Machine Learning for the Detection and Segmentation of Benign Tumors of the Central Nervous System: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Literature Search
2.2. Data Extraction
- Study parameters: authors, title, year, design, number of patients in training/test set, ground truth, inter-/intrarater variability, task, conflict of interest, sources of funding.
- Clinical parameters: tumor entity, tumor volume, treatment of tumors prior to imaging.
- Imaging parameters: MRI machine, field strength, slice thickness, sequences.
- ML parameters: algorithm, dimensionality, training duration and hardware, libraries/frameworks/packages, data augmentation, performance measures, explainability/interpretability features, code/data availability.
3. Results
3.1. Disclosures and Declarations
3.2. Imaging
3.3. Ground Truth
3.4. Modeling
3.5. Meningioma
3.6. Schwannoma
3.7. Pituitary Adenoma
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Valliani, A.A.-A.; Ranti, D.; Oermann, E.K. Deep Learning and Neurology: A Systematic Review. Neurol. Ther. 2019, 8, 351–365. [Google Scholar] [CrossRef] [Green Version]
- Ostrom, Q.T.; Gittleman, H.; Truitt, G.; Boscia, A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011–2015. Neuro. Oncol. 2018, 20, iv1–iv86. [Google Scholar] [CrossRef] [Green Version]
- Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans. Med. Imaging 2015, 34, 1993–2024. [Google Scholar] [CrossRef]
- TCGA-GBM. The Cancer Imaging Archive (TCIA) Public Access—Cancer Imaging Archive Wiki. Available online: https://wiki.cancerimagingarchive.net/display/Public/TCGA-GBM (accessed on 25 April 2022).
- Bouget, D.; Pedersen, A.; Hosainey, S.A.M.; Vanel, J.; Solheim, O.; Reinertsen, I. Fast Meningioma Segmentation in T1-Weighted Magnetic Resonance Imaging Volumes Using a Lightweight 3D Deep Learning Architecture. J. Med. Imaging 2021, 8, 24002. [Google Scholar] [CrossRef]
- Ito, S.; Ando, K.; Kobayashi, K.; Nakashima, H.; Oda, M.; Machino, M.; Kanbara, S.; Inoue, T.; Yamaguchi, H.; Koshimizu, H.; et al. Automated Detection of Spinal Schwannomas Utilizing Deep Learning Based on Object Detection from Magnetic Resonance Imaging. Spine 2021, 46, 95–100. [Google Scholar] [CrossRef]
- Cho, S.J.; Sunwoo, L.; Baik, S.H.; Bae, Y.J.; Choi, B.S.; Kim, J.H. Brain Metastasis Detection Using Machine Learning: A Systematic Review and Meta-Analysis. Neuro. Oncol. 2020, 23, 214–225. [Google Scholar] [CrossRef]
- Mongan, J.; Moy, L.; Kahn, C.E. Checklist for Artificial Intelligence in Medical Imaging (CLAIM): A Guide for Authors and Reviewers. Radiol. Artif. Intell. 2020, 2, e200029. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372. [Google Scholar] [CrossRef]
- Huang, Z.-S.; Xiao, X.; Li, X.-D.; Mo, H.-Z.; He, W.-L.; Deng, Y.-H.; Lu, L.-J.; Wu, Y.-K.; Liu, H. Machine Learning-Based Multiparametric Magnetic Resonance Imaging Radiomic Model for Discrimination of Pathological Subtypes of Craniopharyngioma. J. Magn. Reson. Imaging 2021, 54, 1541–1550. [Google Scholar] [CrossRef]
- Kalasauskas, D.; Kronfeld, A.; Renovanz, M.; Kurz, E.; Leukel, P.; Krenzlin, H.; Brockmann, M.A.; Sommer, C.J.; Ringel, F.; Keric, N. Identification of High-Risk Atypical Meningiomas According to Semantic and Radiomic Features. Cancers 2020, 12, 2942. [Google Scholar] [CrossRef]
- Zhao, Y.; Lu, Y.; Li, X.; Zheng, Y.; Yin, B. The Evaluation of Radiomic Models in Distinguishing Pilocytic Astrocytoma from Cystic Oligodendroglioma With Multiparametric MRI. J. Comput. Assist. Tomogr. 2020, 44, 969–976. [Google Scholar] [CrossRef]
- Prince, E.W.; Whelan, R.; Mirsky, D.M.; Stence, N.; Staulcup, S.; Klimo, P.; Anderson, R.C.E.; Niazi, T.N.; Grant, G.; Souweidane, M.; et al. Robust Deep Learning Classification of Adamantinomatous Craniopharyngioma from Limited Preoperative Radiographic Images. Sci. Rep. 2020, 10, 16885. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, Y.; Li, M.; Liu, J.; Wang, F.; Weng, Q.; Wang, X.; Cao, D. Machine Learning-Based Radiomics Analysis in Predicting the Meningioma Grade Using Multiparametric MRI. Eur. J. Radiol. 2020, 131, 109251. [Google Scholar] [CrossRef]
- Bi, S.; Chen, R.; Zhang, K.; Xiang, Y.; Wang, R.; Lin, H.; Yang, H. Differentiate Cavernous Hemangioma from Schwannoma with Artificial Intelligence (AI). Ann. Transl. Med. 2020, 8, 710. [Google Scholar] [CrossRef]
- Khayat Kashani, H.R.; Azhari, S.; Nayebaghayee, H.; Salimi, S.; Mohammadi, H.R. Prediction Value of Preoperative Findings on Meningioma Grading Using Artificial Neural Network. Clin. Neurol. Neurosurg. 2020, 196, 105947. [Google Scholar] [CrossRef]
- Li, M.; Wang, H.; Shang, Z.; Yang, Z.; Zhang, Y.; Wan, H. Ependymoma and Pilocytic Astrocytoma: Differentiation Using Radiomics Approach Based on Machine Learning. J. Clin. Neurosci. 2020, 78, 175–180. [Google Scholar] [CrossRef]
