Prognostic Value of Preclinical Markers after Radiotherapy of Metastatic Spinal Cord Compression—An Additional Analysis of Patients from Two Prospective Trials
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prasad, D.; Lawton, A.J.; Lee, K.A.; Cheville, A.L.; Ferrone, M.L.; Rades, D.; Balboni, T.A.; Abrahm, J.L. Assessment and management of patients with metastatic spinal cord compression: A multidisciplinary review. J. Clin. Oncol. 2019, 37, 61–71. [Google Scholar]
- Patchell, R.; Tibbs, P.A.; Regine, W.F.; Payne, R.; Saris, S.; Kryscio, R.J.; Mohiuddin, M.; Young, B. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: A randomised trial. Lancet 2005, 366, 643–648. [Google Scholar] [CrossRef] [Green Version]
- Rades, D.; Abrahm, J.L. The role of radiotherapy for metastatic epidural spinal cord compression. Nat. Rev. Clin. Oncol. 2010, 7, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Prasad, D.; Schiff, D. Malignant spinal cord compression. Lancet Oncol. 2005, 6, 15–24. [Google Scholar] [CrossRef]
- Hoskin, P.J.; Hopkins, K.; Misra, V.; Holt, T.; McMenemin, R.; Dubois, D.; McKinna, F.; Foran, B.; Madhavan, K.; MacGregor, C.; et al. Effect of single-fraction vs multifraction radiotherapy on ambulatory status among patients with spinal canal compression from metastatic cancer: The SCORAD randomized clinical trial. JAMA 2019, 322, 2084–2094. [Google Scholar] [CrossRef]
- Thirion, P.G.; Dunne, M.T.; Kelly, P.J.; Flavin, A.; O’Sullivan, J.M.; Hacking, D.; Sasiadek, W.; Small, C.; Pomeroy, M.M.; Martin, J.; et al. Non-inferiority randomised phase 3 trial comparing two radiation schedules (single vs. five fractions) in malignant spinal cord compression. Br. J. Cancer 2020, 122, 1315–1323. [Google Scholar] [CrossRef] [PubMed]
- Rades, D.; Šegedin, B.; Conde-Moreno, A.J.; Garcia, R.; Perpar, A.; Metz, M.; Badakhshi, H.; Schreiber, A.; Nitsche, M.; Hipp, P.; et al. Radiotherapy with 4 Gy × 5 versus 3 Gy × 10 for metastatic epidural spinal cord compression: Final results of the SCORE-2 trial (ARO 2009/01). J. Clin. Oncol. 2016, 34, 597–602. [Google Scholar] [CrossRef]
- Rades, D.; Lange, M.; Veninga, T.; Stalpers, L.J.; Bajrovic, A.; Adamietz, I.A.; Rudat, V.; Schild, S.E. Final results of a prospective study comparing the local control of short-course and long-course radiotherapy for metastatic spinal cord compression. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 524–530. [Google Scholar] [CrossRef]
- Rades, D.; Panzner, A.; Rudat, V.; Karstens, J.H.; Schild, S.E. Dose escalation of radiotherapy for metastatic spinal cord compression (MSCC) in patients with relatively favorable survival prognosis. Strahlenther. Onkol. 2011, 187, 729–735. [Google Scholar] [CrossRef]
- Rades, D.; Fehlauer, F.; Schulte, R.; Veninga, T.; Stalpers, L.J.; Basic, H.; Bajrovic, A.; Hoskin, P.J.; Tribius, S.; Wildfang, I.; et al. Prognostic factors for local control and survival after radiotherapy of metastatic spinal cord compression. J. Clin. Oncol. 2006, 24, 3388–3393. [Google Scholar] [CrossRef]
