/cancers14102536
Chicago/Turabian StyleKaynak, Ahmet, Harold W. Davis, Andrei B. Kogan, Jing-Huei Lee, Daria A. Narmoneva, and Xiaoyang Qi. 2022. "Phosphatidylserine: The Unique Dual-Role Biomarker for Cancer Imaging and Therapy" Cancers 14, no. 10: 2536. https://doi.org/10.3390/cancers14102536
APA StyleKaynak, A., Davis, H. W., Kogan, A. B., Lee, J. -H., Narmoneva, D. A., & Qi, X. (2022). Phosphatidylserine: The Unique Dual-Role Biomarker for Cancer Imaging and Therapy. Cancers, 14(10), 2536. https://doi.org/10.3390/cancers14102536