- Peng, A.; Dai, H.; Duan, H.; Chen, Y.; Huang, J.; Zhou, L.; Chen, L. A Machine Learning Model to Precisely Immunohistochemically Classify Pituitary Adenoma Subtypes with Radiomics Based on Preoperative Magnetic Resonance Imaging. Eur. J. Radiol. 2020, 125, 108892. [Google Scholar] [CrossRef]
- Chen, C.; Guo, X.; Wang, J.; Guo, W.; Ma, X.; Xu, J. The Diagnostic Value of Radiomics-Based Machine Learning in Predicting the Grade of Meningiomas Using Conventional Magnetic Resonance Imaging: A Preliminary Study. Front. Oncol. 2019, 9, 1338. [Google Scholar] [CrossRef] [Green Version]
- Maki, S.; Furuya, T.; Horikoshi, T.; Yokota, H.; Mori, Y.; Ota, J.; Kawasaki, Y.; Miyamoto, T.; Norimoto, M.; Okimatsu, S.; et al. A Deep Convolutional Neural Network with Performance Comparable to Radiologists for Differentiating Between Spinal Schwannoma and Meningioma. Spine 2020, 45, 694–700. [Google Scholar] [CrossRef]
- Ke, C.; Chen, H.; Lv, X.; Li, H.; Zhang, Y.; Chen, M.; Hu, D.; Ruan, G.; Zhang, Y.; Zhang, Y.; et al. Differentiation Between Benign and Nonbenign Meningiomas by Using Texture Analysis from Multiparametric MRI. J. Magn. Reson. Imaging 2020, 51, 1810–1820. [Google Scholar] [CrossRef]
- Zhu, H.; Fang, Q.; He, H.; Hu, J.; Jiang, D.; Xu, K. Automatic Prediction of Meningioma Grade Image Based on Data Amplification and Improved Convolutional Neural Network. Comput. Math. Methods Med. 2019, 2019, 7289273. [Google Scholar] [CrossRef]
- Morin, O.; Chen, W.C.; Nassiri, F.; Susko, M.; Magill, S.T.; Vasudevan, H.N.; Wu, A.; Vallières, M.; Gennatas, E.D.; Valdes, G.; et al. Integrated Models Incorporating Radiologic and Radiomic Features Predict Meningioma Grade, Local Failure, and Overall Survival. Neurooncol. Adv. 2019, 1, vdz011. [Google Scholar] [CrossRef] [Green Version]
- Hamerla, G.; Meyer, H.-J.; Schob, S.; Ginat, D.T.; Altman, A.; Lim, T.; Gihr, G.A.; Horvath-Rizea, D.; Hoffmann, K.-T.; Surov, A. Comparison of Machine Learning Classifiers for Differentiation of Grade 1 from Higher Gradings in Meningioma: A Multicenter Radiomics Study. Magn. Reson. Imaging 2019, 63, 244–249. [Google Scholar] [CrossRef]
- Ugga, L.; Cuocolo, R.; Solari, D.; Guadagno, E.; D’Amico, A.; Somma, T.; Cappabianca, P.; Del Basso de Caro, M.L.; Cavallo, L.M.; Brunetti, A. Prediction of High Proliferative Index in Pituitary Macroadenomas Using MRI-Based Radiomics and Machine Learning. Neuroradiology 2019, 61, 1365–1373. [Google Scholar] [CrossRef]
- Li, X.; Lu, Y.; Xiong, J.; Wang, D.; She, D.; Kuai, X.; Geng, D.; Yin, B. Presurgical Differentiation between Malignant Haemangiopericytoma and Angiomatous Meningioma by a Radiomics Approach Based on Texture Analysis. J. Neuroradiol. 2019, 46, 281–287. [Google Scholar] [CrossRef]
- Zhu, Y.; Man, C.; Gong, L.; Dong, D.; Yu, X.; Wang, S.; Fang, M.; Wang, S.; Fang, X.; Chen, X.; et al. A Deep Learning Radiomics Model for Preoperative Grading in Meningioma. Eur. J. Radiol. 2019, 116, 128–134. [Google Scholar]
- Banzato, T.; Causin, F.; Della Puppa, A.; Cester, G.; Mazzai, L.; Zotti, A. Accuracy of Deep Learning to Differentiate the Histopathological Grading of Meningiomas on MR Images: A Preliminary Study. J. Magn. Reson. Imaging 2019, 50, 1152–1159. [Google Scholar] [CrossRef] [Green Version]
- Hale, A.T.; Stonko, D.P.; Wang, L.; Strother, M.K.; Chambless, L.B. Machine Learning Analyses Can Differentiate Meningioma Grade by Features on Magnetic Resonance Imaging. Neurosurg. Focus 2018, 45, E4. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.W.; Oh, J.; You, S.C.; Han, K.; Ahn, S.S.; Choi, Y.S.; Chang, J.H.; Kim, S.H.; Lee, S.-K. Radiomics and Machine Learning May Accurately Predict the Grade and Histological Subtype in Meningiomas Using Conventional and Diffusion Tensor Imaging. Eur. Radiol. 2019, 29, 4068–4076. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, L.; Luan, S.; Xiong, J.; Geng, D.; Yin, B. The Diagnostic Value of Texture Analysis in Predicting WHO Grades of Meningiomas Based on ADC Maps: An Attempt Using Decision Tree and Decision Forest. Eur. Radiol. 2019, 29, 1318–1328. [Google Scholar] [CrossRef]
- Kanazawa, T.; Minami, Y.; Jinzaki, M.; Toda, M.; Yoshida, K.; Sasaki, H. Preoperative Prediction of Solitary Fibrous Tumor/Hemangiopericytoma and Angiomatous Meningioma Using Magnetic Resonance Imaging Texture Analysis. World Neurosurg. 2018, 120, e1208–e1216. [Google Scholar] [CrossRef]
- Dong, F.; Li, Q.; Xu, D.; Xiu, W.; Zeng, Q.; Zhu, X.; Xu, F.; Jiang, B.; Zhang, M. Differentiation between Pilocytic Astrocytoma and Glioblastoma: A Decision Tree Model Using Contrast-Enhanced Magnetic Resonance Imaging-Derived Quantitative Radiomic Features. Eur. Radiol. 2019, 29, 3968–3975. [Google Scholar] [CrossRef]
