CPX-351: An Old Scheme with a New Formulation in the Treatment of High-Risk AML
Abstract
:Simple Summary
Abstract
1. Introduction
- De novo AML occurs without a previously documented exposure to potential leukemogenic treatments or prior hematologic disorder such as myelodysplastic syndrome (MDS).
- Therapy-related AML (t-AML) occurs as a postponed complication in patients who previously received leukemogenic treatments.
- Secondary AML (s-AML) consists of a third group of AML involving both patients who have a history of prior chemotherapy/radiotherapy (t- AML) or AML occurring consequently to a previous hematologic disease such as MDS, myeloproliferative disorders, combined myelodysplasia, and myeloproliferative disease, or chronic myelomonocytic leukemia (CMML). This third subgroup represents approximately 10–30% of all AML cases and often presents lower response rates, shorter duration of remission, and a worse overall survival (OS) compared with de novo AML [3].
2. Secondary (s-AML) and Therapy-Related (t-AML) Acute Myeloid Leukemia
3. CPX-351 Mechanism of Action
4. Clinical Trials
4.1. Phase I Trials
4.2. Phase II and III Trials
5. Real-Life Experiences with CPX-351
6. Experiences in Pediatric Setting
7. Treatment Toxicities
7.1. Adverse Events
7.2. Quality of Life
8. New Combinations and Future Directions
9. CPX-351 in TP53 Mutated AML
10. Conclusions and Open Questions
Author Contributions
Funding
Conflicts of Interest
References
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 Revision to the World Health Organization Classification of Myeloid Neoplasms and Acute Leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef] [PubMed]
- Fey, M.F.; Buske, C.; ESMO Guidelines Working Group. Acute Myeloblastic Leukaemias in Adult Patients: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2013, 24 (Suppl. 6), vi138–vi143. [Google Scholar] [CrossRef] [PubMed]
- Kuykendall, A.; Duployez, N.; Boissel, N.; Lancet, J.E.; Welch, J.S. Acute Myeloid Leukemia: The Good, the Bad, and the Ugly. Am. Soc. Clin. Oncol. Educ. Book 2018, 38, 555–573. [Google Scholar] [CrossRef] [PubMed]
- Yates, J.W.; Wallace, H.J.; Ellison, R.R.; Holland, J.F. Cytosine Arabinoside (NSC-63878) and Daunorubicin (NSC-83142) Therapy in Acute Nonlymphocytic Leukemia. Cancer Chemother. Rep. 1973, 57, 485–488. [Google Scholar]
- Döhner, H.; Weisdor, D.J.; Bloomfield, C.D. Acute Myeloid Leukemia. N. Engl. J. Med. 2015, 373, 1136–1152. [Google Scholar] [CrossRef] [Green Version]
- Lancet, J.E.; Uy, G.L.; Cortes, J.E.; Newell, L.F.; Lin, T.L.; Ritchie, E.K.; Stuart, R.K.; Strickland, S.A.; Hogge, D.; Solomon, S.R.; et al. CPX-351 (Cytarabine and Daunorubicin) Liposome for Injection Versus Conventional Cytarabine Plus Daunorubicin in Older Patients With Newly Diagnosed Secondary Acute Myeloid Leukemia. J. Clin. Oncol. 2018, 36, 2684–2692. [Google Scholar] [CrossRef]
- Mayer, L.D.; Tardi, P.; Louie, A.C. CPX-351: A Nanoscale Liposomal Co-Formulation of Daunorubicin and Cytarabine with Unique Biodistribution and Tumor Cell Uptake Properties. Int. J. Nanomed. 2019, 14, 3819–3830. [Google Scholar] [CrossRef] [Green Version]
- Kayser, S.; Döhner, K.; Krauter, J.; Köhne, C.H.; Horst, H.A.; Held, G.; von Lilienfeld-Toal, M.; Wilhelm, S.; Kündgen, A.; Götze, K.; et al. The Impact of Therapy-Related Acute Myeloid Leukemia (AML) on Outcome in 2853 Adult Patients with Newly Diagnosed AML. Blood 2011, 117, 2137–2145. [Google Scholar] [CrossRef] [Green Version]
