Radioresistance of Non-Small Cell Lung Cancers and Therapeutic Perspectives
Abstract
:Simple Summary
Abstract
1. Introduction
2. Molecular Radioresistance Mechanisms
2.1. Radioresistance Linked to Hypoxia, Cancer Stem Cells, and Epithelial–Mesenchymal Transition
2.2. Radioresistance Linked to Mutational Status and Therapeutic Approaches
2.3. Radioresistance Linked to the Modulation of the Immune Response
3. Therapeutic Approaches to Overcome Radioresistance in NSCLC
3.1. Dose Escalation and Dose Painting in Radiotherapy
3.2. Concomitant and New Radiosensitizing Treatments
3.3. Concomitant Immunotherapy
3.4. Adjuvant Immunotherapy
3.5. New Irradiation Techniques: Hadrontherapy
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer Incidence and Mortality Worldwide: Sources, Methods and Major Patterns in GLOBOCAN 2012. Available online: https://pubmed.ncbi.nlm.nih.gov/25220842/ (accessed on 2 December 2020).
- Aupérin, A.; Le Péchoux, C.; Rolland, E.; Curran, W.J.; Furuse, K.; Fournel, P.; Belderbos, J.; Clamon, G.; Ulutin, H.C.; Paulus, R.; et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J. Clin. Oncol. 2010, 28, 2181–2190. [Google Scholar] [CrossRef]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; De Wit, M.; et al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef] [Green Version]
- Gray, J.E.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Kurata, T.; Chiappori, A.; Lee, K.H.; Cho, B.C.; et al. Three-Year Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC-Update from PACIFIC. Available online: https://pubmed.ncbi.nlm.nih.gov/31622733/ (accessed on 2 December 2020).
- Oberije, C.; De Ruysscher, D.; Houben, R.; van de Heuvel, M.; Uyterlinde, W.; Deasy, J.; Belderbos, J.; Dingemans, A.-M.C.; Rimner, A.; Din, S.; et al. A Validated prediction model for overall survival from stage III non-small cell lung cancer: Toward survival prediction for individual patients. Int. J. Radiat. Oncol. Biol. Phys. 2015, 92, 935–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arrieta, O.; Ramírez-Tirado, L.; Caballe-Perez, E.; Mejia-Perez, A.; Zatarain-Barrón, Z.L.; Cardona, A.F.; Lozano-Ruíz, F.; Segura-González, M.; Cruz-Rico, G.; Maldonado, F.; et al. Response rate of patients with baseline brain metastases from recently diagnosed non-small cell lung cancer receiving radiotherapy according to EGFR, ALK and KRAS mutation status. Thorac. Cancer 2020, 11, 1026–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, M.; Kageyama, S.-I.; Niho, S.; Okumura, M.; Hojo, H.; Motegi, A.; Nakamura, N.; Zenda, S.; Yoh, K.; Goto, K.; et al. Impact of EGFR mutation and ALK translocation on recurrence pattern after definitive chemoradiotherapy for inoperable stage III non-squamous non-small-cell lung cancer. Clin. Lung Cancer 2019, 20, e256–e264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurtner, K.; Kryzmien, Z.; Koi, L.; Wang, M.; Benes, C.H.; Hering, S.; Willers, H.; Baumann, M.; Krause, M. Radioresistance of KRAS/TP53-mutated lung cancer can be overcome by radiation dose escalation or EGFR tyrosine kinase inhibition in vivo. Int. J. Cancer 2019, 147, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Yagishita, S.; Horinouchi, H.; Sunami, K.S.; Kanda, S.; Fujiwara, Y.; Nokihara, H.; Yamamoto, N.; Sumi, M.; Shiraishi, K.; Kohno, T.; et al. Impact of KRAS mutation on response and outcome of patients with stage III non-squamous non-small cell lung cancer. Cancer Sci. 2015, 106, 1402–1407. [Google Scholar] [CrossRef] [Green Version]
- Marabese, M.; Ganzinelli, M.; Garassino, M.C.; Shepherd, F.A.; Piva, S.; Caiola, E.; Macerelli, M.; Bettini, A.; Lauricella, C.; Floriani, I.; et al. KRAS mutations affect prognosis of non-small-cell lung cancer patients treated with first-line platinum containing chemotherapy. Oncotarget 2015, 6, 34014–34022. [Google Scholar] [CrossRef] [Green Version]
- Rivera, S.; Rivera, C.; Loriot, Y.; Hennequin, C.; Vozenin, M.-C.; Deutsch, E. Cancer stem cells: A new target for lung cancer treatment. Cancer Radiother. 2011, 15, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhang, Y.; Lu, M.; Wang, C.; Li, Q.; Gao, Y.; Mu, D.; Cao, Y.; Li, M.; Meng, X. Nestin servers as a promising prognostic biomarker in non-small cell lung cancer. Am. J. Transl. Res. 2017, 9, 1392–1401. [Google Scholar]
- Herreros-Pomares, A.; De-Maya-Girones, J.D.; Calabuig-Fariñas, S.; Lucas, R.; Martínez, A.; Pardo-Sánchez, J.M.; Alonso, S.; Blasco, A.; Guijarro, R.; Martorell, M.; et al. Lung tumorspheres reveal cancer stem cell-like properties and a score with prognostic impact in resected non-small-cell lung cancer. Cell Death Dis. 2019, 10, 660. [Google Scholar] [CrossRef] [PubMed]