- Coroller, T.P.; Bi, W.L.; Huynh, E.; Abedalthagafi, M.; Aizer, A.A.; Greenwald, N.F.; Parmar, C.; Narayan, V.; Wu, W.W.; Miranda de Moura, S.; et al. Radiographic Prediction of Meningioma Grade by Semantic and Radiomic Features. PLoS ONE 2017, 12, e0187908. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.; Chen, C.; Zhang, Y.; Fan, Y.; Feng, R.; Xu, J. Radiomic Analysis of Craniopharyngioma and Meningioma in the Sellar/Parasellar Area with MR Images Features and Texture Features: A Feasible Study. Contrast Media Mol. Imaging 2020, 2020, 4837156. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Wang, T.; Wu, P.; Zhang, H.; Chen, H.; Yang, C. Meningiomas: Preoperative Predictive Histopathological Grading Based on Radiomics of MRI. Magn. Reson. Imaging 2021, 77, 36–43. [Google Scholar] [CrossRef]
- Park, Y.W.; Kang, Y.; Ahn, S.S.; Ku, C.R.; Kim, E.H.; Kim, S.H.; Lee, E.J.; Kim, S.H.; Lee, S.-K. Radiomics Model Predicts Granulation Pattern in Growth Hormone-Secreting Pituitary Adenomas. Pituitary 2020, 23, 691–700. [Google Scholar] [CrossRef]
- Chu, H.; Lin, X.; He, J.; Pang, P.; Fan, B.; Lei, P.; Guo, D.; Ye, C. Value of MRI Radiomics Based on Enhanced T1WI Images in Prediction of Meningiomas Grade. Acad. Radiol. 2021, 28, 687–693. [Google Scholar] [CrossRef]
- Laukamp, K.R.; Shakirin, G.; Baeßler, B.; Thiele, F.; Zopfs, D.; Große Hokamp, N.; Timmer, M.; Kabbasch, C.; Perkuhn, M.; Borggrefe, J. Accuracy of Radiomics-Based Feature Analysis on Multiparametric Magnetic Resonance Images for Noninvasive Meningioma Grading. World Neurosurg. 2019, 132, e366–e390. [Google Scholar] [CrossRef]
- Niu, L.; Zhou, X.; Duan, C.; Zhao, J.; Sui, Q.; Liu, X.; Zhang, X. Differentiation Researches on the Meningioma Subtypes by Radiomics from Contrast-Enhanced Magnetic Resonance Imaging: A Preliminary Study. World Neurosurg. 2019, 126, e646–e652. [Google Scholar] [CrossRef]
- Chen, X.; Tong, Y.; Shi, Z.; Chen, H.; Yang, Z.; Wang, Y.; Chen, L.; Yu, J. Noninvasive Molecular Diagnosis of Craniopharyngioma with MRI-Based Radiomics Approach. BMC Neurol. 2019, 19, 6. [Google Scholar] [CrossRef]
- Zhang, S.; Song, G.; Zang, Y.; Jia, J.; Wang, C.; Li, C.; Tian, J.; Dong, D.; Zhang, Y. Non-Invasive Radiomics Approach Potentially Predicts Non-Functioning Pituitary Adenomas Subtypes before Surgery. Eur. Radiol. 2018, 28, 3692–3701. [Google Scholar] [CrossRef]
- Zhai, Y.; Song, D.; Yang, F.; Wang, Y.; Jia, X.; Wei, S.; Mao, W.; Xue, Y.; Wei, X. Preoperative Prediction of Meningioma Consistency via Machine Learning-Based Radiomics. Front. Oncol. 2021, 11, 657288. [Google Scholar] [CrossRef]
- Shahrestani, S.; Cardinal, T.; Micko, A.; Strickland, B.A.; Pangal, D.J.; Kugener, G.; Weiss, M.H.; Carmichael, J.; Zada, G. Neural Network Modeling for Prediction of Recurrence, Progression, and Hormonal Non-Remission in Patients Following Resection of Functional Pituitary Adenomas. Pituitary 2021, 24, 523–529. [Google Scholar] [CrossRef]
- Dang, S.; Manzoor, N.F.; Chowdhury, N.; Tittman, S.M.; Yancey, K.L.; Monsour, M.A.; O’Malley, M.R.; Rivas, A.; Haynes, D.S.; Bennett, M.L. Investigating Predictors of Increased Length of Stay After Resection of Vestibular Schwannoma Using Machine Learning. Otol. Neurotol. 2021, 42, e584–e592. [Google Scholar] [CrossRef]
- Chen, J.M.; Wan, Q.; Zhu, H.Y.; Ge, Y.Q.; Wu, L.L.; Zhai, J.; Ding, Z.M. The value of conventional magnetic resonance imaging based radiomic model in predicting the texture of pituitary macroadenoma. Zhonghua Yi Xue Za Zhi 2020, 100, 3626–3631. [Google Scholar]
- Cepeda, S.; Arrese, I.; García-García, S.; Velasco-Casares, M.; Escudero-Caro, T.; Zamora, T.; Sarabia, R. Meningioma Consistency Can Be Defined by Combining the Radiomic Features of Magnetic Resonance Imaging and Ultrasound Elastography. A Pilot Study Using Machine Learning Classifiers. World Neurosurg. 2021, 146, e1147–e1159. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, J.; Han, T.; Zhao, Z.; Cao, Y.; Zhang, G.; Zhou, J. Radiomic Features of Magnetic Resonance Images as Novel Preoperative Predictive Factors of Bone Invasion in Meningiomas. Eur. J. Radiol. 2020, 132, 109287. [Google Scholar] [CrossRef]
- Kandemirli, S.G.; Chopra, S.; Priya, S.; Ward, C.; Locke, T.; Soni, N.; Srivastava, S.; Jones, K.; Bathla, G. Presurgical Detection of Brain Invasion Status in Meningiomas Based on First-Order Histogram Based Texture Analysis of Contrast Enhanced Imaging. Clin. Neurol. Neurosurg. 2020, 198, 106205. [Google Scholar] [CrossRef]
- Cuocolo, R.; Ugga, L.; Solari, D.; Corvino, S.; D’Amico, A.; Russo, D.; Cappabianca, P.; Cavallo, L.M.; Elefante, A. Prediction of Pituitary Adenoma Surgical Consistency: Radiomic Data Mining and Machine Learning on T2-Weighted MRI. Neuroradiology 2020, 62, 1649–1656. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Gao, B.B.; Dong, B.; Padikkalakandy Cheriyath, S.S.; Song, Q.W.; Xu, B.; Wei, Q.; Xie, L.Z.; Guo, Y.; Miao, Y.W. Preoperative Vascular Heterogeneity and Aggressiveness Assessment of Pituitary Macroadenoma Based on Dynamic Contrast-Enhanced MRI Texture Analysis. Eur. J. Radiol. 2020, 129, 109125. [Google Scholar] [CrossRef]
- Voglis, S.; van Niftrik, C.H.B.; Staartjes, V.E.; Brandi, G.; Tschopp, O.; Regli, L.; Serra, C. Feasibility of Machine Learning Based Predictive Modelling of Postoperative Hyponatremia after Pituitary Surgery. Pituitary 2020, 23, 543–551. [Google Scholar] [CrossRef]