- Hulegårdh, E.; Nilsson, C.; Lazarevic, V.; Garelius, H.; Antunovic, P.; Derolf, Å.R.; Möllgård, L.; Uggla, B.; Wennström, L.; Wahlin, A.; et al. Characterization and Prognostic Features of Secondary Acute Myeloid Leukemia in a Population-Based Setting: A Report from the Swedish Acute Leukemia Registry: Population-Based Study of Secondary AML. Am. J. Hematol. 2015, 90, 208–214. [Google Scholar] [CrossRef]
- Schoch, C.; Kern, W.; Schnittger, S.; Hiddemann, W.; Haferlach, T. Karyotype Is an Independent Prognostic Parameter in Therapy-Related Acute Myeloid Leukemia (t-AML): An Analysis of 93 Patients with t-AML in Comparison to 1091 Patients with de Novo AML. Leukemia 2004, 18, 120–125. [Google Scholar] [CrossRef] [Green Version]
- WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues; Swerdlow, S.H.; International Agency for Research on Cancer (Eds.) World Health Organization Classification of Tumours, 4th ed.; International Agency for Research on Cancer: Lyon, France, 2008; ISBN 978-92-832-2431-0. [Google Scholar]
- Lindsley, R.C.; Mar, B.G.; Mazzola, E.; Grauman, P.V.; Shareef, S.; Allen, S.L.; Pigneux, A.; Wetzler, M.; Stuart, R.K.; Erba, H.P.; et al. Acute Myeloid Leukemia Ontogeny Is Defined by Distinct Somatic Mutations. Blood 2015, 125, 1367–1376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen-Bjergaard, J.; Andersen, M.K.; Andersen, M.T.; Christiansen, D.H. Genetics of Therapy-Related Myelodysplasia and Acute Myeloid Leukemia. Leukemia 2008, 22, 240–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felix, C.A. Secondary Leukemias Induced by Topoisomerase-Targeted Drugs. Biochim. Biophys. Acta 1998, 1400, 233–255. [Google Scholar] [CrossRef]
- Rücker, F.G.; Schlenk, R.F.; Bullinger, L.; Kayser, S.; Teleanu, V.; Kett, H.; Habdank, M.; Kugler, C.-M.; Holzmann, K.; Gaidzik, V.I.; et al. TP53 Alterations in Acute Myeloid Leukemia with Complex Karyotype Correlate with Specific Copy Number Alterations, Monosomal Karyotype, and Dismal Outcome. Blood 2012, 119, 2114–2121. [Google Scholar] [CrossRef] [PubMed]
- Zebisch, A.; Lal, R.; Müller, M.; Lind, K.; Kashofer, K.; Girschikofsky, M.; Fuchs, D.; Wölfler, A.; Geigl, J.B.; Sill, H. Acute Myeloid Leukemia with TP53 Germ Line Mutations. Blood 2016, 128, 2270–2272. [Google Scholar] [CrossRef] [Green Version]
- Middeke, J.M.; Herold, S.; Rücker-Braun, E.; Berdel, W.E.; Stelljes, M.; Kaufmann, M.; Schäfer-Eckart, K.; Baldus, C.D.; Stuhlman, R.; Ho, A.D.; et al. TP53 Mutation in Patients with High-Risk Acute Myeloid Leukaemia Treated with Allogeneic Haematopoietic Stem Cell Transplantation. Br. J. Haematol. 2016, 172, 914–922. [Google Scholar] [CrossRef]
- Grossmann, V.; Schnittger, S.; Kohlmann, A.; Eder, C.; Roller, A.; Dicker, F.; Schmid, C.; Wendtner, C.-M.; Staib, P.; Serve, H.; et al. A Novel Hierarchical Prognostic Model of AML Solely Based on Molecular Mutations. Blood 2012, 120, 2963–2972. [Google Scholar] [CrossRef]
- Miesner, M.; Haferlach, C.; Bacher, U.; Weiss, T.; Macijewski, K.; Kohlmann, A.; Klein, H.-U.; Dugas, M.; Kern, W.; Schnittger, S.; et al. Multilineage Dysplasia (MLD) in Acute Myeloid Leukemia (AML) Correlates with MDS-Related Cytogenetic Abnormalities and a Prior History of MDS or MDS/MPN but Has No Independent Prognostic Relevance: A Comparison of 408 Cases Classified as “AML Not Otherwise Specified” (AML-NOS) or “AML with Myelodysplasia-Related Changes” (AML-MRC). Blood 2010, 116, 2742–2751. [Google Scholar] [CrossRef]