- Tsolou, A.; Lamprou, I.; Fortosi, A.-O.; Liousia, M.; Giatromanolaki, A.; Koukourakis, M.I. ‘Stemness’ and ‘senescence’ related escape pathways are dose dependent in lung cancer cells surviving post irradiation. Life Sci. 2019, 232, 116562. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Casal, R.; Bhattacharya, C.; Ganesh, N.; Bailey, L.; Basse, P.; Gibson, M.; Epperly, M.; Levina, V. Non-small cell lung cancer cells survived ionizing radiation treatment display cancer stem cell and epithelial-mesenchymal transition phenotypes. Mol. Cancer 2013, 12, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.; Ko, E.J.; Ju, E.J.; Park, S.S.; Park, J.; Shin, S.H.; Jang, S.J.; Lee, J.S.; Song, S.Y.; Jeong, S.-Y.; et al. Characterization of sphere cells derived from a patient-derived xenograft model of lung adenocarcinoma treated with ionizing radiation. Int. J. Radiat. Biol. 2020, 96, 1413–1422. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wan, W.-W.; Xiong, S.-L.; Feng, H.; Wu, N. Cancer stem-like cells can be induced through dedifferentiation under hypoxic conditions in glioma, hepatoma and lung cancer. Cell Death Discov. 2017, 3, 16105. [Google Scholar] [CrossRef]
- Khoshinani, H.M.; Afshar, S.; Najafi, R. Hypoxia: A double-edged sword in cancer therapy. Cancer Investig. 2016, 34, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Bollineni, V.R.; Wiegman, E.M.; Pruim, J.; Groen, H.J.; Langendijk, J.A. Hypoxia imaging using positron emission tomography in non-small cell lung cancer: Implications for radiotherapy. Cancer Treat. Rev. 2012, 38, 1027–1032. [Google Scholar] [CrossRef]
- Byers, L.A.; Diao, L.; Wang, J.; Saintigny, P.; Girard, L.; Peyton, M.; Shen, L.; Fan, Y.; Giri, U.; Tumula, P.K.; et al. An epithelial–mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin. Cancer Res. 2012, 19, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2014, 15, 178–196. [Google Scholar] [CrossRef] [Green Version]
- Dongre, A.; Weinberg, R.A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 2018, 20, 69–84. [Google Scholar] [CrossRef]
- Mittal, V. Epithelial mesenchymal transition in tumor metastasis. Annu. Rev. Pathol. 2018, 13, 395–412. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Tong, X.; Zhou, Z.; Wang, S.; Lei, Z.; Zhang, T.; Liu, Z.; Zeng, Y.; Li, C.; Zhao, J.; et al. Circular RNA hsa_circ_0008305 (circPTK2) inhibits TGF-β-induced epithelial-mesenchymal transition and metastasis by controlling TIF1γ in non-small cell lung cancer. Mol. Cancer 2018, 17, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, Y.W.; Han, J.-H.; Haam, S.; Jung, J. ALDH1 expression correlates with an epithelial-like phenotype and favorable prognosis in lung adenocarcinoma: A study based on immunohistochemistry and mRNA expression data. J. Cancer Res. Clin. Oncol. 2019, 145, 1427–1436. [Google Scholar] [CrossRef] [PubMed]
- Tu, Z.; Xie, S.; Xiong, M.; Liu, Y.; Yang, X.; Tembo, K.M.; Huang, J.; Hu, W.; Huang, X.; Pan, S.; et al. CXCR4 is involved in CD133-induced EMT in non-small cell lung cancer. Int. J. Oncol. 2016, 50, 505–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, J.; Kim, E.; Kim, W.; Seong, K.M.; Youn, H.; Kim, J.W.; Kim, J.; Youn, B. Rhamnetin and cirsiliol induce radiosensitization and inhibition of Epithelial-Mesenchymal Transition (EMT) by miR-34a-mediated suppression of notch-1 expression in non-small cell lung cancer cell lines. J. Biol. Chem. 2013, 288, 27343–27357. [Google Scholar] [CrossRef] [Green Version]
- Kwon, O.-S.; Hong, S.-K.; Kwon, S.-J.; Go, Y.-H.; Oh, E.; Cha, H.-J. BCL2 induced by LAMTOR3/MAPK is a druggable target of chemoradioresistance in mesenchymal lung cancer. Cancer Lett. 2017, 403, 48–58. [Google Scholar] [CrossRef]
- Yuan, Y.; Liao, H.; Pu, Q.; Ke, X.; Hu, X.; Ma, Y.; Luo, X.; Jiang, Q.; Gong, Y.; Wu, M.; et al. miR-410 induces both epithelial–mesenchymal transition and radioresistance through activation of the PI3K/mTOR pathway in non-small cell lung cancer. Signal Transduct. Target. Ther. 2020, 5, 85. [Google Scholar] [CrossRef]
- Liu, L.; Zhu, H.; Liao, Y.; Wu, W.; Liu, L.; Wu, Y.; Sun, F.; Lin, H.-W. Inhibition of Wnt/β-catenin pathway reverses multi-drug resistance and EMT in Oct4+/Nanog+ NSCLC cells. Biomed. Pharmacother. 2020, 127, 110225. [Google Scholar] [CrossRef]
