Pancreatic Ductal Adenocarcinoma: Current and Emerging Therapeutic Uses of Focused Ultrasound
Abstract
:Simple Summary
Abstract
1. Introduction
2. Pancreatic Cancer Generalities
3. Generalities on Focused Ultrasound
4. Current Clinical Applications of HIFU in the Pancreas
5. Thermal Effects of HIFU in PDAC
6. Mechanical Effects of FUS in PDAC
7. FUS-Mediated Targeted Delivery
8. Sonodynamic Therapy
9. Immunotherapy
10. Conclusions and Future Directions
Funding
Conflicts of Interest
Abbreviations
PDAC | Pancreatic ductal adenocarcinoma |
US | Ultrasound |
HIFU | High Intensity Focused Ultrasound |
FUS | Focused ultrasound |
LAPA | Locally advanced pancreatic adenocarcinoma |
RFA | Radiofrequency ablation |
IRE | Irreversible electroporation |
UMTD | Ultrasound microbubble targeted destruction |
ECOG | Eastern Cooperative Oncology Group |
EORTC | European Organisation for Research and Treatment of Cancer |
UICC | Union for International Cancer Control |
CEUS | Contrast-enhanced ultrasound |
SEMS | Self-expanding metal stents |
HGU | Hepatic glucose uptake |
HSP | Heat shock protein |
CTL | Cytotoxic T lymphocyte |
TME | Tumoral microenvironment |
MRgHIFU | Magnetic resonance guided high intensity focused ultrasound |
DMMC | DOX-loaded microparticle-microbubble complex |
References
- Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting Cancer Incidence and Deaths to 2030: The Unexpected Burden of Thyroid, Liver, and Pancreas Cancers in the United States. Cancer Res. 2014, 74, 2913–2921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dababou, S.; Marrocchio, C.; Rosenberg, J.; Bitton, R.; Pauly, K.B.; Napoli, A.; Hwang, J.H.; Ghanouni, P. A meta-analysis of palliative treatment of pancreatic cancer with high intensity focused ultrasound. J. Ther. Ultrasound 2017, 5, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marinova, M.; Rauch, M.; Mücke, M.; Rolke, R.; Gonzalez-Carmona, M.A.; Henseler, J.; Cuhls, H.; Radbruch, L.; Strassburg, C.P.; Zhang, L.; et al. High-intensity focused ultrasound (HIFU) for pancreatic carcinoma: Evaluation of feasibility, reduction of tumour volume and pain intensity. Eur. Radiol. 2016, 26, 4047–4056. [Google Scholar] [CrossRef] [PubMed]
- Marinova, M.; Strunk, H.M.; Rauch, M.; Henseler, J.; Clarens, T.; Brüx, L.; Dolscheid-Pommerich, R.; Conrad, R.; Cuhls, H.; Radbruch, L.; et al. High-intensity focused ultrasound (HIFU) for tumor pain relief in inoperable pancreatic cancer: Evaluation with the pain sensation scale (SES). Schmerz 2017, 31, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Strunk, H.; Henseler, J.; Rauch, M.; Mücke, M.; Kukuk, G.; Cuhls, H.; Radbruch, L.; Zhang, L.; Schild, H.; Marinova, M. Clinical Use of High-Intensity Focused Ultrasound (HIFU) for Tumor and Pain Reduction in Advanced Pancreatic Cancer. RöFo-Fortschritte Geb. Röntgenstrahlen Bildgeb. Verfahr. 2016, 188, 662–670. [Google Scholar] [CrossRef] [Green Version]
- Strunk, H.; Lützow, C.; Henseler, J.; Mücke, M.; Rauch, M.; Marx, C.; Schild, H.; Marinova, M. Mesenteric Vessel Patency Following HIFU Therapy in Patients with Locally Invasive Pancreatic Cancer. Ultraschall Med.-Eur. J. Ultrasound 2018, 39, 650–658. [Google Scholar] [CrossRef]
- Ishido, K.; Hakamada, K.; Kimura, N.; Miura, T.; Wakiya, T. Essential updates 2018/2019: Current topics in the surgical treatment of pancreatic ductal adenocarcinoma. Ann. Gastroenterol. Surg. 2021, 5, 7–23. [Google Scholar] [CrossRef]
- Ryan, D.P.; Hong, T.S.; Bardeesy, N. Pancreatic Adenocarcinoma. N. Engl. J. Med. 2014, 371, 1039–1049. [Google Scholar] [CrossRef]
- Wei, K.; Hackert, T. Surgical Treatment of Pancreatic Ductal Adenocarcinoma. Cancers 2021, 13, 1971. [Google Scholar] [CrossRef]
- Paiella, S.; De Pastena, M.; Faustini, F.; Landoni, L.; Pollini, T.; Bonamini, D.; Giuliani, T.; Bassi, C.; Esposito, A.; Tuveri, M.; et al. Central pancreatectomy for benign or low-grade malignant pancreatic lesions - A single-center retrospective analysis of 116 cases. Eur. J. Surg. Oncol. 2019, 45, 788–792. [Google Scholar] [CrossRef]
- van Veldhuisen, E.; van den Oord, C.; Brada, L.J.; Walma, M.S.; Vogel, J.A.; Wilmink, J.W.; del Chiaro, M.; van Lienden, K.P.; Meijerink, M.R.; van Tienhoven, G.; et al. Locally Advanced Pancreatic Cancer: Work-Up, Staging, and Local Intervention Strategies. Cancers 2019, 11, 976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auclin, E.; Marthey, L.; Abdallah, R.; Mas, L.; Francois, E.; Saint, A.; Cunha, A.S.; Vienot, A.; Lecomte, T.; Hautefeuille, V.; et al. Role of FOLFIRINOX and chemoradiotherapy in locally advanced and borderline resectable pancreatic adenocarcinoma: Update of the AGEO cohort. Br. J. Cancer 2021, 124, 1941–1948. [Google Scholar] [CrossRef] [PubMed]
- Garnier, J.; Ewald, J.; Marchese, U.; Gilabert, M.; Moureau-Zabotto, L.; Giovannini, M.; Poizat, F.; Delpero, J.R.; Turrini, O. Borderline or locally advanced pancreatic adenocarcinoma: A single center experience on the FOLFIRINOX induction regimen. Eur. J. Surg. Oncol. 2020, 46, 1510–1515. [Google Scholar] [CrossRef] [PubMed]