- Cha, D.; Shin, S.H.; Kim, S.H.; Choi, J.Y.; Moon, I.S. Machine Learning Approach for Prediction of Hearing Preservation in Vestibular Schwannoma Surgery. Sci. Rep. 2020, 10, 7136. [Google Scholar] [CrossRef]
- Abouzari, M.; Goshtasbi, K.; Sarna, B.; Khosravi, P.; Reutershan, T.; Mostaghni, N.; Lin, H.W.; Djalilian, H.R. Prediction of Vestibular Schwannoma Recurrence Using Artificial Neural Network. Laryngoscope Investig. Otolaryngol. 2020, 5, 278–285. [Google Scholar] [CrossRef] [Green Version]
- Su, C.-Q.; Zhang, X.; Pan, T.; Chen, X.-T.; Chen, W.; Duan, S.-F.; Ji, J.; Hu, W.-X.; Lu, S.-S.; Hong, X.-N. Texture Analysis of High B-Value Diffusion-Weighted Imaging for Evaluating Consistency of Pituitary Macroadenomas. J. Magn. Reson. Imaging 2020, 51, 1507–1513. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, Z.; Hou, B.; Li, L.; Liu, X.; Liu, Z.; Wang, R.; Lin, Y.; Feng, F.; Tian, J.; et al. Development and Validation of an MRI-Based Radiomic Signature for the Preoperative Prediction of Treatment Response in Patients with Invasive Functional Pituitary Adenoma. Eur. J. Radiol. 2019, 121, 108647. [Google Scholar] [CrossRef]
- Speckter, H.; Bido, J.; Hernandez, G.; Rivera, D.; Suazo, L.; Valenzuela, S.; Miches, I.; Oviedo, J.; Gonzalez, C.; Stoeter, P. Pretreatment Texture Analysis of Routine MR Images and Shape Analysis of the Diffusion Tensor for Prediction of Volumetric Response after Radiosurgery for Meningioma. J. Neurosurg. 2018, 129, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Mekki, A.; Dercle, L.; Lichtenstein, P.; Nasser, G.; Marabelle, A.; Champiat, S.; Chouzenoux, E.; Balleyguier, C.; Ammari, S. Machine Learning Defined Diagnostic Criteria for Differentiating Pituitary Metastasis from Autoimmune Hypophysitis in Patients Undergoing Immune Checkpoint Blockade Therapy. Eur. J. Cancer 2019, 119, 44–56. [Google Scholar] [CrossRef]
- Staartjes, V.E.; Zattra, C.M.; Akeret, K.; Maldaner, N.; Muscas, G.; Bas van Niftrik, C.H.; Fierstra, J.; Regli, L.; Serra, C. Neural Network-Based Identification of Patients at High Risk for Intraoperative Cerebrospinal Fluid Leaks in Endoscopic Pituitary Surgery. J. Neurosurg. 2019, 133, 329–335. [Google Scholar] [CrossRef]
- Zeynalova, A.; Kocak, B.; Durmaz, E.S.; Comunoglu, N.; Ozcan, K.; Ozcan, G.; Turk, O.; Tanriover, N.; Kocer, N.; Kizilkilic, O.; et al. Preoperative Evaluation of Tumour Consistency in Pituitary Macroadenomas: A Machine Learning-Based Histogram Analysis on Conventional T2-Weighted MRI. Neuroradiology 2019, 61, 767–774. [Google Scholar] [CrossRef]
- Speckter, H.; Santana, J.; Bido, J.; Hernandez, G.; Rivera, D.; Suazo, L.; Valenzuela, S.; Oviedo, J.; Gonzalez, C.F.; Stoeter, P. Texture Analysis of Standard Magnetic Resonance Images to Predict Response to Gamma Knife Radiosurgery in Vestibular Schwannomas. World Neurosurg. 2019, 132, e228–e234. [Google Scholar] [CrossRef]
- Hollon, T.C.; Parikh, A.; Pandian, B.; Tarpeh, J.; Orringer, D.A.; Barkan, A.L.; McKean, E.L.; Sullivan, S.E. A Machine Learning Approach to Predict Early Outcomes after Pituitary Adenoma Surgery. Neurosurg. Focus 2018, 45, E8. [Google Scholar] [CrossRef] [Green Version]
- Galm, B.P.; Martinez-Salazar, E.L.; Swearingen, B.; Torriani, M.; Klibanski, A.; Bredella, M.A.; Tritos, N.A. MRI Texture Analysis as a Predictor of Tumor Recurrence or Progression in Patients with Clinically Non-Functioning Pituitary Adenomas. Eur. J. Endocrinol. 2018, 179, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Muhlestein, W.E.; Akagi, D.S.; Kallos, J.A.; Morone, P.J.; Weaver, K.D.; Thompson, R.C.; Chambless, L.B. Using a Guided Machine Learning Ensemble Model to Predict Discharge Disposition Following Meningioma Resection. J. Neurol. Surg. B Skull Base 2018, 79, 123–130. [Google Scholar] [CrossRef]
- Ko, C.-C.; Zhang, Y.; Chen, J.-H.; Chang, K.-T.; Chen, T.-Y.; Lim, S.-W.; Wu, T.-C.; Su, M.-Y. Pre-Operative MRI Radiomics for the Prediction of Progression and Recurrence in Meningiomas. Front. Neurol. 2021, 12, 636235. [Google Scholar] [CrossRef]
- Xiao, B.; Fan, Y.; Zhang, Z.; Tan, Z.; Yang, H.; Tu, W.; Wu, L.; Shen, X.; Guo, H.; Wu, Z.; et al. Three-Dimensional Radiomics Features from Multi-Parameter MRI Combined With Clinical Characteristics Predict Postoperative Cerebral Edema Exacerbation in Patients With Meningioma. Front. Oncol. 2021, 11, 625220. [Google Scholar] [CrossRef]
- Ma, G.; Kang, J.; Qiao, N.; Zhang, B.; Chen, X.; Li, G.; Gao, Z.; Gui, S. Non-Invasive Radiomics Approach Predict Invasiveness of Adamantinomatous Craniopharyngioma Before Surgery. Front. Oncol. 2020, 10, 599888. [Google Scholar] [CrossRef]
- Langenhuizen, P.P.J.H.; Zinger, S.; Leenstra, S.; Kunst, H.P.M.; Mulder, J.J.S.; Hanssens, P.E.J.; de With, P.H.N.; Verheul, J.B. Radiomics-Based Prediction of Long-Term Treatment Response of Vestibular Schwannomas Following Stereotactic Radiosurgery. Otol. Neurotol. 2020, 41, e1321–e1327. [Google Scholar] [CrossRef]
