Stereotactic Ablative Radiotherapy Using CALYPSO® Extracranial Tracking for Intrafractional Tumor Motion Management—A New Potential Local Treatment for Unresectable Locally Advanced Pancreatic Cancer? Results from a Retrospective Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Patients’ Preparations for the Treatment
2.3. Calypso® Tracking System
2.4. Stereotactic Ablative Radiotherapy
- For the patients that were treated in FB:
- The planning 4D-CT in a late exhale phase was used and coregistered with MRI.
- CTVs were delineated on the T1 or T2 images of the MRI, with further corrections (if needed) on phase-gated 4D-CT scans.
- For the patients that were treated in DBH:
- The planning MSCT in DBH was used and coregistered with MRI.
- CTVs were delineated on the T1 or T2 images of the MRI, with further corrections (if needed) on MSCT scans in DBH.
- For the patients treated in DBH we used planning MSCT in DBH for coregistration with cone beam CT (CBCT)
- For the patients treated in FB we used planning 4D-CT reconstructed in all breathing phases (“Average intensity projection”) for coregistration with CBCT.
2.5. Response Evaluation and Follow-Up
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tonini, V.; Zanni, M. Pancreatic cancer in 2021: What you need to know to win. World J. Gastroenterol. 2021, 27, 5851–5889. [Google Scholar] [CrossRef] [PubMed]
- Ilic, M.; Ilic, I. Epidemiology of pancreatic cancer. World J. Gastroenterol. 2016, 22, 9694–9705. [Google Scholar] [CrossRef] [PubMed]
- Oldfield, L.E.; Connor, A.A.; Gallinger, S. Molecular Events in the Natural History of Pancreatic Cancer. Trends Cancer 2017, 3, 336–346. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Grasso, C.; Jansen, G.; Giovannetti, E. Drug resistance in pancreatic cancer: Impact of altered energy metabolism. Crit. Rev. Oncol. Hematol. 2017, 114, 139–152. [Google Scholar] [CrossRef]
- He, J.; Blair, A.; Groot, V.P.; Javed, A.A.; Burkhart, R.A.; Gemenetzis, G.; Hruban, R.H.; Waters, K.M.; Poling, J.; Zheng, L.; et al. Is a Pathological Complete Response Following Neoadjuvant Chemoradiation Associated With Prolonged Survival in Patients With Pancreatic Cancer? Ann. Surg. 2018, 268, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lai, E.C.; Yang, G.P.; Tang, C.N. Robot-assisted laparoscopic pancreaticoduodenectomy versus open pancreaticoduodenectomy—A comparative study. Int. J. Surg. 2012, 10, 475–479. [Google Scholar] [CrossRef] [Green Version]
- Clancy, T.E.; Ashley, S.W. Pancreaticoduodenectomy (Whipple operation). Surg. Oncol. Clin. N. Am. 2005, 14, 533–552. [Google Scholar] [CrossRef]
- Jakhmola, C.; Kumar, A. Whipple’s pancreaticoduodenectomy: Outcomes at a tertiary care hospital. Med. J. Armed Forces India 2014, 70, 321–326. [Google Scholar] [CrossRef] [Green Version]
- Sahora, K.; Morales-Oyarvide, V.; Thayer, S.P.; Ferrone, C.R.; Warshaw, A.L.; Lillemoe, K.D.; Castillo, C.F.-D. The effect of antecolic versus retrocolic reconstruction on delayed gastric emptying after classic non–pylorus-preserving pancreaticoduodenectomy. Am. J. Surg. 2015, 209, 1028–1035. [Google Scholar] [CrossRef]
- Martignoni, M.E.; Friess, H.; Sell, F.; Ricken, L.; Shrikhande, S.; Kulli, C.; Büchler, M.W. Enteral nutrition prolongs delayed gastric emptying in patients after whipple resection. Am. J. Surg. 2000, 180, 18–23. [Google Scholar] [CrossRef]