- Boddu, P.; Kantarjian, H.M.; Garcia-Manero, G.; Ravandi, F.; Verstovsek, S.; Jabbour, E.; Borthakur, G.; Konopleva, M.; Bhalla, K.N.; Daver, N.; et al. Treated Secondary Acute Myeloid Leukemia: A Distinct High-Risk Subset of AML with Adverse Prognosis. Blood Adv. 2017, 1, 1312–1323. [Google Scholar] [CrossRef] [Green Version]
- Tolcher, A.W.; Mayer, L.D. Improving Combination Cancer Therapy: The CombiPlex® Development Platform. Future Oncol. 2018, 14, 1317–1332. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Guo, J.R.; Chen, Q.Q.; Wang, C.Y.; Zhang, W.J.; Yao, M.C.; Zhang, W. Exploring the Antitumor Mechanism of High-Dose Cytarabine through the Metabolic Perturbations of Ribonucleotide and Deoxyribonucleotide in Human Promyelocytic Leukemia HL-60 Cells. Molecules 2017, 22, 499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunton, L.L.; Knollmann, B.C.; Hilal-Dandan, R. (Eds.) Goodman & Gilman’s the Pharmacological Basis of Therapeutics, 13th ed.; McGraw Hill Medical: New York, NY, USA, 2018; ISBN 978-1-259-58473-2. [Google Scholar]
- Lin, T.L.; Newell, L.F.; Stuart, R.K.; Michaelis, L.C.; Rubenstein, E.; Pentikis, H.S.; Callahan, T.; Alvarez, D.; Liboiron, B.D.; Mayer, L.D.; et al. A Phase 2 Study to Assess the Pharmacokinetics and Pharmacodynamics of CPX-351 and Its Effects on Cardiac Repolarization in Patients with Acute Leukemias. Cancer Chemother. Pharmacol. 2019, 84, 163–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Tardi, P.; Sadowski, N.; Xie, S.; Heller, D.; Mayer, L. Pharmacokinetics, Drug Metabolism, and Tissue Distribution of CPX-351 in Animals. Nanomedicine 2020, 30, 102275. [Google Scholar] [CrossRef] [PubMed]
- Tardi, P.; Johnstone, S.; Harasym, N.; Xie, S.; Harasym, T.; Zisman, N.; Harvie, P.; Bermudes, D.; Mayer, L. In Vivo Maintenance of Synergistic Cytarabine: Daunorubicin Ratios Greatly Enhances Therapeutic Efficacy. Leuk. Res. 2009, 33, 129–139. [Google Scholar] [CrossRef]
- Feldman, E.J.; Kolitz, J.E.; Trang, J.M.; Liboiron, B.D.; Swenson, C.E.; Chiarella, M.T.; Mayer, L.D.; Louie, A.C.; Lancet, J.E. Pharmacokinetics of CPX-351; a Nano-Scale Liposomal Fixed Molar Ratio Formulation of Cytarabine: Daunorubicin, in Patients with Advanced Leukemia. Leuk. Res. 2012, 36, 1283–1289. [Google Scholar] [CrossRef]
- Feldman, E.J.; Lancet, J.E.; Kolitz, J.E.; Ritchie, E.K.; Roboz, G.J.; List, A.F.; Allen, S.L.; Asatiani, E.; Mayer, L.D.; Swenson, C.; et al. First-in-Man Study of CPX-351: A Liposomal Carrier Containing Cytarabine and Daunorubicin in a Fixed 5:1 Molar Ratio for the Treatment of Relapsed and Refractory Acute Myeloid Leukemia. J. Clin. Oncol. 2011, 29, 979–985. [Google Scholar] [CrossRef] [Green Version]
- Lancet, J.E.; Cortes, J.E.; Hogge, D.E.; Tallman, M.S.; Kovacsovics, T.J.; Damon, L.E.; Komrokji, R.; Solomon, S.R.; Kolitz, J.E.; Cooper, M.; et al. Phase 2 Trial of CPX-351, a Fixed 5:1 Molar Ratio of Cytarabine/Daunorubicin, vs. Cytarabine/Daunorubicin in Older Adults with Untreated AML. Blood 2014, 123, 3239–3246. [Google Scholar] [CrossRef]
- Cortes, J.E.; Goldberg, S.L.; Feldman, E.J.; Rizzeri, D.A.; Hogge, D.E.; Larson, M.; Pigneux, A.; Recher, C.; Schiller, G.; Warzocha, K.; et al. Phase II, Multicenter, Randomized Trial of CPX-351 (Cytarabine: Daunorubicin) Liposome Injection versus Intensive Salvage Therapy in Adults with First Relapse AML: CPX-351 in AML Patients in First Relapse. Cancer 2015, 121, 234–242. [Google Scholar] [CrossRef]