- Garnier, J.; Ewald, J.; Marchese, U.; Gilabert, M.; Launay, S.; Moureau-Zabotto, L.; Poizat, F.; Giovannini, M.; Delpero, J.R.; Turrini, O. Outcomes of patients with initially locally advanced pancreatic adenocarcinoma who did not benefit from resection: A prospective cohort study. BMC Cancer 2020, 20, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Facciorusso, A.; Di Maso, M.; Serviddio, G.; Larghi, A.; Costamagna, G.; Muscatiello, N. Echoendoscopic ethanol ablation of tumor combined with celiac plexus neurolysis in patients with pancreatic adenocarcinoma. J. Gastroenterol. Hepatol. 2017, 32, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Girelli, R.; Frigerio, I.; Salvia, R.; Barbi, E.; Tinazzi Martini, P.; Bassi, C. Feasibility and safety of radiofrequency ablation for locally advanced pancreatic cancer. Br. J. Surg. 2010, 97, 220–225. [Google Scholar] [CrossRef]
- Philips, P.; Hays, D.; Martin, R.C.G. Irreversible Electroporation Ablation (IRE) of Unresectable Soft Tissue Tumors: Learning Curve Evaluation in the First 150 Patients Treated. PLoS ONE 2013, 8, e76260. [Google Scholar] [CrossRef]
- Chen, Q.; Zhu, X.; Chen, Q.; Wang, K.; Meng, Z. Unresectable giant pancreatic neuroendocrine tumor effectively treated by high-intensity focused ultrasound: A case report and review of the literature. Pancreatology 2013, 13, 634–638. [Google Scholar] [CrossRef]
- Orgera, G.; Krokidis, M.; Monfardini, L.; Bonomo, G.; Della Vigna, P.; Fazio, N.; Orsi, F. High Intensity Focused Ultrasound Ablation of Pancreatic Neuroendocrine Tumours: Report of Two Cases. Cardiovasc. Interv. Radiol. 2011, 34, 419–423. [Google Scholar] [CrossRef]
- Izadifar, Z.; Izadifar, Z.; Chapman, D.; Babyn, P. An Introduction to High Intensity Focused Ultrasound: Systematic Review on Principles, Devices, and Clinical Applications. J. Clin. Med. 2020, 9, 460. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.F. High intensity focused ultrasound in clinical tumor ablation. World J. Clin. Oncol. 2011, 2, 8–27. [Google Scholar] [CrossRef] [PubMed]
- Diederich, C.J. Thermal ablation and high-temperature thermal therapy: Overview of technology and clinical implementation. Int. J. Hyperth. Off. J. Eur. Soc. Hyperth. Oncol. N. Am. Hyperth. Group 2005, 21, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Prakash, P.; Diederich, C.J. Considerations for theoretical modelling of thermal ablation with catheter-based ultrasonic sources: Implications for treatment planning, monitoring and control. Int. J. Hyperth. 2012, 28, 69–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, P.N. Absorption and dispersion of ultrasound in biological tissue. Ultrasound Med. Biol. 1975, 1, 369–376. [Google Scholar] [CrossRef]
- Tempany, C.M.C.; McDannold, N.J.; Hynynen, K.; Jolesz, F.A. Focused Ultrasound Surgery in Oncology: Overview and Principles. Radiology 2011, 259, 39–56. [Google Scholar] [CrossRef]
- Canney, M.S.; Khokhlova, V.A.; Bessonova, O.V.; Bailey, M.R.; Crum, L.A. Shock-Induced Heating and Millisecond Boiling in Gels and Tissue Due to High Intensity Focused Ultrasound. Ultrasound Med. Biol. 2010, 36, 250–267. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.N.; Khokhlova, T.D.; Buravkov, S.; Chernikov, V.; Kreider, W.; Partanen, A.; Farr, N.; Maxwell, A.; Schade, G.R.; Khokhlova, V.A. Mechanical decellularization of tissue volumes using boiling histotripsy. Phys. Med. Biol. 2018, 63, 235023. [Google Scholar] [CrossRef]
- Maxwell, A.D.; Wang, T.Y.; Cain, C.A.; Fowlkes, J.B.; Sapozhnikov, O.A.; Bailey, M.R.; Xu, Z. Cavitation clouds created by shock scattering from bubbles during histotripsy. J. Acoust. Soc. Am. 2011, 130, 1888–1898. [Google Scholar] [CrossRef] [Green Version]
- Khokhlova, V.A.; Fowlkes, J.B.; Roberts, W.W.; Schade, G.R.; Xu, Z.; Khokhlova, T.D.; Hall, T.L.; Maxwell, A.D.; Wang, Y.N.; Cain, C.A. Histotripsy methods in mechanical disintegration of tissue: Towards clinical applications. Int. J. Hyperth. 2015, 31, 145–162. [Google Scholar] [CrossRef]
- Simon, J.C.; Sapozhnikov, O.A.; Khokhlova, V.A.; Wang, Y.N.; Crum, L.A.; Bailey, M.R. Ultrasonic atomization of tissue and its role in tissue fractionation by high intensity focused ultrasound. Phys. Med. Biol. 2012, 57, 8061–8078. [Google Scholar] [CrossRef] [Green Version]
- Bader, K.B.; Haworth, K.J.; Shekhar, H.; Maxwell, A.D.; Peng, T.; McPherson, D.D.; Holland, C.K. Efficacy of histotripsy combined with rt-PA in vitro. Phys. Med. Biol. 2016, 61, 5253–5274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beccaria, K.; Canney, M.; Bouchoux, G.; Puget, S.; Grill, J.; Carpentier, A. Blood-brain barrier disruption with low-intensity pulsed ultrasound for the treatment of pediatric brain tumors: A review and perspectives. Neurosurg. Focus 2020, 48, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunevicius, A.; McDannold, N.J.; Golby, A.J. Focused Ultrasound Strategies for Brain Tumor Therapy. Oper. Neurosurg. 2020, 19, 9–18. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, C.; Zhang, Y. Pancreatic Cancer. In Occupational Cancers; Springer International Publishing: Cham, Switzerland, 2020; pp. 125–146. [Google Scholar] [CrossRef]