- Rades, D.; Dunst, J.; Schild, S.E. The first score predicting overall survival in patients with metastatic spinal cord compression. Cancer 2008, 112, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Rades, D.; Douglas, S.; Veninga, T.; Stalpers, L.J.A.; Hoskin, P.J.; Bajrovic, A.; Adamietz, I.A.; Basic, H.; Dunst, J.; Schild, S.E. Validation and simplification of a score predicting survival in patients irradiated for metastatic spinal cord compression. Cancer 2010, 116, 3670–3673. [Google Scholar] [CrossRef] [PubMed]
- Hadden, N.J.; McIntosh, J.R.D.; Jay, S.; Whittaker, P.J. Prognostic factors in patients with metastatic spinal cord compression secondary to melanoma: A systematic review. Melanoma Res. 2018, 28, 1–7. [Google Scholar] [CrossRef]
- Gou, M.; Zhang, Y.; Liu, T.; Qu, T.; Si, H.; Wang, Z.; Yan, H.; Qian, N.; Dai, G. The prognostic value of pre-treatment hemoglobin (Hb) in patients with advanced or metastatic gastric cancer treated with immunotherapy. Front. Oncol. 2021, 11, 655716. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, T.; Yokomizo, Y.; Ito, Y.; Ito, H.; Ishiguro, H.; Teranishi, J.; Makiyama, K.; Miyoshi, Y.; Miyamoto, H.; Yao, M.; et al. Pretreatment neutrophil-to-lymphocyte ratio predicts the prognosis in patients with metastatic prostate cancer. BMC Cancer 2016, 16, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takamizawa, S.; Shimoi, T.; Satomi-Tsushita, N.; Yazaki, S.; Okuya, T.; Kojima, Y.; Sumiyoshi-Okuma, H.; Nishikawa, T.; Tanioka, M.; Sudo, K.; et al. Neutrophil-to-lymphocyte ratio as a prognostic factor for patients with metastatic or recurrent breast cancer treated using capecitabine: A retrospective study. BMC Cancer 2022, 22, 64. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Liu, N.; Wang, S.; Guo, J.; Song, X.; Qi, Y.; Qiu, W.; Lv, J. Prognostic significance of the neutrophil-to-lymphocyte and platelet-to-lymphocyte ratio in patients with metastatic gastric cancer. Medicine 2020, 99, e19405. [Google Scholar] [CrossRef]
- Yuk, H.D.; Kang, M.; Hwang, E.C.; Park, J.Y.; Jeong, C.W.; Song, C.; Seo, S.I.; Byun, S.S.; Kwak, C.; Hong, S.H.; et al. The platelet-to-lymphocyte ratio as a significant prognostic factor to predict survival outcomes in patients with synchronous metastatic renal cell carcinoma. Investig. Clin. Urol. 2020, 61, 475–481. [Google Scholar] [CrossRef]
- Ma, Y.Y.; Wang, H.; Zhao, W.D.; Li, Y.F.; Wang, J.J.; Chen, X.Y.; Huang, Y.Q.; Wang, W.J.; Wang, Y.; Sun, S.C. Prognostic value of combined lactate dehydrogenase, c-reactive protein, cancer antigen 153 and cancer antigen 125 in metastatic breast cancer. Cancer Control 2022, 29, 10732748211053150. [Google Scholar] [CrossRef]
- Ishibashi, Y.; Kobayashi, H.; Sawada, R.; Okuma, T.; Okajima, K.; Zhang, L.; Hirai, T.; Ohki, T.; Ikegami, M.; Shinoda, Y.; et al. Pretreatment serum C-reactive protein is a significant prognostic factor in patients with soft tissue metastases. J. Orthop. Sci. 2021, 26, 478–482. [Google Scholar] [CrossRef]
- Paulino Pereira, N.R.; Janssen, S.J.; van Dijk, E.; Harris, M.B.; Hornicek, F.J.; Ferrone, M.L.; Schwab, J.H. Development of a prognostic survival algorithm for patients with metastatic spine disease. J. Bone Joint Surg. Am. 2016, 98, 1767–1776. [Google Scholar] [CrossRef] [PubMed]