- Goldsmith, C.; Plowman, P.N.; Green, M.M.; Dale, R.G.; Price, P.M. Stereotactic ablative radiotherapy (SABR) as primary, adjuvant, consolidation and re-treatment option in pancreatic cancer: Scope for dose escalation and lessons for toxicity. Radiat. Oncol. 2018, 13, 204. [Google Scholar] [CrossRef] [PubMed]
- Chang, B.K.; Timmerman, R.D. Stereotactic Body Radiation Therapy:y: A comprehensive review. Am. J. Clin. Oncol. 2007, 30, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; Gaya, A. Stereotactic Body Radiotherapy: A Review. Clin. Oncol. 2010, 22, 157–172. [Google Scholar] [CrossRef]
- Koong, A.C.; Christofferson, E.; Le, Q.-T.; Goodman, K.A.; Ho, A.; Kuo, T.; Ford, J.M.; Fisher, G.A.; Greco, R.; Norton, J.; et al. Phase II study to assess the efficacy of conventionally fractionated radiotherapy followed by a stereotactic radiosurgery boost in patients with locally advanced pancreatic cancer. Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, 320–323. [Google Scholar] [CrossRef]
- Chang, D.T.; Schellenberg, D.; Shen, J.; Kim, J.; Goodman, K.A.; Fisher, G.A.; Ford, J.M.; Desser, T.; Quon, A.; Koong, A.C. Stereotactic radiotherapy for unresectable adenocarcinoma of the pancreas. Cancer 2009, 115, 665–672. [Google Scholar] [CrossRef]
- Mahadevan, A.; Miksad, R.; Goldstein, M.; Sullivan, R.; Bullock, A.; Buchbinder, E.; Pleskow, D.; Sawhney, M.; Kent, T.; Vollmer, C.; et al. Induction Gemcitabine and Stereotactic Body Radiotherapy for Locally Advanced Nonmetastatic Pancreas Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, e615–e622. [Google Scholar] [CrossRef]
- Schellenberg, D.; Kim, J.; Christman-Skieller, C.; Chun, C.L.; Columbo, L.A.; Ford, J.M.; Fisher, G.A.; Kunz, P.L.; Van Dam, J.; Quon, A.; et al. Single-Fraction Stereotactic Body Radiation Therapy and Sequential Gemcitabine for the Treatment of Locally Advanced Pancreatic Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 181–188. [Google Scholar] [CrossRef]
- Chuong, M.D.; Springett, G.M.; Freilich, J.M.; Park, C.K.; Weber, J.M.; Mellon, E.A.; Hodul, P.J.; Malafa, M.P.; Meredith, K.L.; Hoffe, S.E.; et al. Stereotactic Body Radiation Therapy for Locally Advanced and Borderline Resectable Pancreatic Cancer Is Effective and Well Tolerated. Int. J. Radiat. Oncol. Biol. Phys. 2013, 86, 516–522. [Google Scholar] [CrossRef]
- Tozzi, A.; Comito, T.; Alongi, F.; Navarria, P.; Iftode, C.; Mancosu, P.; Reggiori, G.; Clerici, E.; Rimassa, L.; Zerbi, A.; et al. SBRT in unresectable advanced pancreatic cancer: Preliminary results of a mono-institutional experience. Radiat. Oncol. 2013, 8, 148. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.; Patel, K.; Switchenko, J.; Cassidy, R.; Hall, W.A.; Gillespie, T.; Patel, P.R.; Kooby, D.; Landry, J. Outcomes for patients with locally advanced pancreatic adenocarcinoma treated with stereotactic body radiation therapy versus conventionally fractionated radiation. Cancer 2017, 123, 3486–3493. [Google Scholar] [CrossRef]
- NCCN Clinical Practice Guidelines in Oncology: Pancreatic Adenocarcinoma. Version 1.2022. Available online: https://www.nccn.org/professionals/physician_gls/pdf/pancreatic.pdf (accessed on 14 April 2022).