- Ma, Q.; Geng, K.; Xiao, P.; Zeng, L. Identification and prognostic value exploration of radiotherapy sensitivity-associated genes in non-small-cell lung Cancer. BioMed Res. Int. 2021, 2021, 5963868. [Google Scholar] [CrossRef]
- Tan, A.C. Targeting the PI3K/Akt/mTOR pathway in non-small cell lung cancer (NSCLC). Thorac. Cancer 2020, 11, 511–518. [Google Scholar] [CrossRef] [Green Version]
- Choi, E.J.; Ryu, Y.K.; Kim, S.Y.; Wu, H.G.; Kim, J.S.; Kim, I.H.; Kim, I.A. Targeting epidermal growth factor receptor–associated signaling pathways in non-small cell lung cancer cells: Implication in radiation response. Mol. Cancer Res. 2010, 8, 1027–1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sartor, C.I. Epidermal growth factor family receptors and inhibitors: Radiation response modulators. Semin. Radiat. Oncol. 2003, 13, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Bethune, G.; Bethune, D.; Ridgway, N.; Xu, Z. Epidermal growth factor receptor (EGFR) in lung cancer: An overview and update. J. Thorac. Dis. 2010, 2, 48–51. [Google Scholar] [PubMed]
- Inamura, K.; Ninomiya, H.; Ishikawa, Y.; Matsubara, O. Is the epidermal growth factor receptor status in lung cancers reflected in clinicopathologic features? Arch. Pathol. Lab. Med. 2010, 134, 66–72. [Google Scholar] [CrossRef]
- Ramalingam, S.S.; Vansteenkiste, J.; Planchard, D.; Cho, B.C.; Gray, J.E.; Ohe, Y.; Zhou, C.; Reungwetwattana, T.; Cheng, Y.; Chewaskulyong, B.; et al. Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. N. Engl. J. Med. 2020, 382, 41–50. [Google Scholar] [CrossRef]
- Reungwetwattana, T.; Nakagawa, K.; Cho, B.C.; Cobo, M.; Cho, E.K.; Bertolini, A.; Bohnet, S.; Zhou, C.; Lee, K.H.; Nogami, N.; et al. CNS response to osimertinib versus standard epidermal growth factor receptor tyrosine kinase inhibitors in patients with untreated EGFR-mutated advanced non-small-cell lung cancer. J. Clin. Oncol. 2018, 36, 3290–3297. [Google Scholar] [CrossRef]
- Wu, Y.-L.; John, T.; Grohe, C.; Majem, M.; Goldman, J.W.; Kim, S.-W.; Kato, T.; Laktionov, K.; Vu, H.V.; Wang, Z.; et al. Postoperative chemotherapy use and outcomes from ADAURA: Osimertinib as adjuvant therapy for resected EGFR-mutated NSCLC. J. Thorac. Oncol. 2021, 17, 423–433. [Google Scholar] [CrossRef]
- Xu, S.-T.; Xi, J.-J.; Zhong, W.-Z.; Mao, W.-M.; Wu, L.; Shen, Y.; Liu, Y.-Y.; Chen, C.; Cheng, Y.; Xu, L.; et al. The unique spatial-temporal treatment failure patterns of adjuvant gefitinib therapy: A post hoc analysis of the ADJUVANT trial (CTONG 1104). J. Thorac. Oncol. 2018, 14, 503–512. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Casarini, I.; Kato, T.; Cobo, M.; Özgüroğlu, M.; Hodge, R.; van der Gronde, T.; Saggese, M.; Ramalingam, S.S. Osimertinib maintenance after definitive chemoradiation in patients with unresectable egfr mutation positive stage III non-small-cell lung cancer: LAURA trial in progress. Clin. Lung Cancer 2021, 22, 371–375. [Google Scholar] [CrossRef]
- Komaki, R.; Allen, P.K.; Wei, X.; Blumenschein, G.R.; Tang, X.; Lee, J.J.; Welsh, J.W.; Wistuba, I.I.; Liu, D.D.; Hong, W.K. Adding erlotinib to chemoradiation improves overall survival but not progression-free survival in stage III non-small cell lung cancer. Int. J. Radiat. Oncol. Biol Phys. 2015, 92, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Akamatsu, H.; Murakami, H.; Harada, H.; Shimizu, J.; Hayashi, H.; Daga, H.; Hasegawa, Y.; Kim, Y.H.; Kato, T.; Tokunaga, S.; et al. Gefitinib with concurrent thoracic radiotherapy in unresectable locally advanced NSCLC with EGFR mutation; West Japan Oncology Group 6911L. J. Thorac. Oncol. 2021, 16, 1745–1752. [Google Scholar] [CrossRef] [PubMed]
- Salgia, R.; Pharaon, R.; Mambetsariev, I.; Nam, A.; Sattler, M. The improbable targeted therapy: KRAS as an emerging target in non-small cell lung cancer (NSCLC). Cell Rep. Med. 2021, 2, 100186. [Google Scholar] [CrossRef] [PubMed]
- Wood, K.; Hensing, T.; Malik, R.; Salgia, R. Prognostic and predictive value in KRAS in non-small-cell lung cancer: A review. JAMA Oncol. 2016, 2, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Han, J.; Marcar, L.; Black, J.; Liu, Q.; Li, X.; Nagulapalli, K.; Sequist, L.V.; Mak, R.H.; Benes, C.H.; et al. Radiation Resistance in KRAS-mutated lung cancer is enabled by stem-like properties mediated by an osteopontin—EGFR pathway. Cancer Res. 2017, 77, 2018–2028. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Zhang, Z.; Zhao, L.; Li, L.; Zuo, W.; Han, W.Z.A.L. High expression of RAD51 promotes DNA damage repair and survival in KRAS-mutant lung cancer cells. BMB Rep. 2019, 52, 151–156. [Google Scholar] [CrossRef]