- Fizazi, K.; Massard, C.; Smith, M.; Rader, M.; Brown, J.; Milecki, P.; Shore, N.; Oudard, S.; Karsh, L.; Carducci, M.; et al. Bone-related parameters are the main prognostic factors for overall survival in men with bone metastases from castration-resistant prostate cancer. Eur. Urol. 2015, 68, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Perez-Lopez, R.; Lorente, D.; Blackledge, M.D.; Collins, D.J.; Mateo, J.; Bianchini, D.; Omlin, A.; Zivi, A.; Leach, M.O.; de Bono, J.S.; et al. Volume of bone metastasis assessed with whole-body diffusion-weighted imaging is associated with overall survival in metastatic castration-resistant prostate cancer. Radiology 2016, 280, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.E.; Cook, R.J.; Lipton, A.; Coleman, R.E. Serum lactate dehydrogenase is prognostic for survival in patients with bone metastases from breast cancer: A retrospective analysis in bisphosphonate-treated patients. Clin. Cancer Res. 2012, 18, 6348–6355. [Google Scholar] [CrossRef] [Green Version]
- Thio, Q.C.B.S.; Goudriaan, W.A.; Janssen, S.J.; Paulino Pereira, N.R.; Sciubba, D.M.; Rosovksy, R.P.; Schwab, J.H. Prognostic role of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in patients with bone metastases. Br. J. Cancer 2018, 119, 737–743. [Google Scholar] [CrossRef] [Green Version]
- Nuhn, P.; Vaghasia, A.M.; Goyal, J.; Zhou, X.C.; Carducci, M.A.; Eisenberger, M.A.; Antonarakis, E.S. Association of pretreatment neutrophil-to-lymphocyte ratio (NLR) and overall survival (OS) in patients with metastatic castration-resistant prostate cancer (mCRPC) treated with first-line docetaxel. BJU Int. 2014, 114, E11–E17. [Google Scholar] [CrossRef] [Green Version]
- Naruse, K.; Yamada, Y.; Aoki, S.; Taki, T.; Nakamura, K.; Tobiume, M.; Zennami, K.; Katsuda, R.; Sai, S.; Nishio, Y.; et al. Lactate dehydrogenase is a prognostic indicator for prostate cancer patients with bone metastasis. Hinyokika Kiyo 2007, 53, 287–292. [Google Scholar]
- Turkoz, F.P.; Solak, M.; Kilickap, S.; Ulas, A.; Esbah, O.; Oksuzoglu, B.; Yalcin, S. Bone metastasis from gastric cancer: The incidence, clinicopathological features, and influence on survival. J. Gastric Cancer 2014, 14, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Nieder, C.; Dalhaug, A.; Pawinski, A.; Mannsåker, B.; Haukland, E. Survival after palliative radiotherapy in patients with breast cancer and bone-only metastases. In Vivo 2016, 30, 879–883. [Google Scholar] [CrossRef] [Green Version]
- Nieder, C.; Dalhaug, A.; Haukland, E. The LabBM score is an excellent survival prediction tool in patients undergoing palliative radiotherapy. Rep. Pract. Oncol. Radiother. 2021, 26, 740–746. [Google Scholar] [CrossRef]
- Errani, C.; Cosentino, M.; Ciani, G.; Ferra, L.; Alfaro, P.A.; Bordini, B.; Donati, D.M. C-reactive protein and tumour diagnosis predict survival in patients treated surgically for long bone metastases. Int. Orthop. 2021, 45, 1337–1346. [Google Scholar] [CrossRef] [PubMed]
- Rades, D.; Cacicedo, J.; Conde-Moreno, A.J.; Doemer, C.; Dunst, J.; Lomidze, D.; Segedin, B.; Olbrich, D.; Holländer, N.H. High-precision radiotherapy of motor deficits due to metastatic spinal cord compression (PRE-MODE): A multicenter phase 2 study. BMC Cancer 2017, 17, 818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rades, D.; Cacicedo, J.; Conde-Moreno, A.J.; Segedin, B.; But-Hadzic, J.; Groselj, B.; Kevlishvili, G.; Lomidze, D.; Ciervide-Jurio, R.; Rubio, C.; et al. Precision radiation therapy for metastatic spinal cord compression: Final results of the PRE-MODE Trial. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 780–789. [Google Scholar] [CrossRef] [PubMed]