- Palta, M.; Godfrey, D.; Goodman, K.A.; Hoffe, S.; Dawson, L.A.; Dessert, D.; Hall, W.A.; Herman, J.M.; Khorana, A.A.; Merchant, N.; et al. Radiation Therapy for Pancreatic Cancer: Executive Summary of an ASTRO Clinical Practice Guideline. Pract. Radiat. Oncol. 2019, 9, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Brunner, T.B.; Nestle, U.; Grosu, A.-L.; Partridge, M. SBRT in pancreatic cancer: What is the therapeutic window? Radiother. Oncol. 2015, 114, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Brunner, T.B.; Haustermans, K.; Huguet, F.; Morganti, A.G.; Mukherjee, S.; Belka, C.; Krempien, R.; Hawkins, M.A.; Valentini, V.; Roeder, F. ESTRO ACROP guidelines for target volume definition in pancreatic cancer. Radiother. Oncol. 2020, 154, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Huguet, F.; Yorke, E.D.; Davidson, M.; Zhang, Z.; Jackson, A.; Mageras, G.; Wu, A.J.; Goodman, K.A. Modeling Pancreatic Tumor Motion Using 4-Dimensional Computed Tomography and Surrogate Markers. Int. J. Radiat. Oncol. Biol. Phys. 2015, 91, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Lens, E.; van der Horst, A.; Kroon, P.S.; Van Hooft, J.E.; Fajardo, R.D.; Fockens, P.; Van Tienhoven, G.; Bel, A. Differences in respiratory-induced pancreatic tumor motion between 4D treatment planning CT and daily cone beam CT, measured using intratumoral fiducials. Acta Oncol. 2014, 53, 1257–1264. [Google Scholar] [CrossRef] [Green Version]
- Ge, J.; Santanam, L.; Noel, C.; Parikh, P.J. Planning 4-Dimensional Computed Tomography (4DCT) Cannot Adequately Represent Daily Intrafractional Motion of Abdominal Tumors. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 999–1005. [Google Scholar] [CrossRef]
- Kavanagh, B.D.; Schefter, T.E.; Cardenes, H.R.; Stieber, V.; Raben, D.; Timmerman, R.D.; McCarter, M.D.; Burri, S.; Nedzi, L.A.; Sawyer, T.E.; et al. Interim analysis of a prospective phase I/II trial of SBRT for liver metastases. Acta Oncol. 2006, 45, 848–855. [Google Scholar] [CrossRef]
- Kawahara, D.; Ozawa, S.; Nakashima, T.; Aita, M.; Kawai, S.; Ochi, Y.; Okumura, T.; Masuda, H.; Ohno, Y.; Kimura, T.; et al. Availability of Using Diaphragm Matching in Stereotactic Body Radiotherapy (SBRT) at the Time in Breath-holding SBRT for Liver Cancer. Nippon Hoshasen Gijutsu Gakkai Zasshi 2014, 70, 51–56. [Google Scholar] [CrossRef]
- Kruis, M.F.; van de Kamer, J.B.; Sonke, J.-J.; Jansen, E.P.; van Herk, M. Registration accuracy and image quality of time averaged mid-position CT scans for liver SBRT. Radiother. Oncol. 2013, 109, 404–408. [Google Scholar] [CrossRef]
- Mancosu, P.; Castiglioni, S.; Reggiori, G.; Catalano, M.; Alongi, F.; Pellegrini, C.; Arcangeli, S.; Tozzi, A.; Lobefalo, F.; Fogliata, A.; et al. Stereotactic body radiation therapy for liver tumours using flattening filter free beam: Dosimetric and technical considerations. Radiat. Oncol. 2012, 7, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero, A.M.; Wunderink, W.; Hussain, S.M.; de Pooter, J.; Heijmen, B.J.M.; Nowak, P.C.J.M.; Nuyttens, J.J.; Brandwijk, R.P.; Verhoef, C.; Ijzermans, J.N.M.; et al. Stereotactic body radiation therapy for primary and metastatic liver tumors: A single institution phase i-ii study. Acta Oncol. 2006, 45, 831–837. [Google Scholar] [CrossRef] [PubMed]
- Park, J.C.; Park, S.H.; Kim, J.H.; Yoon, S.M.; Song, S.Y.; Liu, Z.; Song, B.; Kauweloa, K.; Webster, M.J.; Sandhu, A.; et al. Liver motion during cone beam computed tomography guided stereotactic body radiation therapy. Med Phys. 2012, 39, 6431–6442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizrahi, J.D.; Surana, R.; Valle, J.W.; Shroff, R.T. Pancreatic cancer. Lancet 2020, 395, 2008–2020. [Google Scholar] [CrossRef]
- Chaurasia, A.R.; Sun, K.J.; Premo, C.; Brand, T.; Tinnel, B.; Barczak, S.; Halligan, J.; Brown, M.; Macdonald, D. Evaluating the potential benefit of reduced planning target volume margins for low and intermediate risk patients with prostate cancer using real-time electromagnetic tracking. Adv. Radiat. Oncol. 2018, 3, 630–638. [Google Scholar] [CrossRef] [Green Version]
- Dang, A.; Kupelian, P.A.; Cao, M.; Agazaryan, N.; Kishan, A.U. Image-guided radiotherapy for prostate cancer. Transl. Androl. Urol. 2018, 7, 308–320. [Google Scholar] [CrossRef]
- Medical Device Network. Verdict Media Limited. Available online: https://www.medicaldevice-network.com/news/newsvarian-medical-gets-fda-approval-calypso-soft-tissue-Beacon-transponder-4323298/ (accessed on 14 April 2022).