- Wang, M.; Kern, A.M.; Hülskötter, M.; Greninger, P.; Singh, A.; Pan, Y.; Chowdhury, D.; Krause, M.; Baumann, M.; Benes, C.H.; et al. EGFR-mediated chromatin condensation protects kras-mutant cancer cells against ionizing radiation. Cancer Res. 2014, 74, 2825–2834. [Google Scholar] [CrossRef] [Green Version]
- Canon, J.; Rex, K.; Saiki, A.Y.; Mohr, C.; Cooke, K.; Bagal, D.; Gaida, K.; Holt, T.; Knutson, C.G.; Koppada, N.; et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 2019, 575, 217–223. [Google Scholar] [CrossRef]
- Sumbly, V.; Landry, I. Unraveling the role of STK11/LKB1 in non-small cell lung cancer. Cureus 2022, 14, e21078. [Google Scholar] [CrossRef]
- Topalian, S.L.; Drake, C.G.; Pardoll, D.M. Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell 2015, 27, 450–461. [Google Scholar] [CrossRef] [Green Version]
- Herzberg, B.; Campo, M.J.; Gainor, J.F. Immune checkpoint inhibitors in non-small cell lung cancer. Oncologist 2017, 22, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.; Liang, H.; Burnette, B.; Beckett, M.; Darga, T.; Weichselbaum, R.R.; Fu, Y.-X. Irradiation and anti–PD-L1 treatment synergistically promote antitumor immunity in mice. J. Clin. Investig. 2014, 124, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Dovedi, S.J.; Adlard, A.L.; Lipowska-Bhalla, G.; McKenna, C.; Jones, S.; Cheadle, E.J.; Stratford, I.J.; Poon, E.; Morrow, M.; Stewart, R.; et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res. 2014, 74, 5458–5468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, X.; Li, X.; Jiang, T.; Xie, H.; Zhu, Z.; Zhou, F.; Zhou, C. Combined radiotherapy and anti–PD-L1 antibody synergistically enhances antitumor effect in non-small cell lung cancer. J. Thorac. Oncol. 2017, 12, 1085–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, J.D.; Paulus, R.; Komaki, R.; Masters, G.; Blumenschein, G.; Schild, S.; Bogart, J.; Hu, C.; Forster, K.; Magliocco, A.; et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): A randomised, two-by-two factorial phase 3 study. Lancet Oncol. 2015, 16, 187–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Eblan, M.J.; Deal, A.M.; Lipner, M.; Zagar, T.M.; Wang, Y.; Mavroidis, P.; Lee, C.B.; Jensen, B.C.; Rosenman, J.G.; et al. Cardiac toxicity after radiotherapy for stage III non-small-cell lung cancer: Pooled analysis of dose-escalation trials delivering 70 to 90 Gy. J. Clin. Oncol. 2017, 35, 1387–1394. [Google Scholar] [CrossRef]
- Kong, F.-M.; Haken, R.T.; Schipper, M.J.; Sullivan, M.A.; Chen, M.; Lopez, C.; Kalemkerian, G.P.; Hayman, J.A. High-dose radiation improved local tumor control and overall survival in patients with inoperable/unresectable non-small-cell lung cancer: Long-term results of a radiation dose escalation study. Int. J. Radiat. Oncol. Biol Phys. 2005, 63, 324–333. [Google Scholar] [CrossRef]
- Thureau, S.; Modzelewski, R.; Bohn, P.; Hapdey, S.; Gouel, P.; Dubray, B.; Vera, P. Comparison of hypermetabolic and hypoxic volumes delineated on [18F]FDG and [18F]fluoromisonidazole PET/CT in non-small-cell lung cancer patients. Mol. Imaging Biol. 2019, 22, 764–771. [Google Scholar] [CrossRef]
- Sachpekidis, C.; Thieke, C.; Askoxylakis, V.; Nicolay, N.H.; Huber, P.E.; Thomas, M.; Dimitrakopoulou, G.; Debus, J.; Haberkorn, U.; Dimitrakopoulou-Strauss, A. Combined use of (18)F-FDG and (18)F-FMISO in unresectable non-small cell lung cancer patients planned for radiotherapy: A dynamic PET/CT study. Am. J. Nucl. Med. Mol. Imaging 2015, 5, 127–142. [Google Scholar]
- Schiller, J.H.; Harrington, D.; Belani, C.; Langer, C.; Sandler, A.; Krook, J.; Zhu, J.; Johnson, D.H. Eastern Cooperative Oncology Group. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N. Engl. J. Med. 2002, 346, 92–98. [Google Scholar] [CrossRef]
- Toulany, M.; Mihatsch, J.; Holler, M.; Chaachouay, H.; Rodemann, H.P. Cisplatin-mediated radiosensitization of non-small cell lung cancer cells is stimulated by ATM inhibition. Radiother. Oncol. 2014, 111, 228–236. [Google Scholar] [CrossRef]
- Wang, G.; Reed, E.; Li, Q.Q. Molecular basis of cellular response to cisplatin chemotherapy in non-small cell lung cancer (review). Oncol. Rep. 2004, 12, 955–965. [Google Scholar] [CrossRef] [PubMed]