- Kooiman, K.; Roovers, S.; Langeveld, S.A.; Kleven, R.T.; Dewitte, H.; O’Reilly, M.A.; Escoffre, J.M.; Bouakaz, A.; Verweij, M.D.; Hynynen, K.; et al. Ultrasound-Responsive Cavitation Nuclei for Therapy and Drug Delivery. Ultrasound Med. Biol. 2020, 46, 1296–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lafond, M.; Yoshizawa, S.; Umemura, S.i. Sonodynamic Therapy: Advances and Challenges in Clinical Translation. J. Ultrasound Med. 2019, 38, 567–580. [Google Scholar] [CrossRef] [PubMed]
- Wischhusen, J.; Padilla, F. Ultrasound-Targeted Microbubble Destruction (UTMD) for Localized Drug Delivery into Tumor Tissue. IRBM 2019, 40, 10–15. [Google Scholar] [CrossRef]
- Xu, Z.; Hall, T.L.; Vlaisavljevich, E.; Lee, F.T. Histotripsy: The first noninvasive, non-ionizing, non-thermal ablation technique based on ultrasound. Int. J. Hyperth. 2021, 38, 561–575. [Google Scholar] [CrossRef]
- Leighton, T. The Acoustic Bubble; Academic Press: London, UK, 1994. [Google Scholar] [CrossRef]
- Apfel, R.E.; Holland, C.K. Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound. Ultrasound Med. Biol. 1991, 17, 179–185. [Google Scholar] [CrossRef]
- Bader, K.B.; Vlaisavljevich, E.; Maxwell, A.D. For Whom the Bubble Grows: Physical Principles of Bubble Nucleation and Dynamics in Histotripsy Ultrasound Therapy. Ultrasound Med. Biol. 2019, 45, 1056–1080. [Google Scholar] [CrossRef] [Green Version]
- Holland, C.K.; Apfel, R.E. Thresholds for transient cavitation produced by pulsed ultrasound in a controlled nuclei environment. J. Acoust. Soc. Am. 1990, 88, 2059–2069. [Google Scholar] [CrossRef]
- Eller, A.; Flynn, H.G. Rectified Diffusion during Nonlinear Pulsations of Cavitation Bubbles. J. Acoust. Soc. Am. 1965, 37, 493–503. [Google Scholar] [CrossRef]
- Liang, H.D.; Tang, J.; Halliwell, M. Sonoporation, drug delivery, and gene therapy. Proc. Inst. Mech. Eng. Part J. Eng. Med. 2010, 224, 343–361. [Google Scholar] [CrossRef] [PubMed]
- Brujan, E.A.; Ikeda, T.; Matsumoto, Y. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound. Phys. Med. Biol. 2005, 50, 4797–4809. [Google Scholar] [CrossRef] [PubMed]
- Johnston, K.; Tapia-Siles, C.; Gerold, B.; Postema, M.; Cochran, S.; Cuschieri, A.; Prentice, P. Periodic shock-emission from acoustically driven cavitation clouds: A source of the subharmonic signal. Ultrasonics 2014, 54, 2151–2158. [Google Scholar] [CrossRef] [Green Version]
- Parsons, J.E.; Cain, C.A.; Abrams, G.D.; Fowlkes, J.B. Pulsed cavitational ultrasound therapy for controlled tissue homogenization. Ultrasound Med. Biol. 2006, 32, 115–129. [Google Scholar] [CrossRef]
- Xu, Z.; Ludomirsky, A.; Eun, L.; Hall, T.; Tran, B.; Fowlkes, J.; Cain, C. Controlled ultrasound tissue erosion. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2004, 51, 726–736. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, A.D.; Cain, C.A.; Hall, T.L.; Fowlkes, J.B.; Xu, Z. Probability of Cavitation for Single Ultrasound Pulses Applied to Tissues and Tissue-Mimicking Materials. Ultrasound Med. Biol. 2013, 39, 449–465. [Google Scholar] [CrossRef] [Green Version]
- Vlaisavljevich, E.; Xu, Z.; Maxwell, A.D.; Mancia, L.; Zhang, X.; Lin, K.W.; Duryea, A.P.; Sukovich, J.R.; Hall, T.L.; Johnsen, E.; et al. Effects of Temperature on the Histotripsy Intrinsic Threshold for Cavitation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2016, 63, 1064–1077. [Google Scholar] [CrossRef]
- Lafond, M.; Watanabe, A.; Yoshizawa, S.; Umemura, S.i.; Tachibana, K. Cavitation-threshold Determination and Rheological-parameters Estimation of Albumin-stabilized Nanobubbles. Sci. Rep. 2018, 8, 7472. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Peng, S.; Liu, T. GPU accelerated 2-D staggered-grid finite difference seismic modelling. J. Softw. 2011, 6, 1554–1561. [Google Scholar] [CrossRef] [Green Version]
- Marinova, M.; Huxold, H.C.; Henseler, J.; Mücke, M.; Conrad, R.; Rolke, R.; Ahmadzadehfar, H.; Rauch, M.; Fimmers, R.; Luechters, G.; et al. Clinical Effectiveness and Potential Survival Benefit of US-Guided High-Intensity Focused Ultrasound Therapy in Patients with Advanced-Stage Pancreatic Cancer. Ultraschall Der Med. -Eur. J. Ultrasound 2019, 40, 625–637. [Google Scholar] [CrossRef] [PubMed]
- Diana, M.; Schiraldi, L.; Liu, Y.Y.; Memeo, R.; Mutter, D.; Pessaux, P.; Marescaux, J. High intensity focused ultrasound (HIFU) applied to hepato-bilio-pancreatic and the digestive system—Current state of the art and future perspectives. Hepatobil. Surg. Nutr. 2016, 5, 329–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marinova, M.; Feradova, H.; Gonzalez-Carmona, M.A.; Conrad, R.; Tonguc, T.; Thudium, M.; Becher, M.U.; Kun, Z.; Gorchev, G.; Tomov, S.; et al. Improving quality of life in pancreatic cancer patients following high-intensity focused ultrasound (HIFU) in two European centers. Eur. Radiol. 2021, 31, 5818–5829. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhou, D. Preoperative ultrasound ablation for borderline resectable pancreatic cancer: A report of 30 cases. Ultrason. Sonochem. 2015, 27, 694–702. [Google Scholar] [CrossRef]