- Zhang, Y.; Ko, C.-C.; Chen, J.-H.; Chang, K.-T.; Chen, T.-Y.; Lim, S.-W.; Tsui, Y.-K.; Su, M.-Y. Radiomics Approach for Prediction of Recurrence in Non-Functioning Pituitary Macroadenomas. Front. Oncol. 2020, 10, 590083. [Google Scholar] [CrossRef]
- Yang, H.-C.; Wu, C.-C.; Lee, C.-C.; Huang, H.-E.; Lee, W.-K.; Chung, W.-Y.; Wu, H.-M.; Guo, W.-Y.; Wu, Y.-T.; Lu, C.-F. Prediction of Pseudoprogression and Long-Term Outcome of Vestibular Schwannoma after Gamma Knife Radiosurgery Based on Preradiosurgical MR Radiomics. Radiother. Oncol. 2021, 155, 123–130. [Google Scholar] [CrossRef]
- Machado, L.F.; Elias, P.C.L.; Moreira, A.C.; Dos Santos, A.C.; Murta Junior, L.O. MRI Radiomics for the Prediction of Recurrence in Patients with Clinically Non-Functioning Pituitary Macroadenomas. Comput. Biol. Med. 2020, 124, 103966. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, K.; Liu, P.; Liu, Z.; Han, T.; Zhao, Z.; Cao, Y.; Zhang, G.; Zhang, J.; Tian, J.; et al. A Radiomics Model for Preoperative Prediction of Brain Invasion in Meningioma Non-Invasively Based on MRI: A Multicentre Study. EBioMedicine 2020, 58, 102933. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, J.-H.; Chen, T.-Y.; Lim, S.-W.; Wu, T.-C.; Kuo, Y.-T.; Ko, C.-C.; Su, M.-Y. Radiomics Approach for Prediction of Recurrence in Skull Base Meningiomas. Neuroradiology 2019, 61, 1355–1364. [Google Scholar] [CrossRef]
- Rui, W.; Wu, Y.; Ma, Z.; Wang, Y.; Wang, Y.; Xu, X.; Zhang, J.; Yao, Z. MR Textural Analysis on Contrast Enhanced 3D-SPACE Images in Assessment of Consistency of Pituitary Macroadenoma. Eur. J. Radiol. 2019, 110, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.; Zhang, S.; Ma, S.; Diao, J.; Zhou, W.; Tian, J.; Zang, Y.; Jia, W. Preoperative Prediction of Cavernous Sinus Invasion by Pituitary Adenomas Using a Radiomics Method Based on Magnetic Resonance Images. Eur. Radiol. 2019, 29, 1625–1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goertz, L.; Stavrinou, P.; Stranjalis, G.; Timmer, M.; Goldbrunner, R.; Krischek, B. Single-Step Resection of Sphenoorbital Meningiomas and Orbital Reconstruction Using Customized CAD/CAM Implants. J. Neurol. Surg. B Skull Base 2020, 81, 142–148. [Google Scholar] [CrossRef]
- McCradden, M.D.; Baba, A.; Saha, A.; Ahmad, S.; Boparai, K.; Fadaiefard, P.; Cusimano, M.D. Ethical Concerns around Use of Artificial Intelligence in Health Care Research from the Perspective of Patients with Meningioma, Caregivers and Health Care Providers: A Qualitative Study. CMAJ Open 2020, 8, E90–E95. [Google Scholar] [CrossRef] [Green Version]
- Lovo, E.E.; Campos, F.J.; Caceros, V.E.; Minervini, M.; Cruz, C.B.; Arias, J.C.; Reyes, W.A. Automated Stereotactic Gamma Ray Radiosurgery to the Pituitary Gland in Terminally Ill Cancer Patients with Opioid Refractory Pain. Cureus 2019, 11, e4811. [Google Scholar] [CrossRef] [Green Version]
- Carolus, A.; Weihe, S.; Schmieder, K.; Brenke, C. One-Step CAD/CAM Titanium Cranioplasty after Drilling Template-Assisted Resection of Intraosseous Skull Base Meningioma: Technical Note. Acta Neurochir. 2017, 159, 447–452. [Google Scholar] [CrossRef]
- Qiao, N.; Zhang, Y.; Ye, Z.; Shen, M.; Shou, X.; Wang, Y.; Li, S.; Wang, M.; Zhao, Y. Comparison of Multifocal Visual Evoked Potential, Static Automated Perimetry, and Optical Coherence Tomography Findings for Assessing Visual Pathways in Patients with Pituitary Adenomas. Pituitary 2015, 18, 598–603. [Google Scholar] [CrossRef]
- Garrido, R.; Zabka, T.S.; Tao, J.; Fielden, M.; Fretland, A.; Albassam, M. Quantitative Histological Assessment of Xenobiotic-Induced Liver Enzyme Induction and Pituitary-Thyroid Axis Stimulation in Rats Using Whole-Slide Automated Image Analysis. J. Histochem. Cytochem. 2013, 61, 362–371. [Google Scholar] [CrossRef] [Green Version]
- Chang, V.; Narang, J.; Schultz, L.; Issawi, A.; Jain, R.; Rock, J.; Rosenblum, M. Computer-Aided Volumetric Analysis as a Sensitive Tool for the Management of Incidental Meningiomas. Acta Neurochir. 2012, 154, 589–597; discussion 597. [Google Scholar] [CrossRef] [PubMed]
- Brossaud, J.; Bouton, M.; Gatta, B.; Tabarin, A.; Corcuff, J.-B. Use of an Automated ACTH Assay for the Diagnosis of Pituitary and Adrenal-Related Diseases. Clin. Biochem. 2011, 44, 1160–1162. [Google Scholar] [CrossRef] [PubMed]
- Gorzalka, B.B.; Hill, M.N. Integration of Endocannabinoid Signaling into the Neural Network Regulating Stress-Induced Activation of the Hypothalamic-Pituitary-Adrenal Axis. Curr. Top. Behav. Neurosci. 2009, 1, 289–306. [Google Scholar]
- Grala, B.; Markiewicz, T.; Kozłowski, W.; Osowski, S.; Słodkowska, J.; Papierz, W. New Automated Image Analysis Method for the Assessment of Ki-67 Labeling Index in Meningiomas. Folia Histochem. Cytobiol. 2009, 47, 587–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.J.; Romeike, B.F.M.; Uszkoreit, J.; Feiden, W. Automated Nuclear Segmentation in the Determination of the Ki-67 Labeling Index in Meningiomas. Clin. Neuropathol. 2006, 25, 67–73. [Google Scholar] [PubMed]