- Scott, C.L.; Swisher, E.M.; Kaufmann, S.H. Poly (ADP-Ribose) Polymerase inhibitors: Recent advances and future development. J. Clin. Oncol. 2015, 33, 1397–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesueur, P.; Chevalier, F.; Austry, J.-B.; Waissi, W.; Burckel, H.; Noël, G.; Habrand, J.-L.; Saintigny, Y.; Joly, F. Poly-(ADP-ribose)-polymerase inhibitors as radiosensitizers: A systematic review of pre-clinical and clinical human studies. Oncotarget 2017, 8, 69105–69124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Verbiest, T.; Devery, A.M.; Bokobza, S.M.; Weber, A.M.; Leszczynska, K.; Hammond, E.M.; Ryan, A.J. Hypoxia potentiates the radiation-sensitizing effect of olaparib in human non-small cell lung cancer xenografts by contextual synthetic lethality. Int. J. Radiat. Oncol. Biol Phys. 2016, 95, 772–781. [Google Scholar] [CrossRef] [Green Version]
- Michels, J.; Vitale, I.; Senovilla, L.; Enot, D.P.; Garcia, P.; Lissa, D.; Olaussen, K.A.; Brenner, C.; Soria, J.-C.; Castedo, M.; et al. Synergistic interaction between cisplatin and PARP inhibitors in non-small cell lung cancer. Cell Cycle 2013, 12, 877–883. [Google Scholar] [CrossRef] [Green Version]
- Kozono, D.E.; Stinchcombe, T.; Salama, J.K.; Bogart, J.; Petty, W.J.; Guarino, M.J.; Bazhenova, L.; Larner, J.M.; Weiss, J.; DiPetrillo, T.A.; et al. Veliparib (Vel) in combination with chemoradiotherapy (CRT) of carboplatin/paclitaxel (C/P) plus radiation in patients (pts) with stage III non-small cell lung cancer (NSCLC) (M14-360/AFT-07). J. Clin. Oncol. 2019, 37, 8510. [Google Scholar] [CrossRef]
- Césaire, M.; Thariat, J.; Candéias, S.M.; Stefan, D.; Saintigny, Y.; Chevalier, F. Combining PARP inhibition, radiation, and immunotherapy: A possible strategy to improve the treatment of cancer? Int. J. Mol. Sci. 2018, 19, 3793. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Gao, Y.; Zeng, Z.; Luo, Y.; Jiang, X.; Zhang, J.; Li, J.; Gong, Y.; Xie, C. PARP inhibitor niraparib as a radiosensitizer promotes antitumor immunity of radiotherapy in EGFR-mutated non-small cell lung cancer. Clin. Transl. Oncol. 2021, 23, 1827–1837. [Google Scholar] [CrossRef]
- LaFargue, C.; Molin, G.Z.D.; Sood, A.K.; Coleman, R.L. Exploring and comparing adverse events between PARP inhibitors. Lancet Oncol. 2019, 20, e15–e28. [Google Scholar] [CrossRef]
- Chen, L.; Zang, F.; Wu, H.; Li, J.; Xie, J.; Ma, M.; Gu, N.; Zhang, Y. Using PEGylated magnetic nanoparticles to describe the EPR effect in tumor for predicting therapeutic efficacy of micelle drugs. Nanoscale 2017, 10, 1788–1797. [Google Scholar] [CrossRef]
- Chen, J.L.-Y.; Pan, C.-K.; Lin, Y.-L.; Tsai, C.-Y.; Huang, Y.-S.; Yang, W.-C.; Hsu, F.-M.; Kuo, S.-H.; Shieh, M.-J. Preclinical evaluation of PEGylated liposomal doxorubicin as an effective radiosensitizer in chemoradiotherapy for lung cancer. Strahlenther. Onkol. 2021, 197, 1131–1142. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Choyke, P.L. Super enhanced permeability and retention (SUPR) effects in tumors following near infrared photoimmunotherapy. Nanoscale 2015, 8, 12504–12509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, M.; Liu, J.; Hu, C.; Li, D.; Yang, J.; Wu, Z.; Yang, L.; Chen, Y.; Fu, S.; Wu, J. Olaparib nanoparticles potentiated radiosensitization effects on lung cancer. Int. J. Nanomed. 2018, 13, 8461–8472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellsworth, S.G. Field size effects on the risk and severity of treatment-induced lymphopenia in patients undergoing radiation therapy for solid tumors. Adv. Radiat. Oncol. 2018, 3, 512–519. [Google Scholar] [CrossRef] [Green Version]
- Campian, J.L.; Ye, X.; Brock, M.; Grossman, S.A. Treatment-related lymphopenia in patients with stage III non-small-cell lung cancer. Cancer Investig. 2013, 31, 183–188. [Google Scholar] [CrossRef]
- Tang, C.; Liao, Z.; Gomez, D.; Levy, L.; Zhuang, Y.; Gebremichael, R.A.; Hong, D.S.; Komaki, R.; Welsh, J.W. Lymphopenia association with gross tumor volume and lung V5 and its effects on non-small cell lung cancer patient outcomes. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 1084–1091. [Google Scholar] [CrossRef]
- Cesaire, M.; Le Mauff, B.; Rambeau, A.; Toutirais, O.; Thariat, J. Mechanisms of radiation-induced lymphopenia and therapeutic impact. Bull. Cancer 2020, 107, 813–822. [Google Scholar] [CrossRef]
- Sharabi, A.B.; Nirschl, C.J.; Kochel, C.M.; Nirschl, T.R.; Francisca, B.J.; Velarde, E.; Deweese, T.L.; Drake, C.G. Stereotactic radiation therapy augments antigen-specific PD-1–mediated antitumor immune responses via cross-presentation of tumor antigen. Cancer Immunol. Res. 2014, 3, 345–355. [Google Scholar] [CrossRef] [Green Version]