- Li, T.; Wang, Y.N.; Khokhlova, T.D.; D’Andrea, S.; Starr, F.; Chen, H.; McCune, J.S.; Risler, L.J.; Mashadi-Hossein, A.; Hingorani, S.R.; et al. Pulsed High-Intensity Focused Ultrasound Enhances Delivery of Doxorubicin in a Preclinical Model of Pancreatic Cancer. Cancer Res. 2015, 75, 3738–3746. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.Y.; Liu, F.; Liu, Y.; Xia, F.F.; Fu, Y.F. Stent insertion with high-intensity focused ultrasound ablation for distal biliary obstruction secondary to pancreatic carcinoma. Medicine 2020, 99, e19099. [Google Scholar] [CrossRef]
- Saccomandi, P.; Lapergola, A.; Longo, F.; Schena, E.; Quero, G. Thermal ablation of pancreatic cancer: A systematic literature review of clinical practice and pre-clinical studies. Int. J. Hyperth. 2018, 35, 398–418. [Google Scholar] [CrossRef]
- Wu, F. High intensity focused ultrasound ablation and antitumor immune response. J. Acoust. Soc. Am. 2013, 134, 1695–1701. [Google Scholar] [CrossRef]
- Jang, H.J.; Lee, J.Y.; Lee, D.H.; Kim, W.H.; Hwang, J.H. Current and Future Clinical Applications of High-Intensity Focused Ultrasound (HIFU) for Pancreatic Cancer. Gut Liver 2010, 4, S57. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; ter Haar, G.; Chen, W.R. High-intensity focused ultrasound ablation of breast cancer. Expert Rev. Anticancer. Ther. 2007, 7, 823–831. [Google Scholar] [CrossRef]
- Dupré, A.; Melodelima, D.; Pflieger, H.; Chen, Y.; Vincenot, J.; Kocot, A.; Langonnet, S.; Rivoire, M. Thermal ablation of the pancreas with intraoperative high-intensity focused ultrasound: Safety and efficacy in a porcine model. Pancreas 2017, 46, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Cilleros, C.; Dupré, A.; Chen, Y.; Vincenot, J.; Rivoire, M.; Melodelima, D. Intraoperative HIFU ablation of the pancreas using a toroidal transducer in a porcine model. The first step towards a clinical treatment of locally advanced pancreatic cancer. Cancers 2021, 13. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Jove, J.; Perich, E.; del Castillo, M.A. Ultrasound Guided High Intensity Focused Ultrasound for malignant tumors: The Spanish experience of survival advantage in stage III and IV pancreatic cancer. Ultrason. Sonochem. 2015, 27, 703–706. [Google Scholar] [CrossRef] [PubMed]
- Testoni, S.G.G.; Healey, A.J.; Dietrich, C.F.; Arcidiacono, P.G. Systematic review of endoscopy ultrasound-guided thermal ablation treatment for pancreatic cancer. Endosc. Ultrasound 2020, 9, 83–100. [Google Scholar] [CrossRef] [PubMed]
- Sofuni, A.; Moriyasu, F.; Sano, T.; Itokawa, F.; Tsuchiya, T.; Kurihara, T.; Ishii, K.; Tsuji, S.; Ikeuchi, N.; Tanaka, R.; et al. Safety trial of high-intensity focused ultrasound therapy for pancreatic cancer. World J. Gastroenterol. 2014, 20, 9570–9577. [Google Scholar] [CrossRef]
- Lv, Y.; Zheng, J.; Zhou, Q.; Jia, L.; Wang, C.; Liu, N.; Zhao, H.; Ji, H.; Li, B.; Cao, W. Antiproliferative and Apoptosis-inducing Effect of exo-Protoporphyrin IX based Sonodynamic Therapy on Human Oral Squamous Cell Carcinoma. Sci. Rep. 2017, 7, 40967. [Google Scholar] [CrossRef] [Green Version]
- Ning, Z.Y.; Cheng, C.S.; Xie, J.; Chen, Q.W.; Xu, L.T.; Zhuang, L.P.; Zhang, C.Y.; Song, L.B.; Shi, W.D.; Zhu, X.Y.; et al. A retrospective analysis of survival factors of high intensity focused ultrasound (HIFU) treatment for unresectable pancreatic cancer. Discov. Med. 2016, 21, 435–445. [Google Scholar]
- Zhao, C.; Fan, D.; Liu, J.; Wu, M.; Huang, B.; Shen, D.; Turitsyn, S.K.; Tang, P. Widely Wavelength-Tunable Mid-Infrared Fluoride Fiber Lasers. IEEE J. Sel. Top. Quantum Electron. 2017, 24, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Rombouts, S.J.E.; Vogel, J.A.; van Santvoort, H.C.; van Lienden, K.P.; van Hillegersberg, R.; Busch, O.R.C.; Besselink, M.G.H.; Molenaar, I.Q. Systematic review of innovative ablative therapies for the treatment of locally advanced pancreatic cancer. Br. J. Surg. 2015, 102, 182–193. [Google Scholar] [CrossRef]
- Leenhardt, R.; Camus, M.; Mestas, J.L.; Jeljeli, M.; Abou Ali, E.; Chouzenoux, S.; Bordacahar, B.; Nicco, C.; Batteux, F.; Lafon, C.; et al. Ultrasound-induced Cavitation enhances the efficacy of Chemotherapy in a 3D Model of Pancreatic Ductal Adenocarcinoma with its microenvironment. Sci. Rep. 2019, 9, 18916. [Google Scholar] [CrossRef]
- Özdemir, B.C.; Pentcheva-Hoang, T.; Carstens, J.L.; Zheng, X.; Wu, C.C.; Simpson, T.R.; Laklai, H.; Sugimoto, H.; Kahlert, C.; Novitskiy, S.V.; et al. Depletion of Carcinoma-Associated Fibroblasts and Fibrosis Induces Immunosuppression and Accelerates Pancreas Cancer with Reduced Survival. Cancer Cell 2014, 25, 719–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhim, A.D.; Oberstein, P.E.; Thomas, D.H.; Mirek, E.T.; Palermo, C.F.; Sastra, S.A.; Dekleva, E.N.; Saunders, T.; Becerra, C.P.; Tattersall, I.W.; et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 2014, 25, 735–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, P.; Zhang, Y.; Chen, J.; Shentu, W.; Sun, Y.; Yang, Z.; Liang, T.; Chen, S.; Pu, Z. Enhanced antitumor efficacy of ultrasonic cavitation with up-sized microbubbles in pancreatic cancer. Oncotarget 2015, 6, 20241–20251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimcevski, G.; Kotopoulis, S.; Bjånes, T.; Hoem, D.; Schjøt, J.; Gjertsen, B.T.; Biermann, M.; Molven, A.; Sorbye, H.; McCormack, E.; et al. A human clinical trial using ultrasound and microbubbles to enhance gemcitabine treatment of inoperable pancreatic cancer. J. Control. Release 2016, 243, 172–181. [Google Scholar] [CrossRef] [Green Version]