- Pillay, P.K.; Leo, C.W.; Sethi, D.S. Computer-Aided/image-Guided and Video-Endoscopic Resection of Pituitary Tumors. Stereotact. Funct. Neurosurg. 2000, 74, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Shapey, J.; Kujawa, A.; Dorent, R.; Saeed, S.R.; Kitchen, N.; Obholzer, R.; Ourselin, S.; Vercauteren, T.; Thomas, N.W.M. Artificial Intelligence Opportunities for Vestibular Schwannoma Management Using Image Segmentation and Clinical Decision Tools. World Neurosurg. 2021, 149, 269–270. [Google Scholar] [CrossRef]
- Ugga, L.; Perillo, T.; Cuocolo, R.; Stanzione, A.; Romeo, V.; Green, R.; Cantoni, V.; Brunetti, A. Meningioma MRI Radiomics and Machine Learning: Systematic Review, Quality Score Assessment, and Meta-Analysis. Neuroradiology 2021, 63, 1293–1304. [Google Scholar] [CrossRef]
- Neromyliotis, E.; Kalamatianos, T.; Paschalis, A.; Komaitis, S.; Fountas, K.N.; Kapsalaki, E.Z.; Stranjalis, G.; Tsougos, I. Machine Learning in Meningioma MRI: Past to Present. A Narrative Review. J. Magn. Reson. Imaging 2020, 55, 48–60. [Google Scholar] [CrossRef]
- Soldozy, S.; Farzad, F.; Young, S.; Yağmurlu, K.; Norat, P.; Sokolowski, J.; Park, M.S.; Jane, J.A., Jr.; Syed, H.R. Pituitary Tumors in the Computational Era, Exploring Novel Approaches to Diagnosis, and Outcome Prediction with Machine Learning. World Neurosurg. 2021, 146, 315–321.e1. [Google Scholar] [CrossRef]
- van Staalduinen, E.K.; Bangiyev, L. Editorial for “Texture Analysis of High B-Value Diffusion-Weighted Imaging for Evaluating Consistency of Pituitary Macroadenomas”. J. Magn. Reson. Imaging 2020, 51, 1514–1515. [Google Scholar] [CrossRef] [PubMed]
- Saha, A.; Tso, S.; Rabski, J.; Sadeghian, A.; Cusimano, M.D. Machine Learning Applications in Imaging Analysis for Patients with Pituitary Tumors: A Review of the Current Literature and Future Directions. Pituitary 2020, 23, 273–293. [Google Scholar] [CrossRef] [PubMed]
- Won, S.Y.; Park, Y.W.; Ahn, S.S.; Moon, J.H.; Kim, E.H.; Kang, S.-G.; Chang, J.H.; Kim, S.H.; Lee, S.-K. Quality Assessment of Meningioma Radiomics Studies: Bridging the Gap between Exploratory Research and Clinical Applications. Eur. J. Radiol. 2021, 138, 109673. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Zhang, X.; di Russo, P.; Zhao, X.; Xu, T. The Current State of Radiomics for Meningiomas: Promises and Challenges. Front. Oncol. 2020, 10, 567736. [Google Scholar] [CrossRef] [PubMed]
- MacKeith, S.; Das, T.; Graves, M.; Patterson, A.; Donnelly, N.; Mannion, R.; Axon, P.; Tysome, J. A Comparison of Semi-Automated Volumetric vs Linear Measurement of Small Vestibular Schwannomas. Eur. Arch. Otorhinolaryngol. 2018, 275, 867–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGrath, H.; Li, P.; Dorent, R.; Bradford, R.; Saeed, S.; Bisdas, S.; Ourselin, S.; Shapey, J.; Vercauteren, T. Manual Segmentation versus Semi-Automated Segmentation for Quantifying Vestibular Schwannoma Volume on MRI. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 1445–1455. [Google Scholar] [CrossRef] [PubMed]
- MacKeith, S.A.C.; Das, T.; Graves, M.; Patterson, A.; Donnelly, N.; Mannion, R.; Axon, P.; Tysome, J. A Comparison of Repeatability and Usability of Semi-Automated Volume Segmentation Tools for Measurement of Vestibular Schwannomas. Otol. Neurotol. 2018, 39, e496–e505. [Google Scholar] [CrossRef]
- Banzato, T.; Bernardini, M.; Cherubini, G.B.; Zotti, A. Texture Analysis of Magnetic Resonance Images to Predict Histologic Grade of Meningiomas in Dogs. Am. J. Vet. Res. 2017, 78, 1156–1162. [Google Scholar] [CrossRef]
- Banzato, T.; Cherubini, G.B.; Atzori, M.; Zotti, A. Development of a Deep Convolutional Neural Network to Predict Grading of Canine Meningiomas from Magnetic Resonance Images. Vet. J. 2018, 235, 90–92. [Google Scholar] [CrossRef]
- Banzato, T.; Bernardini, M.; Cherubini, G.B.; Zotti, A. A Methodological Approach for Deep Learning to Distinguish between Meningiomas and Gliomas on Canine MR-Images. BMC Vet. Res. 2018, 14, 317. [Google Scholar] [CrossRef]
- Lenz, M.; Krug, R.; Dillmann, C.; Stroop, R.; Gerhardt, N.C.; Welp, H.; Schmieder, K.; Hofmann, M.R. Automated Differentiation between Meningioma and Healthy Brain Tissue Based on Optical Coherence Tomography Ex Vivo Images Using Texture Features. J. Biomed. Opt. 2018, 23, 71205. [Google Scholar] [CrossRef] [PubMed]
- Chavali, P.; Uppin, M.S.; Uppin, S.G.; Challa, S. Meningiomas: Objective Assessment of Proliferative Indices by Immunohistochemistry and Automated Counting Method. Neurol. India 2017, 65, 1345–1349. [Google Scholar] [PubMed]
- Kim, M.; Kim, H.S.; Kim, H.J.; Park, J.E.; Park, S.Y.; Kim, Y.-H.; Kim, S.J.; Lee, J.; Lebel, M.R. Thin-Slice Pituitary MRI with Deep Learning-Based Reconstruction: Diagnostic Performance in a Postoperative Setting. Radiology 2021, 298, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xie, Z.; Zhu, X.; Niu, Z.; Ji, H.; He, L.; Hu, Q.; Zhang, C. Differentiation of Gastric Schwannomas from Gastrointestinal Stromal Tumors by CT Using Machine Learning. Abdom. Radiol. 2021, 46, 1773–1782. [Google Scholar] [CrossRef]