- Kaučić, H.; Kosmina, D.; Schwarz, D.; Čehobašić, A.; Leipold, V.; Pedišić, I.; Mlinarić, M.; Lekić, M.; Šobat, H.; Mack, A. An Evaluation of Total Internal Motions of Locally Advanced Pancreatic Cancer during SABR Using Calypso® Extracranial Tracking, and Its Possible Clinical Impact on Motion Management. Curr. Oncol. 2021, 28, 4597–4610. [Google Scholar] [CrossRef]
- Callery, M.P.; Chang, K.J.; Fishman, E.K.; Talamonti, M.S.; Traverso, L.W.; Linehan, D.C. Pretreatment Assessment of Resectable and Borderline Resectable Pancreatic Cancer: Expert Consensus Statement. Ann. Surg. Oncol. 2009, 16, 1727–1733. [Google Scholar] [CrossRef]
- Murphy, J.D.; Christman-Skieller, C.; Kim, J.; Dieterich, S.; Chang, D.T.; Koong, A. A Dosimetric Model of Duodenal Toxicity After Stereotactic Body Radiotherapy for Pancreatic Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 1420–1426. [Google Scholar] [CrossRef]
- Benedict, S.H.; Yenice, K.M.; Followill, D.; Galvin, J.M.; Hinson, W.; Kavanagh, B.; Keall, P.; Lovelock, M.; Meeks, S.; Papiez, L.; et al. Stereotactic body radiation therapy: The report of AAPM Task Group 101. Med Phys. 2010, 37, 4078–4101. [Google Scholar] [CrossRef] [Green Version]
- Yoon, M.S.; Kim, Y.-H.; Jeong, J.-U.; Nam, T.-K.; Ahn, S.-J.; Chung, W.-K.; Song, J.-Y. Dosimetric Analysis of Respiratory-Gated RapidArc with Varying Gating Window Times. Prog. Med. Phys. 2015, 26, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Rwigema, J.-C.M.; Parikh, S.D.; Heron, D.E.; Howell, M.; Zeh, H.; Moser, A.J.; Bahary, N.; Quinn, A.; Burton, S.A. Stereotactic Body Radiotherapy in the Treatment of Advanced Adenocarcinoma of the Pancreas. Am. J. Clin. Oncol. 2011, 34, 63–69. [Google Scholar] [CrossRef]
- Gurka, M.K.; Collins, S.P.; Slack, R.; Tse, G.; Charabaty, A.; Ley, L.; Berzcel, L.; Lei, S.; Suy, S.; Haddad, N.; et al. Stereotactic body radiation therapy with concurrent full-dose gemcitabine for locally advanced pancreatic cancer: A pilot trial demonstrating safety. Radiat. Oncol. 2013, 8, 44. [Google Scholar] [CrossRef] [Green Version]
- Herman, J.M.; Chang, D.T.; Goodman, K.A.; Dholakia, A.S.; Raman, S.P.; Hacker-Prietz, A.; Iacobuzio-Donahue, C.A.; Rn, M.E.G.; Pawlik, T.M.; Ba, J.S.P.; et al. Phase 2 multi-institutional trial evaluating gemcitabine and stereotactic body radiotherapy for patients with locally advanced unresectable pancreatic adenocarcinoma. Cancer 2014, 121, 1128–1137. [Google Scholar] [CrossRef] [PubMed]
- Moningi, S.; Dholakia, A.S.; Raman, S.P.; Blackford, A.; Cameron, J.L.; Le, D.T.; De Jesus-Acosta, A.M.C.; Hacker-Prietz, A.; Rosati, L.M.; Assadi, R.K.; et al. The Role of Stereotactic Body Radiation Therapy for Pancreatic Cancer: A Single-Institution Experience. Ann. Surg. Oncol. 2015, 22, 2352–2358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comito, T.; Cozzi, L.; Clerici, E.; Franzese, C.; Tozzi, A.; Iftode, C.; Navarria, P.; D’Agostino, G.; Rimassa, L.; Carnaghi, C.; et al. Can Stereotactic Body Radiation Therapy Be a Viable and Efficient Therapeutic Option for Unresectable Locally Advanced Pancreatic Adenocarcinoma? Results of a Phase 2 Study. Technol. Cancer Res. Treat. 2017, 16, 295–301. [Google Scholar] [CrossRef]