- Maguire, J.; Khan, I.; McMenemin, R.; O’Rourke, N.; McNee, S.; Kelly, V.; Peedell, C.; Snee, M. SOCCAR: A randomised phase II trial comparing sequential versus concurrent chemotherapy and radical hypofractionated radiotherapy in patients with inoperable stage III non-small cell lung cancer and good performance status. Eur. J. Cancer 2014, 50, 2939–2949. [Google Scholar] [CrossRef]
- Walraven, I.; van den Heuvel, M.; van Diessen, J.; Schaake, E.; Uyterlinde, W.; Aerts, J.; Koppe, F.; Codrington, H.; Kunst, P.; Dieleman, E.; et al. Long-term follow-up of patients with locally advanced non-small cell lung cancer receiving concurrent hypofractionated chemoradiotherapy with or without cetuximab. Radiother. Oncol. 2016, 118, 442–446. [Google Scholar] [CrossRef] [Green Version]
- Liveringhouse, C.; Lam, N.; Rosenberg, S.; Dilling, T.; Macmillan, G.; Chiappori, A.; Haura, E.; Creelan, B.; Gray, J.; Tanvetyanon, T.; et al. Prospective phase I/II study of radiation and chemotherapy with ipilimumab followed by nivolumab for patients with stage III unresectable NSCLC. Int. J. Radiat. Oncol. 2021, 111, S3–S4. [Google Scholar] [CrossRef]
- Durm, G.A.; Jabbour, S.K.; Ms, S.K.A.; Liu, Z.; Sadiq, A.A.; Zon, R.T.; Jalal, S.I.; Kloecker, G.H.; Do, M.J.W.; Reckamp, K.L.; et al. A phase 2 trial of consolidation pembrolizumab following concurrent chemoradiation for patients with unresectable stage III non-small cell lung cancer: Hoosier cancer research network LUN 14–179. Cancer 2020, 126, 4353–4361. [Google Scholar] [CrossRef] [PubMed]
- Pujol, J.-L.; Vansteenkiste, J.F.; De Pas, T.M.; Atanackovic, D.; Reck, M.; Thomeer, M.; Douillard, J.-Y.; Fasola, G.; Potter, V.; Taylor, P.; et al. Safety and immunogenicity of MAGE-A3 cancer immunotherapeutic with or without adjuvant chemotherapy in patients with resected stage IB to III MAGE-A3-positive non-small-cell lung cancer. J. Thorac. Oncol. 2015, 10, 1458–1467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, P.; Thatcher, N.; Socinski, M.A.; Wasilewska-Tesluk, E.; Horwood, K.; Szczesna, A.; Martín, C.; Ragulin, Y.; Zukin, M.; Helwig, C.; et al. Tecemotide in unresectable stage III non-small-cell lung cancer in the phase III START study: Updated overall survival and biomarker analyses. Ann. Oncol. 2015, 26, 1134–1142. [Google Scholar] [CrossRef]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Kurata, T.; Chiappori, A.; Lee, K.H.; De Wit, M.; et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N. Engl. J. Med. 2018, 379, 2342–2350. [Google Scholar] [CrossRef] [PubMed]
- Faivre-Finn, C.; Vicente, D.; Kurata, T.; Planchard, D.; Paz-Ares, L.; Vansteenkiste, J.F.; Spigel, D.R.; Garassino, M.C.; Reck, M.; Senan, S.; et al. Four-year survival with durvalumab after chemoradiotherapy in stage III NSCLC—An update from the PACIFIC Trial. J. Thorac. Oncol. 2021, 16, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.; Felip, E.; Dafni, U.; Tufman, A.; Guckenberger, M.; Álvarez, R.; Nadal, E.; Becker, A.; Vees, H.; Pless, M.; et al. Progression-free and overall survival for concurrent nivolumab with standard concurrent chemoradiotherapy in locally advanced stage IIIA-B NSCLC: Results from the european thoracic oncology platform NICOLAS phase II trial (European thoracic oncology platform 6–14). J. Thorac. Oncol. 2020, 16, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Gerber, D.E.; Urbanic, J.J.; Langer, C.; Hu, C.; Chang, I.-F.; Lu, B.; Movsas, B.; Jeraj, R.; Curran, W.J.; Bradley, J.D. Treatment design and rationale for a randomized trial of cisplatin and etoposide plus thoracic radiotherapy followed by nivolumab or placebo for locally advanced non-small-cell lung cancer (RTOG 3505). Clin. Lung Cancer 2016, 18, 333–339. [Google Scholar] [CrossRef] [Green Version]
- Herbst, R.S.; Majem, M.; Barlesi, F.; Carcereny, E.; Chu, Q.; Monnet, I.; Sanchez-Hernandez, A.; Dakhil, S.; Camidge, D.R.; Winzer, L.; et al. COAST: An open-label, phase II, multidrug platform study of durvalumab alone or in combination with oleclumab or monalizumab in patients with unresectable, stage III non-small-cell lung cancer. J. Clin. Oncol. 2022. [Google Scholar] [CrossRef]
- Mesko, S.; Gomez, D. Proton therapy in non-small cell lung cancer. Curr. Treat. Options Oncol. 2018, 19, 76. [Google Scholar] [CrossRef]