- Muhlestein, W.E.; Akagi, D.S.; McManus, A.R.; Chambless, L.B. Machine Learning Ensemble Models Predict Total Charges and Drivers of Cost for Transsphenoidal Surgery for Pituitary Tumor. J. Neurosurg. 2018, 131, 507–516. [Google Scholar] [CrossRef]
- Qian, Y.; Qiu, Y.; Li, C.-C.; Wang, Z.-Y.; Cao, B.-W.; Huang, H.-X.; Ni, Y.-H.; Chen, L.-L.; Sun, J.-Y. A Novel Diagnostic Method for Pituitary Adenoma Based on Magnetic Resonance Imaging Using a Convolutional Neural Network. Pituitary 2020, 23, 246–252. [Google Scholar] [CrossRef]
- Lee, C.-C.; Lee, W.-K.; Wu, C.-C.; Lu, C.-F.; Yang, H.-C.; Chen, Y.-W.; Chung, W.-Y.; Hu, Y.-S.; Wu, H.-M.; Wu, Y.-T.; et al. Applying Artificial Intelligence to Longitudinal Imaging Analysis of Vestibular Schwannoma Following Radiosurgery. Sci. Rep. 2021, 11, 3106. [Google Scholar] [CrossRef]
- Zhang, H.; Mo, J.; Jiang, H.; Li, Z.; Hu, W.; Zhang, C.; Wang, Y.; Wang, X.; Liu, C.; Zhao, B.; et al. Deep Learning Model for the Automated Detection and Histopathological Prediction of Meningioma. Neuroinformatics 2021, 19, 393–402. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, W.; Li, S.; Fan, Y.; Feng, M.; Wang, R. Development and Evaluation of Deep Learning-Based Automated Segmentation of Pituitary Adenoma in Clinical Task. J. Clin. Endocrinol. Metab. 2021, 106, 2535–2546. [Google Scholar] [CrossRef]
- Laukamp, K.R.; Thiele, F.; Shakirin, G.; Zopfs, D.; Faymonville, A.; Timmer, M.; Maintz, D.; Perkuhn, M.; Borggrefe, J. Fully Automated Detection and Segmentation of Meningiomas Using Deep Learning on Routine Multiparametric MRI. Eur. Radiol. 2019, 29, 124–132. [Google Scholar] [CrossRef] [Green Version]
- Laukamp, K.R.; Pennig, L.; Thiele, F.; Reimer, R.; Görtz, L.; Shakirin, G.; Zopfs, D.; Timmer, M.; Perkuhn, M.; Borggrefe, J. Automated Meningioma Segmentation in Multiparametric MRI: Comparable Effectiveness of a Deep Learning Model and Manual Segmentation. Clin. Neuroradiol. 2021, 31, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-K.; Wu, C.-C.; Lee, C.-C.; Lu, C.-F.; Yang, H.-C.; Huang, T.-H.; Lin, C.-Y.; Chung, W.-Y.; Wang, P.-S.; Wu, H.-M.; et al. Combining Analysis of Multi-Parametric MR Images into a Convolutional Neural Network: Precise Target Delineation for Vestibular Schwannoma Treatment Planning. Artif. Intell. Med. 2020, 107, 101911. [Google Scholar] [CrossRef] [PubMed]
- George-Jones, N.A.; Wang, K.; Wang, J.; Hunter, J.B. Automated Detection of Vestibular Schwannoma Growth Using a Two-Dimensional U-Net Convolutional Neural Network. Laryngoscope 2021, 131, E619–E624. [Google Scholar] [CrossRef] [PubMed]
- Shapey, J.; Wang, G.; Dorent, R.; Dimitriadis, A.; Li, W.; Paddick, I.; Kitchen, N.; Bisdas, S.; Saeed, S.R.; Ourselin, S.; et al. An Artificial Intelligence Framework for Automatic Segmentation and Volumetry of Vestibular Schwannomas from Contrast-Enhanced T1-Weighted and High-Resolution T2-Weighted MRI. J. Neurosurg. 2019, 134, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Bossuyt, P.M.; Reitsma, J.B. The STARD Initiative. Lancet 2003, 361, 71. [Google Scholar] [CrossRef]
- Schwarz, C.G.; Kremers, W.K.; Therneau, T.M.; Sharp, R.R.; Gunter, J.L.; Vemuri, P.; Arani, A.; Spychalla, A.J.; Kantarci, K.; Knopman, D.S.; et al. Identification of Anonymous MRI Research Participants with Face-Recognition Software. N. Engl. J. Med. 2019, 381, 1684–1686. [Google Scholar] [CrossRef] [PubMed]
- Goldbrunner, R.; Weller, M.; Regis, J.; Lund-Johansen, M.; Stavrinou, P.; Reuss, D.; Evans, D.G.; Lefranc, F.; Sallabanda, K.; Falini, A.; et al. EANO Guideline on the Diagnosis and Treatment of Vestibular Schwannoma. Neuro. Oncol. 2020, 22, 31–45. [Google Scholar] [CrossRef]
- Goldbrunner, R.; Minniti, G.; Preusser, M.; Jenkinson, M.D.; Sallabanda, K.; Houdart, E.; von Deimling, A.; Stavrinou, P.; Lefranc, F.; Lund-Johansen, M.; et al. EANO Guidelines for the Diagnosis and Treatment of Meningiomas. Lancet Oncol. 2016, 17, e383–e391. [Google Scholar] [CrossRef] [Green Version]
- Shorten, C.; Khoshgoftaar, T.M. A Survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Xu, J.; Li, M.; Zhu, Z. Automatic Data Augmentation for 3D Medical Image Segmentation. arXiv 2020, arXiv:2010.11695v1. [Google Scholar]
- Kundu, S. AI in Medicine Must Be Explainable. Nat. Med. 2021, 27, 1328. [Google Scholar] [CrossRef] [PubMed]
Author | Year | Tumor Entity | Average Tumor Volume | No. of Patients |
---|---|---|---|---|
Wang, Zhang et al. [110] | 2021 | Pituitary adenoma | 7.9 mL | 163 |
Bouget et al. [5] | 2021 | Meningioma | 29.8 mL (surgically resected); 8.47 mL (untreated) | 698 |
Lee et al. [108] | 2021 | Vestibular schwannoma | 2.05 mL | 381 |
Ito et al. [6] | 2020 | Spinal schwannoma | Not mentioned | 50 |
Ugga et al. [89] | 2020 | Meningioma | Not mentioned | 1876 |