- Ning, Z.; Xie, J.; Chen, Q.; Zhang, C.; Xu, L.; Song, L.; Meng, Z. HIFU is safe, effective, and feasible in pancreatic cancer patients: A monocentric retrospective study among 523 patients. Oncotargets Ther. 2019, 12, 1021–1029. [Google Scholar] [CrossRef] [Green Version]
- Moussa, H.; Martins, A.; Husseini, G. Review on Triggered Liposomal Drug Delivery with a Focus on Ultrasound. Curr. Cancer Drug Targets 2015, 15, 282–313. [Google Scholar] [CrossRef]
- Camus, M.; Vienne, A.; Mestas, J.L.; Pratico, C.; Nicco, C.; Chereau, C.; Marie, J.M.; Moussatov, A.; Renault, G.; Batteux, F.; et al. Cavitation-induced release of liposomal chemotherapy in orthotopic murine pancreatic cancer models: A feasibility study. Clin. Res. Hepatol. Gastroenterol. 2019, 43, 669–681. [Google Scholar] [CrossRef]
- Farr, N.; Wang, Y.N.; D’Andrea, S.; Starr, F.; Partanen, A.; Gravelle, K.M.; McCune, J.S.; Risler, L.J.; Whang, S.G.; Chang, A.; et al. Hyperthermia-enhanced targeted drug delivery using magnetic resonance-guided focussed ultrasound: A pre-clinical study in a genetic model of pancreatic cancer. Int. J. Hyperth. 2018, 34, 284–291. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.J.; Lee, J.Y.; Park, E.J.; Lee, H.J.; Ha, S.W.; Ahn, Y.D.; Cheon, Y.; Han, J.K. Synergistic Effects of Pulsed Focused Ultrasound and a Doxorubicin-Loaded Microparticle–Microbubble Complex in a Pancreatic Cancer Xenograft Mouse Model. Ultrasound Med. Biol. 2020, 46, 3046–3058. [Google Scholar] [CrossRef]
- Lentacker, I.; Geers, B.; Demeester, J.; De Smedt, S.C.; Sanders, N.N. Design and Evaluation of Doxorubicin-containing Microbubbles for Ultrasound-triggered Doxorubicin Delivery: Cytotoxicity and Mechanisms Involved. Mol. Ther. 2010, 18, 101–108. [Google Scholar] [CrossRef]
- van Wamel, A.; Kooiman, K.; Harteveld, M.; Emmer, M.; ten Cate, F.J.; Versluis, M.; de Jong, N. Vibrating microbubbles poking individual cells: Drug transfer into cells via sonoporation. J. Control. Release 2006, 112, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Tinkov, S.; Coester, C.; Serba, S.; Geis, N.A.; Katus, H.A.; Winter, G.; Bekeredjian, R. New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: In-vivo characterization. J. Control. Release 2010, 148, 368–372. [Google Scholar] [CrossRef]
- Lafond, M.; Asquier, N.; Mestas, J.L.A.; Carpentier, A.; Umemura, S.i.; Lafon, C. Evaluation of a Three-Hydrophone Method for 2-D Cavitation Localization. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2018, 65, 1093–1101. [Google Scholar] [CrossRef] [PubMed]
- Um, W.; EK, P.K.; Lee, J.; Kim, C.H.; You, D.G.; Park, J.H. Recent advances in nanomaterial-based augmented sonodynamic therapy of cancer. Chem. Commun. 2021, 57, 2854–2866. [Google Scholar] [CrossRef]
- Umemura, S.i.; Yumita, N.; Nishigaki, R.; Umemura, K. Mechanism of Cell Damage by Ultrasound in Combination with Hematoporphyrin. Jpn. J. Cancer Res. 1990, 81, 962–966. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Sun, Y.; Zhang, C.; Wang, X.; Zeng, Y.; Zhang, T.; Huang, P. Tablet-like TiO2/C nanocomposites for repeated type I sonodynamic therapy of pancreatic cancer. Acta Biomater. 2021, 129, 269–279. [Google Scholar] [CrossRef]
- Beguin, E.; Gray, M.D.; Logan, K.A.; Nesbitt, H.; Sheng, Y.; Kamila, S.; Barnsley, L.C.; Bau, L.; McHale, A.P.; Callan, J.F.; et al. Magnetic microbubble mediated chemo-sonodynamic therapy using a combined magnetic-acoustic device. J. Control. Release 2020, 317, 23–33. [Google Scholar] [CrossRef]
- Owen, J.; Logan, K.; Nesbitt, H.; Able, S.; Vasilyeva, A.; Bluemke, E.; Kersemans, V.; Smart, S.; Vallis, K.A.; McHale, A.P.; et al. Orally administered oxygen nanobubbles enhance tumor response to sonodynamic therapy. Nano Sel. 2022, 3, 394–401. [Google Scholar] [CrossRef]
- McEwan, C.; Owen, J.; Stride, E.; Fowley, C.; Nesbitt, H.; Cochrane, D.; Coussios, C.; Borden, M.; Nomikou, N.; McHale, A.P.; et al. Oxygen carrying microbubbles for enhanced sonodynamic therapy of hypoxic tumours. J. Control. Release 2015, 203, 51–56. [Google Scholar] [CrossRef]
- Nesbitt, H.; Sheng, Y.; Kamila, S.; Logan, K.; Thomas, K.; Callan, B.; Taylor, M.A.; Love, M.; O’Rourke, D.; Kelly, P.; et al. Gemcitabine loaded microbubbles for targeted chemo-sonodynamic therapy of pancreatic cancer. J. Control. Release 2018, 279, 8–16. [Google Scholar] [CrossRef]