- Seo, J. Treatment of Locally Advanced Pancreatic Cancer: Comparison of Stereotactic Body Radiation Therapy to Concurrent Chemoradiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2017, 99, E187. [Google Scholar] [CrossRef]
- Zaorsky, N.; Lehrer, E.; Handorf, E.; Meyer, J. The Effect of Increasing Biologically Effective Dose in Stereotactic Body Radiation Therapy for Locally Advanced and Borderline Resectable Pancreatic Cancer: A Meta-analysis. Int. J. Radiat. Oncol. Biol. Phys. 2017, 99, E204. [Google Scholar] [CrossRef]
- Mazzola, R.; Fersino, S.; Aiello, D.; Gregucci, F.; Tebano, U.; Corradini, S.; Di Paola, G.; Cirillo, M.; Tondulli, L.; Ruffo, G.; et al. Linac-based stereotactic body radiation therapy for unresectable locally advanced pancreatic cancer: Risk-adapted dose prescription and image-guided delivery. Strahlenther. Onkol. 2018, 194, 835–842. [Google Scholar] [CrossRef]
- Heerkens, H.D.; Van Vulpen, M.; Erickson, B.; Reerink, O.; Intven, M.P.; van den Berg, C.A.; Molenaar, I.Q.; Vleggaar, F.P.; Meijer, G.J. MRI guided stereotactic radiotherapy for locally advanced pancreatic cancer. Br. J. Radiol. 2018, 91, 20170563. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Park, J.; Yoon, S.; Jung, J.; Kim, S.; Kim, J. The Outcome of Stereotactic Body Radiation Therapy versus Concurrent Chemoradiation Therapy for Locally Advanced Pancreatic Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, E241. [Google Scholar] [CrossRef]
- Rudra, S.; Jiang, N.; Rosenberg, S.A.; Olsen, J.R.; Roach, M.; Wan, L.; Portelance, L.; Mellon, E.A.; Bruynzeel, A.; Lagerwaard, F.; et al. Using adaptive magnetic resonance image-guided radiation therapy for treatment of inoperable pancreatic cancer. Cancer Med. 2019, 8, 2123–2132. [Google Scholar] [CrossRef]
- Chuong, M.D.; Bryant, J.; Mittauer, K.E.; Hall, M.; Kotecha, R.; Alvarez, D.; Romaguera, T.; Rubens, M.; Adamson, S.; Godley, A.; et al. Ablative 5-Fraction Stereotactic Magnetic Resonance–Guided Radiation Therapy With On-Table Adaptive Replanning and Elective Nodal Irradiation for Inoperable Pancreas Cancer. Pract. Radiat. Oncol. 2021, 11, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Hassanzadeh, C.; Rudra, S.; Bommireddy, A.; Hawkins, W.G.; Wang-Gillam, A.; Fields, R.C.; Cai, B.; Park, J.; Green, O.; Roach, M.; et al. Ablative Five-Fraction Stereotactic Body Radiation Therapy for Inoperable Pancreatic Cancer Using Online MR-Guided Adaptation. Adv. Radiat. Oncol. 2020, 6, 100506. [Google Scholar] [CrossRef]
- Placidi, L.; Romano, A.; Chiloiro, G.; Cusumano, D.; Boldrini, L.; Cellini, F.; Mattiucci, G.C.; Valentini, V. On-line adaptive MR guided radiotherapy for locally advanced pancreatic cancer: Clinical and dosimetric considerations. Tech. Innov. Patient Support Radiat. Oncol. 2020, 15, 15–21. [Google Scholar] [CrossRef]