- Wedn, R.; Falkenius, J.; Weiss, R.J.; Hansson, J. Surgical treatment of skeletal metastases in 31 melanoma patients. Acta Orthop. Belg. 2012, 78, 246–253. [Google Scholar]
- Vaupel, P.; Thews, O.; Hockel, M. Treatment resistance of solid tumors: Role of hypoxia and anemia. Med. Oncol. 2001, 18, 243–259. [Google Scholar] [CrossRef]
- Rades, D.; Hansen, O.; Jensen, L.H.; Dziggel, L.; Staackmann, C.; Doemer, C.; Cacicedo, J.; Conde-Moreno, A.J.; Segedin, B.; Ciervide-Jurio, R.; et al. Radiotherapy for metastatic spinal cord compression with increased radiation doses (RAMSES-01): A prospective multicenter study. BMC Cancer 2019, 19, 1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | At 3 mos. | At 6 mos. | At 9 mos. | At 12 mos. | p-Value |
---|---|---|---|---|---|
Pre-RT hemoglobin level | 0.12 | ||||
≤11.5 g/dL (n = 97) | 46 | 38 | 28 | 25 | |
>11.5 g/dL (n = 92) | 54 | 42 | 37 | 37 | |
Neutrophil-to-lymphocyte ratio | 0.033 | ||||
≤5 (n = 77) | 61 | 50 | 41 | 37 | |
>5 (n = 98) | 40 | 30 | 26 | 26 | |
Platelet-to-lymphocyte ratio | 0.14 | ||||
≤250 (n = 81) | 57 | 47 | 40 | 37 | |
>250 (n = 94) | 43 | 32 | 25 | 25 | |
Lactate dehydrogenase | <0.001 | ||||
≤250 (n = 82) | 68 | 55 | 44 | 44 | |
>250 (n = 91) | 32 | 24 | 18 | 16 | |
C-reactive protein | <0.001 | ||||
≤25 (n = 75 | 65 | 49 | 42 | 38 | |
>25 (n = 92) | 36 | 32 | 23 | 23 | |
Radiotherapy regimen | 0.45 | ||||
Short-course RT (n = 110) | 48 | 42 | 33 | 33 | |
Longer-course RT (n = 80) | 53 | 37 | 31 | 28 | |
Age | 0.29 | ||||
≤68 years (n = 95) | 45 | 35 | 31 | 31 | |
>68 years (n = 95) | 55 | 45 | 34 | 30 | |
Gender | 0.21 | ||||
Female (n = 78) | 56 | 47 | 42 | 40 | |
Male (n = 112) | 46 | 35 | 26 | 25 | |
Type of primary tumor | <0.001 | ||||
Breast cancer (n = 32) | 78 | 69 | 60 | 60 | |
Prostate cancer (n = 24) | 63 | 54 | 48 | 41 | |
Myeloma/lymphoma (n = 16) | 69 | 69 | 69 | 69 | |
Lung cancer (n = 56) | 36 | 23 | 13 | 13 | |
Other tumor types (n = 62) | 39 | 25 | 22 | 20 | |
Interval tumor diagnosis to MSCC | 0.14 | ||||
≤6 months (n = 102) | 52 | 42 | 36 | 36 | |
>6 months (n = 88) | 48 | 37 | 28 | 24 | |
Number of affected vertebrae | 0.067 | ||||
1–2 (n = 102) | 55 | 43 | 36 | 32 | |
≥3 (n = 88) | 44 | 36 | 29 | 29 | |
Visceral metastases | 0.41 | ||||
No (n = 48) | 63 | 50 | 39 | 35 | |
Yes (n = 142) | 46 | 37 | 30 | 29 | |
Other bone metastases | 0.95 | ||||
No (n = 23) | 57 | 30 | 30 | 30 | |
Yes (n = 167) | 49 | 41 | 33 | 31 | |
Time developing motor deficits | 0.44 | ||||
0–7 days (n = 82) | 49 | 39 | 32 | 30 | |
8–14 days (n = 50) | 54 | 42 | 39 | 39 | |
>14 days (n = 58) | 48 | 40 | 28 | 25 | |
Pre-RT ambulatory status | <0.001 | ||||
Not Ambulatory (n = 81) | 35 | 28 | 19 | 16 | |
Ambulatory (n = 109) | 61 | 49 | 42 | 40 | |
Pre-RT Sensory function | 0.95 | ||||
Impaired (n = 94) | 52 | 39 | 33 | 31 | |
Normal (n = 93) | 49 | 42 | 33 | 32 | |
Pre-RT Sphincter function | 0.011 | ||||
Impaired (n = 49) | 39 | 29 | 21 | 21 | |