- McEwan, C.; Kamila, S.; Owen, J.; Nesbitt, H.; Callan, B.; Borden, M.; Nomikou, N.; Hamoudi, R.A.; Taylor, M.A.; Stride, E.; et al. Combined sonodynamic and antimetabolite therapy for the improved treatment of pancreatic cancer using oxygen loaded microbubbles as a delivery vehicle. Biomaterials 2016, 80, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Beguin, E.; Nesbitt, H.; Kamila, S.; Owen, J.; Barnsley, L.C.; Callan, B.; O’Kane, C.; Nomikou, N.; Hamoudi, R.; et al. Magnetically responsive microbubbles as delivery vehicles for targeted sonodynamic and antimetabolite therapy of pancreatic cancer. J. Control. Release 2017, 262, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Browning, R.J.; Able, S.; Ruan, J.L.; Bau, L.; Allen, P.D.; Kersemans, V.; Wallington, S.; Kinchesh, P.; Smart, S.; Kartsonaki, C.; et al. Combining sonodynamic therapy with chemoradiation for the treatment of pancreatic cancer. J. Control. Release 2021, 337, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Maeda, M.; Muragaki, Y.; Okamoto, J.; Yoshizawa, S.; Abe, N.; Nakamoto, H.; Ishii, H.; Kawabata, K.; Umemura, S.; Nishiyama, N.; et al. Sonodynamic Therapy Based on Combined Use of Low Dose Administration of Epirubicin-Incorporating Drug Delivery System and Focused Ultrasound. Ultrasound Med. Biol. 2017, 43, 2295–2301. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Zhao, S.; Xu, T.; Huang, L.; Zhang, Y.; Lan, M.; Lin, C.; Zheng, X.; Wang, P. Advances and perspectives in organic sonosensitizers for sonodynamic therapy. Coord. Chem. Rev. 2021, 445, 214087. [Google Scholar] [CrossRef]
- Freitag, L.; Ernst, A.; Thomas, M.; Prenzel, R.; Wahlers, B.; Macha, H.N. Sequential photodynamic therapy (PDT) and high dose brachytherapy for endobronchial tumour control in patients with limited bronchogenic carcinoma. Thorax 2004, 59, 790–793. [Google Scholar] [CrossRef] [Green Version]
- Kusuzaki, K.; Murata, H.; Matsubara, T.; Miyazaki, S.; Okamura, A.; Seto, M.; Matsumine, A.; Hosoi, H.; Sugimoto, T.; Uchida, A. Clinical trial of photodynamic therapy using acridine orange with/without low dose radiation as new limb salvage modality in musculoskeletal sarcomas. Anticancer. Res. 2005, 25, 1225–1235. [Google Scholar]
- Nesbitt, H.; Logan, K.; Thomas, K.; Callan, B.; Gao, J.; McKaig, T.; Taylor, M.; Love, M.; Stride, E.; McHale, A.P.; et al. Sonodynamic therapy complements PD-L1 immune checkpoint inhibition in a murine model of pancreatic cancer. Cancer Lett. 2021, 517, 88–95. [Google Scholar] [CrossRef]
- Nicholas, D.; Nesbitt, H.; Farrell, S.; Logan, K.; McMullin, E.; Gillan, T.; Kelly, P.; O’Rourke, D.; Porter, S.; Thomas, K.; et al. Exploiting a Rose Bengal-bearing, oxygen-producing nanoparticle for SDT and associated immune-mediated therapeutic effects in the treatment of pancreatic cancer. Eur. J. Pharm. Biopharm. 2021, 163, 49–59. [Google Scholar] [CrossRef]
- Hu, H.; Yu, J.; Zhang, L.; Zhang, A.; Li, Y.; Jiang, Y.; Yang, E. Pulse source based on directly modulated laser and phase modulator. Opt. Express 2007, 15, 8931. [Google Scholar] [CrossRef]
- Wang, X.; Sun, J. High-intensity focused ultrasound in patients with late-stage pancreatic carcinoma. Chin. Med. J. 2002, 115, 1332–1335. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Harris, J.M. An optimized variable-grid finite-difference method for seismic forward modeling. J. Seism. Explor. 2004, 12, 343–353. [Google Scholar]
- Hu, Z.; Yang, X.Y.; Liu, Y.; Morse, M.A.; Lyerly, H.K.; Clay, T.M.; Zhong, P. Release of endogenous danger signals from HIFU-treated tumor cells and their stimulatory effects on APCs. Biochem. Biophys. Res. Commun. 2005, 335, 124–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, Y.; Lu, X.; Pua, E.C.; Zhong, P. The effect of high intensity focused ultrasound treatment on metastases in a murine melanoma model. Biochem. Biophys. Res. Commun. 2008, 375, 645–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barsoum, I.B.; Smallwood, C.A.; Siemens, D.R.; Graham, C.H. A mechanism of hypoxia-mediated escape from adaptive immunity in cancer cells. Cancer Res. 2014, 74, 665–674. [Google Scholar] [CrossRef] [Green Version]
- Noman, M.Z.; Desantis, G.; Janji, B.; Hasmim, M.; Karray, S.; Dessen, P.; Bronte, V.; Chouaib, S. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced: MDSC-mediated T cell activation. J. Exp. Med. 2014, 211, 781–790. [Google Scholar] [CrossRef]
- Maloney, E.; Khokhlova, T.; Pillarisetty, V.G.; Schade, G.R.; Repasky, E.A.; Wang, Y.N.; Giuliani, L.; Primavera, M.; Hwang, J.H. Focused ultrasound for immuno-adjuvant treatment of pancreatic cancer: An emerging clinical paradigm in the era of personalized oncotherapy. Int. Rev. Immunol. 2017, 36, 338–351. [Google Scholar] [CrossRef]
- Tonguc, T.; Strunk, H.; Gonzalez-Carmona, M.A.; Recker, F.; Lütjohann, D.; Thudium, M.; Conrad, R.; Becher, M.U.; Savchenko, O.; Davidova, D.; et al. US-guided high-intensity focused ultrasound (HIFU) of abdominal tumors: Outcome, early ablation-related laboratory changes and inflammatory reaction. A single-center experience from Germany. Int. J. Hyperth. 2021, 38, 65–74. [Google Scholar] [CrossRef]