- Hall, W.A.; Small, C.; Paulson, E.; Koay, E.J.; Crane, C.; Intven, M.; Daamen, L.A.; Meijer, G.J.; Heerkens, H.D.; Bassetti, M.; et al. Magnetic Resonance Guided Radiation Therapy for Pancreatic Adenocarcinoma, Advantages, Challenges, Current Approaches, and Future Directions. Front. Oncol. 2021, 11, 628155. [Google Scholar] [CrossRef]
- Michalet, M.; Bordeau, K.; Cantaloube, M.; Valdenaire, S.; Debuire, P.; Simeon, S.; Portales, F.; Draghici, R.; Ychou, M.; Assenat, E.; et al. Stereotactic MR-Guided Radiotherapy for Pancreatic Tumors: Dosimetric Benefit of Adaptation and First Clinical Results in a Prospective Registry Study. Front. Oncol. 2022, 12, 842402. [Google Scholar] [CrossRef]
- Zhu, X.; Ju, X.; Cao, Y.; Shen, Y.; Cao, F.; Qing, S.; Fang, F.; Jia, Z.; Zhang, H. Patterns of Local Failure After Stereotactic Body Radiation Therapy and Sequential Chemotherapy as Initial Treatment for Pancreatic Cancer: Implications of Target Volume Design. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 101–110. [Google Scholar] [CrossRef]
- Bruynzeel, A.M.; Lagerwaard, F.J. The role of biological dose-escalation for pancreatic cancer. Clin. Transl. Radiat. Oncol. 2019, 18, 128–130. [Google Scholar] [CrossRef] [Green Version]
- Reyngold, M.; Parikh, P.; Crane, C.H. Ablative radiation therapy for locally advanced pancreatic cancer: Techniques and results. Radiat. Oncol. 2019, 14, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ermongkonchai, T.; Khor, R.; Muralidharan, V.; Tebbutt, N.; Lim, K.; Kutaiba, N.; Ng, S.P. Stereotactic radiotherapy and the potential role of magnetic resonance-guided adaptive techniques for pancreatic cancer. World J. Gastroenterol. 2022, 28, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Hoyer, M.; Roed, H.; Sengelov, L.; Traberg, A.; Ohlhuis, L.; Pedersen, J.; Nellemann, H.; Berthelsen, A.K.; Eberholst, F.; Engelholm, S.A.; et al. Phase-II study on stereotactic radiotherapy of locally advanced pancreatic carcinoma. Radiother. Oncol. 2005, 76, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Litzenberg, D.W.; Balter, J.M.; Hadley, S.W.; Sandler, H.M.; Willoughby, T.R.; Kupelian, P.A.; Levine, L. Influence of intrafraction motion on margins for prostate radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 548–553. [Google Scholar] [CrossRef]
- Sandler, H.M.; Liu, P.-Y.; Dunn, R.L.; Khan, D.C.; Tropper, S.E.; Sanda, M.G.; Mantz, C.A. Reduction in Patient-reported Acute Morbidity in Prostate Cancer Patients Treated With 81-Gy Intensity-modulated Radiotherapy Using Reduced Planning Target Volume Margins and Electromagnetic Tracking: Assessing the Impact of Margin Reduction Study. Urology 2010, 75, 1004–1008. [Google Scholar] [CrossRef]