- Thariat, J.; Valable, S.; Laurent, C.; Haghdoost, S.; Pérès, E.A.; Bernaudin, M.; Sichel, F.; Lesueur, P.; Césaire, M.; Petit, E.; et al. Hadrontherapy interactions in molecular and cellular biology. Int. J. Mol. Sci. 2019, 21, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oderinde, O.M.; Shirvani, S.M.; Olcott, P.D.; Kuduvalli, G.; Mazin, S.; Larkin, D. The technical design and concept of a PET/CT linac for biology-guided radiotherapy. Clin. Transl. Radiat. Oncol. 2021, 29, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Wéra, A.-C.; Heuskin, A.-C.; Riquier, H.; Michiels, C.; Lucas, S. Low-LET proton irradiation of A549 non-small cell lung adenocarcinoma cells: Dose response and RBE determination. Radiat. Res. 2013, 179, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Wozny, A.-S.; Lauret, A.; Battiston-Montagne, P.; Guy, J.-B.; Beuve, M.; Cunha, M.; Saintigny, Y.; Blond, E.; Magne, N.; Lalle, P.; et al. Differential pattern of HIF-1α expression in HNSCC cancer stem cells after carbon ion or photon irradiation: One molecular explanation of the oxygen effect. Br. J. Cancer 2017, 116, 1340–1349. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, Y.; Fukumitsu, N.; Ishikawa, H.; Nakai, K.; Sakurai, H. A Critical review of radiation therapy: From particle beam therapy (proton, carbon, and BNCT) to Beyond. J. Pers. Med. 2021, 11, 825. [Google Scholar] [CrossRef]
- Ma, L. From photon beam to accelerated particle beam: Antimetastasis effect of combining radiotherapy with immunotherapy. Front. Public Health 2022, 10, 847119. [Google Scholar] [CrossRef]
- Mezquita, L.; Varga, A.; Planchard, D. Safety of osimertinib in EGFR-mutated non-small cell lung cancer. Expert Opin. Drug Saf. 2018, 17, 1239–1248. [Google Scholar] [CrossRef]
- To, K.K.W.; Fong, W.; Cho, W.C.S. Immunotherapy in treating EGFR-mutant lung cancer: Current challenges and new strategies. Front. Oncol. 2021, 11, 635007. [Google Scholar] [CrossRef]
- Chapman, A.M.; Sun, K.Y.; Ruestow, P.; Cowan, D.M.; Madl, A.K. Lung cancer mutation profile of EGFR, ALK, and KRAS: Meta-analysis and comparison of never and ever smokers. Lung Cancer 2016, 102, 122–134. [Google Scholar] [CrossRef]
- Palucka, A.K.; Coussens, L.M. The basis of oncoimmunology. Cell 2016, 164, 1233–1247. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Zeng, J.; Rengan, R. Proton beam therapy and immunotherapy: An emerging partnership for immune activation in non-small cell lung cancer. Transl. Lung Cancer Res. 2018, 7, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Mirjolet, C.; Nicol, A.; Limagne, E.; Mura, C.; Richard, C.; Morgand, V.; Rousseau, M.; Boidot, R.; Ghiringhelli, F.; Noel, G.; et al. Impact of proton therapy on antitumor immune response. Sci. Rep. 2021, 11, 13444. [Google Scholar] [CrossRef] [PubMed]
- Vera, P.; Mihailescu, S.-D.; Lequesne, J.; Modzelewski, R.; Bohn, P.; Hapdey, S.; Pépin, L.-F.; Dubray, B.; Chaumet-Riffaud, P.; Decazes, P.; et al. Radiotherapy boost in patients with hypoxic lesions identified by 18F-FMISO PET/CT in non-small-cell lung carcinoma: Can we expect a better survival outcome without toxicity? [RTEP5 long-term follow-up]. Eur. J. Pediatr. 2019, 46, 1448–1456. [Google Scholar] [CrossRef] [PubMed]
NCT Number | Acronym | Status | Induction Drug | Concomitant Drug with Radiotherapy | Consolidation Drug | Phases | Enrollment |
---|---|---|---|---|---|---|---|
NCT04765709 | BRIDGE | Not yet recruiting | Durvalumab 1 plus platinum-based chemotherapy | Durvalumab | Durvalumab | Phase 2 | 65 |
NCT02434081 | NICOLAS | Completed | None | Nivolumab 2 plus platinum-based chemotherapy | Nivolumab | Phase 2 | 94 |
NCT04577638 | AIRING | Recruiting | None | Nivolumab * | Nivolumab | Phase 2 | 60 |
NCT04003246 | Active, not recruiting | None | Durvalumab | Durvalumab | Phase 2 | 50 | |
NCT04230408 | PACIFIC BRAZIL | Recruiting | Durvalumab plus platinum-based chemotherapy | Durvalumab plus platinum-based chemotherapy | Durvalumab | Phase 2 | 48 |
NCT03631784 | KEYNOTE-799 | Active, not recruiting | Pembrolizumab 2 plus platinum-based chemotherapy | Pembrolizumab plus platinum-based chemotherapy | Pembrolizumab | Phase 2 | 217 |
NCT04085250 | Recruiting | Nivolumab plus platinum-based chemotherapy | Nivolumab plus platinum-based chemotherapy | Nivolumab or observation | Phase 2 | 264 | |
NCT04982549 | Recruiting | None | Durvalumab plus platinum-based chemotherapy | Durvalumab | Phase 2 | 35 | |
NCT03840902 | Active, not recruiting | Bintrafusp alfa M7824 1 (bifunctional fusion protein composed of a mAb against PD-L1) plus platinum-based chemotherapy | Bintrafusp alfa M7824 | Phase 2 | 168 | ||