- Dimitrov, D.; Andreev, T.; Feradova, H.; Ignatov, B.; Zhou, K.; Johnson, C.; Delijski, T.; Gortchev, G.; Tomov, S. Multimodality treatment by FOLFOX plus HIFU in a case of advanced pancreatic carcinoma. A case report. J. Pancreas 2015, 16, 66–69. [Google Scholar]
- Ungaro, A.; Orsi, F.; Casadio, C.; Galdy, S.; Spada, F.; Cella, C.A.; Di Tonno, C.; Bonomo, G.; Della Vigna, P.; Murgioni, S.; et al. Successful palliative approach with high-intensity focused ultrasound in a patient with metastatic anaplastic pancreatic carcinoma: A case report. Ecancermedicalscience 2016, 10, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Hendricks-Wenger, A.; Sereno, J.; Gannon, J.; Zeher, A.; Brock, R.M.; Beitel-White, N.; Simon, A.; Davalos, R.V.; Coutermarsh-Ott, S.; Vlaisavljevich, E.; et al. Histotripsy Ablation Alters the Tumor Microenvironment and Promotes Immune System Activation in a Subcutaneous Model of Pancreatic Cancer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2021, 68, 2987–3000. [Google Scholar] [CrossRef] [PubMed]
- Mouratidis, P.X.E.; Costa, M.; Rivens, I.; Repasky, E.E.; ter Haar, G. Pulsed focused ultrasound can improve the anti-cancer effects of immune checkpoint inhibitors in murine pancreatic cancer. J. R. Soc. Interface 2021, 18, 20210266. [Google Scholar] [CrossRef] [PubMed]
- Mouratidis, P.X.E.; ter Haar, G. Latest Advances in the Use of Therapeutic Focused Ultrasound in the Treatment of Pancreatic Cancer. Cancers 2022, 14, 638. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Xu, L.; Chien, C.Y.; Yang, Y.; Gong, Y.; Ye, D.; Pacia, C.P.; Chen, H. 3-D Transcranial Microbubble Cavitation Localization by Four Sensors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2021, 68, 3336–3346. [Google Scholar] [CrossRef]
- Arvanitis, C.D.; Crake, C.; McDannold, N.; Clement, G.T. Passive Acoustic Mapping with the Angular Spectrum Method. IEEE Trans. Med. Imaging 2017, 36, 983–993. [Google Scholar] [CrossRef]
- Haworth, K.J.; Raymond, J.L.; Radhakrishnan, K.; Moody, M.R.; Huang, S.L.; Peng, T.; Shekhar, H.; Klegerman, M.E.; Kim, H.; McPherson, D.D.; et al. Trans-Stent B-Mode Ultrasound and Passive Cavitation Imaging. Ultrasound Med. Biol. 2016, 42, 518–527. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.M.; O’Reilly, M.A.; Hynynen, K. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: A simulation study. Phys. Med. Biol. 2013, 58, 4981–5005. [Google Scholar] [CrossRef] [Green Version]
- Lafond, M.; Salido, N.G.; Haworth, K.J.; Hannah, A.S.; Macke, G.P.; Genstler, C.; Holland, C.K. Cavitation Emissions Nucleated by Definity Infused through an EkoSonic Catheter in a Flow Phantom. Ultrasound Med. Biol. 2021, 47, 693–709. [Google Scholar] [CrossRef]
- O’Reilly, M.A.; Jones, R.M.; Hynynen, K. Three-Dimensional Transcranial Ultrasound Imaging of Microbubble Clouds Using a Sparse Hemispherical Array. IEEE Trans. Biomed. Eng. 2014, 61, 1285–1294. [Google Scholar] [CrossRef] [Green Version]
- Salgaonkar, V.A.; Datta, S.; Holland, C.K.; Mast, T.D. Passive cavitation imaging with ultrasound arrays. J. Acoust. Soc. Am. 2009, 126, 3071–3083. [Google Scholar] [CrossRef] [Green Version]
- Chettab, K.; Mestas, J.L.; Lafond, M.; Saadna, D.E.; Lafon, C.; Dumontet, C. Doxorubicin delivery into tumor cells by stable cavitation without contrast agents. Mol. Pharm. 2017, 14, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Fant, C.; Lafond, M.; Rogez, B.; Castellanos, I.S.; Ngo, J.; Mestas, J.L.; Padilla, F.; Lafon, C. In vitro potentiation of doxorubicin by unseeded controlled non-inertial ultrasound cavitation. Sci. Rep. 2019, 9, 15581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bader, K.B.; Haworth, K.J.; Maxwell, A.D.; Holland, C.K. Post Hoc Analysis of Passive Cavitation Imaging for Classification of Histotripsy-Induced Liquefaction in Vitro. IEEE Trans. Med. Imaging 2018, 37, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Gray, M.D.; Lyka, E.; Coussios, C.C. Diffraction Effects and Compensation in Passive Acoustic Mapping. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2018, 65, 258–268. [Google Scholar] [CrossRef]
- Haworth, K.J.; Bader, K.B.; Rich, K.T.; Holland, C.K.; Mast, T.D. Quantitative Frequency-Domain Passive Cavitation Imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2017, 64, 177–191. [Google Scholar] [CrossRef] [Green Version]
Year | Tumor Model | Targeting Agent | Focused Ultrasound Parameters | Results | Ref |
---|---|---|---|---|---|
2010 | Orthotopic pancreatic cancer in Lewis rats | DOX-loaded phospholipid microbubbles | 1.3 MHz, MI 1.6 | 12-fold increase in intratumoral DOX | [84] |
2018 | KPC (mouse) | Low-temperature sensitive liposomes loaded with doxorubicin (LTSL-DOX) | Clinical MR-HIFU system (Sonalleve V1, Philips, Vantaa, Finland). 1.2 MHz, 10 acoustic power, 20 s duration, continuous wave. | Induced mild hyperthermia. HPLC and fluorescence microscopy demonstrated a 23-fold increase in intratumoral DOX compared to LTSL-DOX alone | [80] |