- Cellini, F.; Arcelli, A.; Simoni, N.; Caravatta, L.; Buwenge, M.; Calabrese, A.; Brunetti, O.; Genovesi, D.; Mazzarotto, R.; Deodato, F.; et al. Basics and Frontiers on Pancreatic Cancer for Radiation Oncology: Target Delineation, SBRT, SIB technique, MRgRT, Particle Therapy, Immunotherapy and Clinical Guidelines. Cancers 2020, 12, 1729. [Google Scholar] [CrossRef]
Patients’ Number | 54 |
---|---|
Mean age in years (range) | 67 (45–87) |
Sex (M:F) | 30:24 |
Primary site | |
Head | 41 (76%) |
Body/tail | 13 (24%) |
Systemic treatment | |
Gemcitabine-based | 18 (33%) |
FOLFIRINOX | 20 (37%) |
No systemic treatment | 16 (30%) |
Median CTV | 35.8 cm3 (range 6.4–126.1 cm3) |
Median PTV | 56.2 cm3 (range 10.4–161.6 cm3) |
Fifty-Four Patients Enrolled ↓ Initial Test for Deep Breath-Hold ↓ ↓ | |
---|---|
Treatment in deep breath-hold 15 patients (27.8%) | Treatment in free breathing 39 patients (72.2%) |
Respiratory phase gating—“Beam on-off” technique:
| Respiratory phase gating—“Beam on-off” technique:
|
Regimen | BED10 | Number of Patients |
---|---|---|
5 × 9 Gy | 85.5 Gy | 19 (35%) |
3 × 15 Gy | 112.5 Gy | 29 (54%) |
1 × 32 Gy | 129 Gy | 6 (11%) |
Organs at Risk | One Fraction | Three Fractions | Five Fractions |
---|---|---|---|
Primary OAR (Stomach, Duodenum, Small Bowel) | Dmax (0.03 cm3) < 23 Gy V(20 Gy) < 3.3 cm3 V(15 Gy) < 9.1 cm3 | V(31.4 Gy) < 1cm3 V(23.3 Gy) < 5 cm3 V(16.1 Gy) < 10 cm3 | V(42 Gy) < 1 cm3 V(25.4 Gy) < 5 cm3 V(17.6 Gy) < 10 cm3 |
Liver | V(9.1 Gy) < 700 cm3 | V (17 Gy) < 700 cm3 | V(21 Gy) < 700 cm3 |
Great Vessels | Dmax < 37 Gy | Dmax < 45 Gy | Dmax < 53 Gy |
Spinal Cord | Dmax < 14 Gy | Dmax < 22 Gy | Dmax < 30 Gy |
Kidneys | V(8.4 Gy) < 200 cm3 | V(14.4 Gy) < 200 cm3 | V(17.5 Gy) < 200 cm3 |
End Points | Median | 1 Year |
---|---|---|
FFLP | 40.5 months * | 100% |
PFS | 18 months (95% CI: 14.3 to 19.2) | 72.2% |
OS | 24 months (95% CI: 21.9 to 28.9) | 90.7% |
OSt | 21 months (95% CI: 18.6 to 24.4) | 81.5% |
Study (Chronologically) | Number of Patients | Motion Management | Follow Up (Months) | One-Year Local Control | Median Overall Survival (Months) | Toxicity Grade ≥ 3 | Fractionation Regimens | BED10 (Gy) |
---|---|---|---|---|---|---|---|---|
Mahadevan A et al. (2011) [17] | 39 | - | - | 85% | 20 | 41% | 3 × 8–12 Gy | 43.2–79.2 |
Rwigema J et al. (2011) [45] | 71 | - | 12.7 | 64.8% | 10.3 | 0% | 1 × 18–25 Gy | 50.4–87.5 |
Gurka M et al. (2013) [46] | 11 | Fiducial-based | - | 40% | 12.2 | 0% | 5 × 5 Gy | 37.5 |
Chuong MD et al. (2013) [19] | 73 | - | 10.5 | 81% | 15 | 0% | 5 × 5–10 Gy | 37.5–100 |
Tozzi A et al. (2013) [20] | 30 | Abdominal compression | 11 | 85% | 19.5 | 20% | 6 × 6–7.5 Gy | 48–78.8 |
Herman JM et al. (2015) [47] | 49 | Fiducial-based | 13.9 | 78% | 13.9 | 0% | 5 × 6.6 Gy | 54.8 |
Moningi S et al. (2015) [48] | 88 | Fiducial-based | 14.5 | - | 18.4 | 3.4% | 5 × 5–6.6 Gy | 37.5–54.8 |
Comito T et al. (2017) [49] | 45 | Abdominal compression | 13.5 | 90% | 19 | 0% | 6 × 7.5 Gy | 78.8 |
Seo J et al. (2017) [50] | 79 | Respiratory gating | 11 | 96% | 16 | 4% | 4 × 6–8 Gy | 38.4–57.6 |