Lee et al. [113] | 2020 | Vestibular schwannoma | Not mentioned | 516 |
George-Jones et al. [114] | 2020 | Vestibular schwannoma | 0.28 mL | 65 |
Qian et al. [107] | 2020 | Pituitary adenoma | Not mentioned | 149 |
Laukamp et al. [112] | 2020 | Meningioma | ∼31 mL | 126 |
Shapey, Wang et al. [115] | 2019 | Vestibular schwannoma | 1.89 mL (test set) | 243 |
Laukamp et al. [111] | 2018 | Meningioma | 30.9 mL | 56 (test set) |
Author | Field Strength [T] | Slice Thickness [mm] | MRI Sequence Used for Task |
---|---|---|---|
Wang, Zhang et al. [110] | 3 | 3 | T1c |
Bouget et al. [5] | 1.5/3 | heterogeneous | T1c |
Lee et al. [108] | 1.5 | 3 | T1c; T2 |
Ito et al. [6] | 1.5/3 | heterogeneous | T1; T2 |
Ugga et al. [89] | 3 | 5 | T1c |
Lee et al. [113] | 1.5 | 3 | T1; T1c; T2 |
George-Jones et al. [114] | 1.5/3 | heterogeneous (median 3.3) | T1c |
Qian et al. [107] | 1.5 | 3 | T1; T2 |
Laukamp et al. [112] | 1–3 | heterogeneous | T1c; T2FLAIR |
Shapey, Wang et al. [115] | 1.5 | 1.5 | T1c; T2 |
Laukamp et al. [111] | 1–3 | 1–6 | T1c; T2FLAIR |
Author | Detection/Segmentation Algorithm | Data Augmentation | Performance Measures | Explainability/Interpretability | Code Availability | Data Availability |
---|---|---|---|---|---|---|
Wang, Zhang et al. [110] | Convolutional Neural Network (Gated-Shaped U-Net) | Not mentioned | Dice coefficient: 0.898 | Not mentioned | Not mentioned | From authors upon request |
Bouget et al. [5] | Convolutional Neural Network (3D U-Net, PLS-Net) | Horizontal and vertical flipping, random rotation in the range [−20°, 20°], translation up to 10% of the axis dimension, zoom between [80, 120]%, and perspective transform with a scale within [0.0, 0.1] | Best dice coefficients: 0.714 (U-Net), 0.732 (PLS-Net) | Authors analyzed the influence of tumor volume on the performance of the classifiers | Not mentioned | Not mentioned |
Lee et al. [108] | Convolutional Neural Network (Dual Pathway U-Net Model) | Not mentioned | Dice coefficient: 0.9 | Not mentioned | https://github.com/KenLee1996/Dual-pathway-CNN-for-VS-segmentation (accessed on 25 April 2022) | Claims that all data is in the supplement but that appears not to be the case |
Ito et al. [6] | Convolutional Neural Network (YOLO v3) | Random transformations such as flipping and scaling | Accuracy: 0.935 | Not mentioned | Not mentioned | Not mentioned |
Ugga et al. [89] | Convolutional Neural Network (Pyramid Scene Parsing Network) | Not mentioned | Tumor accuracy: 0.814 | Not mentioned | https://github.com/zhangkai62035/Meningioma_demo (accessed on 25 April 2022) | From authors upon request |
Lee et al. [113] | Convolutional Neural Network (Dual Pathway U-Net Model) | Not mentioned | Dice coefficient: 0.9 | Not mentioned | Not mentioned | Not mentioned |
George-Jones et al. [114] | Convolutional Neural Network (U-Net) | Not mentioned | ROC-AUC: 0.822 (for agreement wether a tumor had grown between scans) | Not mentioned | Not mentioned | Not mentioned |
Qian et al. [107] | Convolutional Neural Networks (one per combination of perspective/sequence) | Zooming (0–40%), rotating (−15° to +15°), and shear mapping (0–40%) | Accuracy: 0.91 | Not mentioned | Not mentioned | Not mentioned |
Laukamp et al. [112] | Convolutional Neural Network (DeepMedic) | Not mentioned | Dice coefficient: 0.91 | Not mentioned | Not mentioned; DeepMedic is a public repository | Not mentioned |
Shapey, Wang et al. [115] | Convolutional Neural Network (U-Net) | Not mentioned | Dice coefficient: 0.937 | Not mentioned | Not mentioned | Not mentioned |
Laukamp et al. [111] | Convolutional Neural Network (DeepMedic) | Not mentioned | Dice coefficient: 0.78 | Not mentioned | Not mentioned; DeepMedic is a public repository | Not mentioned |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Windisch, P.; Koechli, C.; Rogers, S.; Schröder, C.; Förster, R.; Zwahlen, D.R.; Bodis, S. Machine Learning for the Detection and Segmentation of Benign Tumors of the Central Nervous System: A Systematic Review. Cancers 2022, 14, 2676. https://doi.org/10.3390/cancers14112676
Windisch P, Koechli C, Rogers S, Schröder C, Förster R, Zwahlen DR, Bodis S. Machine Learning for the Detection and Segmentation of Benign Tumors of the Central Nervous System: A Systematic Review. Cancers. 2022; 14(11):2676. https://doi.org/10.3390/cancers14112676
Chicago/Turabian StyleWindisch, Paul, Carole Koechli, Susanne Rogers, Christina Schröder, Robert Förster, Daniel R. Zwahlen, and Stephan Bodis. 2022. "Machine Learning for the Detection and Segmentation of Benign Tumors of the Central Nervous System: A Systematic Review" Cancers 14, no. 11: 2676. https://doi.org/10.3390/cancers14112676
APA StyleWindisch, P., Koechli, C., Rogers, S., Schröder, C., Förster, R., Zwahlen, D. R., & Bodis, S. (2022). Machine Learning for the Detection and Segmentation of Benign Tumors of the Central Nervous System: A Systematic Review. Cancers, 14(11), 2676. https://doi.org/10.3390/cancers14112676