NCT04364048 | Recruiting | Durvalumab | platinum-based chemotherapy | Durvalumab | Phase 2 | 54 | |
NCT04092283 | Recruiting | None | Durvalumab plus platinum-based chemotherapy | Durvalumab | Phase 3 | 660 | |
NCT05128630 | DEDALUS | Recruiting | Durvalumab plus platinum-based chemotherapy | Durvalumab (with hypofractionated radiation therapy) | Durvalumab | Phase 2 | 45 |
NCT02621398 | Active, not recruiting | None | Pembrolizumab plus platinum-based chemotherapy | Pembrolizumab | Phase 1 | 30 | |
NCT04202809 | ESPADURVA | Recruiting | None | Durvalumab plus platinum-based chemotherapy | Durvalumab | Phase 2 | 90 |
NCT03801902 | Active, not recruiting | Durvalumab (2 weeks before RT) | Durvalumab | Durvalumab | Phase 1 | 22 | |
NCT04372927 | ADMIRAL | Recruiting | Durvalumab plus platinum-based chemotherapy | Durvalumab plus platinum-based chemotherapy (with Hypofractionated Radiation Therapy) | Durvalumab | Phase 2 | 40 |
NCT03999710 | Recruiting | Sequential chemotherapy | Durvalumab | Durvalumab | Phase 2 | 53 | |
NCT04776447 | APOLO | Recruiting | Atezolizumab 1 | Platinum-based chemotherapy | Atezolizumab | Phase 2 | 51 |
NCT04013542 | Recruiting | None | Ipilimumab 3 and Nivolumab | Ipilimumab and Nivolumab | Phase 1 | 20 | |
NCT04026412 | ChekMate 73L | Recruiting | None | Ipilimumab and Nivolumab or Nivolumab alone/plus platinum-based chemotherapy | Nivolumab | Phase 3 | 888 |
NCT05298423 | Not yet recruiting | None | Pembrolizumab and Vibostolimab 4 plus platinum-based chemotherapy | Pembrolizumaband Vibostolimab | Phase 3 | 784 | |
NCT04380636 | Recruiting | None | Pembrolizumab plus platinum-based chemotherapy | Pembrolizumab and Olaparib 5 or placebo | Phase 3 | 870 |
NCT Number | Status | Interventions | Phases | Enrollment | Results |
---|---|---|---|---|---|
NCT00495170 | Completed | PT with concomitant chemotherapy (Carboplatin + Paclitaxel) | Phase 2 | 64 | Median OS was 26.5 months. Rates of grade 2 and 3 acute esophagitis were 18 (28%) and 5 (8%), respectively. Acute grade 2 pneumonitis occurred in one (2%) patient. |
74 Gy (RBE) 2 Gy/fraction for 37 fractions | |||||
NCT01993810 | Recruiting | Arm 1: RT with concomitant chemotherapy | Phase 3 | 330 | |
Arm 2: PT with concomitant chemotherapy (Carboplatin + Paclitaxel) | |||||
NCT01629498 | Recruiting | Arm 1: IMRT with concomitant chemotherapy | Phase 1|Phase 2 | 100 | |
Arm 2: IMPT with concomitant chemotherapy | |||||
NCT01770418 | Active, not recruiting | PT with concomitant chemotherapy: Dose Level 1: 60 Gy (RBE) at 2.5 Gy(RBE) per fraction × 24 fractions Dose Level 2: 60 Gy (RBE) at 3 Gy (RBE) per fraction × 20 fractions Dose Level 3: 60.01 Gy (RBE) at 3.53 Gy (RBE) per fraction × 17 fractions Dose Level 4: 60 Gy (RBE) at 4 Gy (RBE) per fraction × 15 fractions | Phase 1|Phase 2 | 32 | |
NCT02172846 | Completed | Hypofractionated PT (60 Gy in 15 fractions) with concomitant chemotherapy (Carboplatin + Paclitaxel) | Phase 1 | 23 | Acute grade 2 esophagitis in seven patients (35%) and grade 2 pneumonitis in one patient (5%). |
NCT04432142 | Recruiting | Cohort one: RT with concomitant chemotherapy and Durvalumab in consolidation treatment | Observational: Immune changes induced by PT or RT | 80 | |
Cohort two: PT with concomitant chemotherapy and Durvalumab in consolidation treatment |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Césaire, M.; Montanari, J.; Curcio, H.; Lerouge, D.; Gervais, R.; Demontrond, P.; Balosso, J.; Chevalier, F. Radioresistance of Non-Small Cell Lung Cancers and Therapeutic Perspectives. Cancers 2022, 14, 2829. https://doi.org/10.3390/cancers14122829
Césaire M, Montanari J, Curcio H, Lerouge D, Gervais R, Demontrond P, Balosso J, Chevalier F. Radioresistance of Non-Small Cell Lung Cancers and Therapeutic Perspectives. Cancers. 2022; 14(12):2829. https://doi.org/10.3390/cancers14122829
Chicago/Turabian StyleCésaire, Mathieu, Juliette Montanari, Hubert Curcio, Delphine Lerouge, Radj Gervais, Pierre Demontrond, Jacques Balosso, and François Chevalier. 2022. "Radioresistance of Non-Small Cell Lung Cancers and Therapeutic Perspectives" Cancers 14, no. 12: 2829. https://doi.org/10.3390/cancers14122829
APA StyleCésaire, M., Montanari, J., Curcio, H., Lerouge, D., Gervais, R., Demontrond, P., Balosso, J., & Chevalier, F. (2022). Radioresistance of Non-Small Cell Lung Cancers and Therapeutic Perspectives. Cancers, 14(12), 2829. https://doi.org/10.3390/cancers14122829