Zaorsky NG et al. (2017) [51] | 520 (meta-analysis) | - | 9.1 | 66% | 13.3 | 0% | 5 × 6 Gy | 48 |
Mazzola R et al. (2018) [52] | 33 | - | 18 | 81% | - | 0% | 6 × 6 −7.5 Gy | 48–78.8 |
Herkens HD et al. (2018) [53] | 20 | MRgRT + implanted fiducials + abdominal compression | - | - | 8.5 | 0% | 3 × 8 Gy | 43.2 |
Park HH et al. (2019) [54] | 95 | - | 15 | - | 17.3 | 1% | 24–36 Gy/5–6 Gy per fx. | 38.4–48 |
Rudra S et al. (2019) [55] | 44 | MRgRT | 17 | 77% (2-y) | - | 7% | 25 × 2 Gy to 5 × 10.4 Gy | 60–106 |
Chuong MD et al. (2020) [56] | 35 | SMART | 10.3 | 87.8% | 9.8 | 2.9% | 5 × 10 Gy | 100 |
Hassanzadeh C et al.(2020) [57] | 44 | SMART | 16 | 68.2% | 15.7 | 4.6% | 5 × 10 Gy | 100 |
Placidi L et al. (2020) [58] | 8 | MRgRT | 13 | 75% | - | 0% | 5 × 6–8 Gy | 48–72 |
Hall WA et al. (2021) [59] | Review of 300 manuscripts | MRgRT | - | 77–87.8% | 9.8–15.7 | 2.9–4.6% | 25 × 2 Gy to 5 × 10 Gy | 60–100 |
Michalet M et al. (2022) [60] | 30 | SMART | 10.6 | 70% | 14.1 | 0% | 5 × 6–10 Gy | 48–100 |
Current Study | 54 | Calypso Fiducial-based | 20 | 100% | 24 | 0% | 5 × 9 Gy 3 × 15 Gy 1 × 32 Gy | 112.5 (85.5–129) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaučić, H.; Kosmina, D.; Schwarz, D.; Mack, A.; Šobat, H.; Čehobašić, A.; Leipold, V.; Andrašek, I.; Avdičević, A.; Mlinarić, M. Stereotactic Ablative Radiotherapy Using CALYPSO® Extracranial Tracking for Intrafractional Tumor Motion Management—A New Potential Local Treatment for Unresectable Locally Advanced Pancreatic Cancer? Results from a Retrospective Study. Cancers 2022, 14, 2688. https://doi.org/10.3390/cancers14112688
Kaučić H, Kosmina D, Schwarz D, Mack A, Šobat H, Čehobašić A, Leipold V, Andrašek I, Avdičević A, Mlinarić M. Stereotactic Ablative Radiotherapy Using CALYPSO® Extracranial Tracking for Intrafractional Tumor Motion Management—A New Potential Local Treatment for Unresectable Locally Advanced Pancreatic Cancer? Results from a Retrospective Study. Cancers. 2022; 14(11):2688. https://doi.org/10.3390/cancers14112688
Chicago/Turabian StyleKaučić, Hrvoje, Domagoj Kosmina, Dragan Schwarz, Andreas Mack, Hrvoje Šobat, Adlan Čehobašić, Vanda Leipold, Iva Andrašek, Asmir Avdičević, and Mihaela Mlinarić. 2022. "Stereotactic Ablative Radiotherapy Using CALYPSO® Extracranial Tracking for Intrafractional Tumor Motion Management—A New Potential Local Treatment for Unresectable Locally Advanced Pancreatic Cancer? Results from a Retrospective Study" Cancers 14, no. 11: 2688. https://doi.org/10.3390/cancers14112688
APA StyleKaučić, H., Kosmina, D., Schwarz, D., Mack, A., Šobat, H., Čehobašić, A., Leipold, V., Andrašek, I., Avdičević, A., & Mlinarić, M. (2022). Stereotactic Ablative Radiotherapy Using CALYPSO® Extracranial Tracking for Intrafractional Tumor Motion Management—A New Potential Local Treatment for Unresectable Locally Advanced Pancreatic Cancer? Results from a Retrospective Study. Cancers, 14(11), 2688. https://doi.org/10.3390/cancers14112688