Normal (n = 141) | 54 | 44 | 36 | 34 |
Characteristic | Risk Ratio | 95% Confidence Interval | p-Value |
---|---|---|---|
Neutrophil-to-lymphocyte ratio | 1.08 | 0.73–1.60 | 0.69 |
Lactate dehydrogenase | 1.81 | 1.17–2.78 | 0.007 |
C-reactive protein | 1.52 | 1.00–2.31 | 0.047 |
Type of primary tumor | 1.24 | 1.07–1.43 | 0.003 |
Pre-RT ambulatory status | 1.79 | 1.15–2.79 | 0.010 |
Pre-RT Sphincter function | 1.00 | 0.61–1.63 | >0.99 |
Characteristic | Number of Patients | Proportion (%) |
---|---|---|
Pre-RT hemoglobin level | ||
≤11.5 g/dL | 97 | 51 |
>11.5 g/dL | 92 | 48 |
Unknown | 1 | 1 |
Neutrophil-to-lymphocyte ratio | ||
≤5 | 77 | 41 |
>5 | 98 | 52 |
Unknown | 15 | 8 |
Platelet-to-lymphocyte ratio | ||
≤250 | 81 | 43 |
>250 | 94 | 49 |
Unknown | 15 | 8 |
Lactate dehydrogenase | ||
≤250 | 82 | 43 |
>250 | 91 | 48 |
Unknown | 17 | 9 |
C-reactive protein | ||
≤25 | 75 | 39 |
>25 | 92 | 48 |
Unknown | 23 | 12 |
Radiotherapy regimen | ||
Short-course RT | 110 | 58 |
Longer-course RT | 80 | 42 |
Age | ||
≤68 years | 95 | 50 |
>68 years | 95 | 50 |
Gender | ||
Female | 78 | 41 |
Male | 112 | 59 |
Type of primary tumor | ||
Breast cancer | 32 | 17 |
Prostate cancer | 24 | 13 |
Myeloma/lymphoma | 16 | 8 |
Lung cancer | 56 | 29 |
Other tumor types | 62 | 33 |
Interval tumor diagnosis to MSCC | ||
≤6 months | 102 | 54 |
>6 months | 88 | 46 |
Number of affected vertebrae | ||
1–2 | 102 | 54 |
≥3 | 88 | 46 |
Visceral metastases | ||
No | 48 | 2 |
Yes | 142 | 75 |
Other bone metastases | ||
No | 23 | 12 |
Yes | 167 | |
Time developing motor deficits pre-RT | ||
0–7 days | 82 | 43 |
8–14 days | 50 | 26 |
>14 days | 58 | 31 |
Pre-RT ambulatory status | ||
Not Ambulatory | 81 | 43 |
Ambulatory | 109 | 57 |
Pre-RT Sensory function | ||
Impaired | 94 | 49 |
Normal | 93 | 49 |
Unknown | 3 | 2 |
Pre-RT Sphincter function | ||
Impaired | 49 | 26 |
Normal | 141 | 74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rades, D.; Cacicedo, J.; Lomidze, D.; Al-Salool, A.; Segedin, B.; Groselj, B.; Schild, S.E. Prognostic Value of Preclinical Markers after Radiotherapy of Metastatic Spinal Cord Compression—An Additional Analysis of Patients from Two Prospective Trials. Cancers 2022, 14, 2547. https://doi.org/10.3390/cancers14102547
Rades D, Cacicedo J, Lomidze D, Al-Salool A, Segedin B, Groselj B, Schild SE. Prognostic Value of Preclinical Markers after Radiotherapy of Metastatic Spinal Cord Compression—An Additional Analysis of Patients from Two Prospective Trials. Cancers. 2022; 14(10):2547. https://doi.org/10.3390/cancers14102547
Chicago/Turabian StyleRades, Dirk, Jon Cacicedo, Darejan Lomidze, Ahmed Al-Salool, Barbara Segedin, Blaz Groselj, and Steven E. Schild. 2022. "Prognostic Value of Preclinical Markers after Radiotherapy of Metastatic Spinal Cord Compression—An Additional Analysis of Patients from Two Prospective Trials" Cancers 14, no. 10: 2547. https://doi.org/10.3390/cancers14102547
APA StyleRades, D., Cacicedo, J., Lomidze, D., Al-Salool, A., Segedin, B., Groselj, B., & Schild, S. E. (2022). Prognostic Value of Preclinical Markers after Radiotherapy of Metastatic Spinal Cord Compression—An Additional Analysis of Patients from Two Prospective Trials. Cancers, 14(10), 2547. https://doi.org/10.3390/cancers14102547