2019 | orthotopic DSL6A/C1 pancreatic cancer in 5-week-old male Lewis LEW/CrlBR rats, and MIA PaCa2 orthotopic cancer in 4-week-old nude mice (NMRI-Foxn1nu/nu) | Sonosensitive liposomal DOX (L-DOX) | In the rats: 1.1 MHz, 6/5.85 W average electrical power, 200/250 Hz PRF, 0.77/1.00% duty cycle. (rats/mice) | Reduced tumor growth in US+L-DOX group compared to L-DOX in mice only | [79] |
2020 | Immunodeficient mice inoculated with CFPAC-1 cells | DOX-loaded microparticle-microbubble complexes (DMMC) | Preclinical FUS system (VIFU2000, Alpinion, Seoul, Korea), 1.1 MHz, 14.8 MPa PPP, 9.2 MPa PNP, 40 Hz PRF, 5% duty cycle, 800 pulses (20 s total duration) | Reduced tumor growth in US+L-DOX group | [81] |
Ongoing | 18 patients with PDAC enrolled | Heat-sensitive chemotherapy drug (ThermoDox, Celsion Corp.) | Subablative levels | NA | Unpublished (PanDox clinical trial ongoing: NCT04852367) |
Year | Tumor Model | Sonosensitive Agent | Focused Ultrasound Parameters | Results | Ref |
---|---|---|---|---|---|
2021 | BxPC-3 xenografts in mice | Oral oxygen nanobubbles, RB intratumoral injection | 1 MHz, 0.1 kHz PRF, 30% duty cycle, 3.5 W/cm², 3.5 min | Reduced tumor growth in groups receiving oxygen bubbles 5 or 20 min before SDT. Changes in tumor ocygen levels confirmed following tumor excision | [90] |
2015 | BxPC-3 xenografts tumors in mice | OMB-RB conjugates | Sonidel SP100, 1 MHz, 3.0 W/cm² ISATP, 30% duty cycle, 100 Hz PRF, 3.5 min | Reduced tumor growth with OMB-RB compared to SF6MB-RB | [91] |
2016 | BxPC-3 xenografts tumors in mice | OMB-5FU or OMB-RB | 1 MHz, 3.5 W/cm² ISATP, 30% duty cycle, 100 Hz PRF, 3.5 min | Reduced tumor growth with OMB-RB/OMB-5FU mix + US compared to OMB-RB + US and controls. Plausible immunomodulation through Bcl3 downregulation. | [93] |
2017 | BxPC-3 xenografts tumors in MF1 mice | MagOMB-RB and MagOMB-5FU | 1 MHz, 3.5 W/cm² ISATP, 0.85 MPa peak-peak, 30% duty cycle, 100 Hz PRF, 3.5 min | Tumor growth reduced significantly when the magnetic field was turned on, and not significantly when it was turned off | [94] |
2018 | MIA PaCa-2 xenografts in SCID mice | OMB-Gem, OMB-RB | Sonidel SP100, 1 MHz, 3.5 W/cm², 0.48 Mpa PNP, 30% duty cycle, 100 Hz PRF, 3.5 min | Tumor growth delay using the OMB-Gem/OMB-RB conjugates | [92] |
2020 | BxPC-3 xenografts in mice | Oxygen-loaded magnetic microbubbles (MagOMBs) and Rose Bengal-gemcitabine chemo-sonodynamic complex | 1.17 MHz, 100 Hz PRF, 30% DC, 0.7 MPa PNP, 3.5 min | Decreased tumor size in the folowing days. RB+Gem complex was more efficient than the separate compounds | [89] |
2021 | PSN-1 and BxPC-3 pancreatic tumors in female Crl:NU(NCr)-Foxn1nu mice | OMB-RB + Chemo-radiotherapy (Gem + 4 Gy) | Sonidel SP100, 1 MHz, 3.5 W/cm², 0.88 Mpa PNP *, 30% duty cycle, 100 Hz PRF, 3.5 min | Improved survival in PSN-1 model only | [95] |
2017 | MIA PaCa-2 xenografts in male CAnN.Cg-Foxn1 nu/CrlCrlj mice | NC-6300: releases epirubicin in the acidic tumoral microenvironment | 1.09 MHz, Bimodal excitation: 8 kW/cm² 20-ms pulses at 100 Hz PRF intercalated with 360 or 270 W/cm² 9.98-ms pulses. | Tumor growth inhibition | [96] |
2021 | Bilateral T110299 xenografts in C57BL/6JOlaHsd mice | OMB-RB + anti-PD-L1 checkpoint inhibitor | 1 MHz, 3.5 W/cm², 0.48 Mpa PNP, 30% duty cycle, 100 Hz PRF, 3.5 min | Reduced tumor growth. Immunomodulation observed following SDT (abscopal effect) | [100] |
2021 | BxPC-3 xenografts tumors in SCID mice and bilateral T110299 xenografts in C57BL/6JOlaHsd mice | RB-loaded, pH-sensitive polymethacrylate-coated CaO nanoparticle | Sonidel SP100, 1 MHz, 3 W/cm ISATP, 30% duty cycle, 100 Hz PRF, 3.5 min | Reduced tumor growth. Immunomodulation (abscopal effect) observed following SDT in the C57BL/6JOlaHsd mice | [101] |
2021 | Subcutaneous Panc02 in female BALB/C mice | Carbon-coated tutanium dioxide nanocomposites (TiO/C) | 1 MHz, 0.5 W/cm², 50% duty cycle, 1 min duration, repeated 1, 2, or 3 times. Pulse duration was not indicated in the study | Increased damage to cell DNA, growth reduction. Efficacy was function of the number of US exposures | [88] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lafond, M.; Lambin, T.; Drainville, R.A.; Dupré, A.; Pioche, M.; Melodelima, D.; Lafon, C. Pancreatic Ductal Adenocarcinoma: Current and Emerging Therapeutic Uses of Focused Ultrasound. Cancers 2022, 14, 2577. https://doi.org/10.3390/cancers14112577
Lafond M, Lambin T, Drainville RA, Dupré A, Pioche M, Melodelima D, Lafon C. Pancreatic Ductal Adenocarcinoma: Current and Emerging Therapeutic Uses of Focused Ultrasound. Cancers. 2022; 14(11):2577. https://doi.org/10.3390/cancers14112577
Chicago/Turabian StyleLafond, Maxime, Thomas Lambin, Robert Andrew Drainville, Aurélien Dupré, Mathieu Pioche, David Melodelima, and Cyril Lafon. 2022. "Pancreatic Ductal Adenocarcinoma: Current and Emerging Therapeutic Uses of Focused Ultrasound" Cancers 14, no. 11: 2577. https://doi.org/10.3390/cancers14112577
APA StyleLafond, M., Lambin, T., Drainville, R. A., Dupré, A., Pioche, M., Melodelima, D., & Lafon, C. (2022). Pancreatic Ductal Adenocarcinoma: Current and Emerging Therapeutic Uses of Focused Ultrasound. Cancers, 14(11), 2577. https://doi.org/10.3390/cancers14112577