- Lancet, J.E.; Uy, G.L.; Newell, L.F.; Lin, T.L.; Ritchie, E.K.; Stuart, R.K.; Strickland, S.A.; Hogge, D.; Solomon, S.R.; Bixby, D.L.; et al. CPX-351 versus 7+3 Cytarabine and Daunorubicin Chemotherapy in Older Adults with Newly Diagnosed High-Risk or Secondary Acute Myeloid Leukaemia: 5-Year Results of a Randomised, Open-Label, Multicentre, Phase 3 Trial. Lancet Haematol. 2021, 8, e481–e491. [Google Scholar] [CrossRef]
- Ryan, D.H.; Uy, G.L.; Cortes, J.E.; Newell, L.F.; Ritchie, E.K.; Stuart, R.K.; Strickland, S.A.; Hogge, D.; Solomon, S.R.; Stone, R.M.; et al. Efficacy and Safety of CPX-351 Versus 7+3 in a Subgroup of Older Patients with Newly Diagnosed Acute Myeloid Leukemia with Myelodysplasia-Related Changes (AML-MRC) Enrolled in a Phase 3 Study. Blood 2018, 132, 1425. [Google Scholar] [CrossRef]
- Kolitz, J.; Strickland, S.A.; Cortes, J.E.; Hogge, D.; Lancet, J.E.; Goldberg, S.; Ryan, R.J.; Chiarella, M.; Louie, A.C.; Uy, G.L. Outcomes in Older Patients with Newly Diagnosed, High-Risk/Secondary Acute Myeloid Leukemia (SAML) Who Received Consolidation in a Phase 3 Study of CPX-351 versus Conventional 7+3/5+2 Cytarabine and Daunorubicin. Clin. Lymphoma Myeloma Leuk. 2018, 18, S208–S209. [Google Scholar] [CrossRef]
- Winters, A.C.; Gutman, J.A.; Purev, E.; Nakic, M.; Tobin, J.; Chase, S.; Kaiser, J.; Lyle, L.; Boggs, C.; Halsema, K.; et al. Real-World Experience of Venetoclax with Azacitidine for Untreated Patients with Acute Myeloid Leukemia. Blood Adv. 2019, 3, 2911–2919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juliusson, G.; Lazarevic, V.; Hörstedt, A.S.; Hagberg, O.; Höglund, M. Swedish Acute Leukemia Registry Group Acute Myeloid Leukemia in the Real World: Why Population-Based Registries Are Needed. Blood 2012, 119, 3890–3899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guolo, F.; Fianchi, L.; Minetto, P.; Clavio, M.; Gottardi, M.; Galimberti, S.; Rizzuto, G.; Rondoni, M.; Bertani, G.; Dargenio, M.; et al. CPX-351 Treatment in Secondary Acute Myeloblastic Leukemia Is Effective and Improves the Feasibility of Allogeneic Stem Cell Transplantation: Results of the Italian Compassionate Use Program. Blood Cancer J. 2020, 10, 96. [Google Scholar] [CrossRef]
- Chiche, E.; Rahmé, R.; Bertoli, S.; Dumas, P.Y.; Micol, J.B.; Hicheri, Y.; Pasquier, F.; Peterlin, P.; Chevallier, P.; Thomas, X.; et al. Real-Life Experience with CPX-351 and Impact on the Outcome of High-Risk AML Patients: A Multicentric French Cohort. Blood Adv. 2021, 5, 176–184. [Google Scholar] [CrossRef]
- Rautenberg, C.; Stölzel, F.; Röllig, C.; Stelljes, M.; Gaidzik, V.; Lauseker, M.; Kriege, O.; Verbeek, M.; Unglaub, J.M.; Thol, F.; et al. Real-World Experience of CPX-351 as First-Line Treatment for Patients with Acute Myeloid Leukemia. Blood Cancer J. 2021, 11, 164. [Google Scholar] [CrossRef]
- Murthy, V.; Whitmill, R.; Lodwick, C.; Dyer, P.; Ahmed, M.; Khan, R.; Paneesha, S.; Pemberton, N.; Raghavan, M. CPX-351 for Acute Myeloid Leukaemia: Real World Results Are Comparable to Trial Outcomes and Exceeds Them in Non-Adverse Risk Patients—A Multicentre Experience from West Midlands Hospitals on Behalf of West Midlands Research Consortium (WMRC) UK. Blood 2021, 138, 4416. [Google Scholar] [CrossRef]
- Absalon, M.; O’Brien, M.M.; Phillips, C.L.; Burns, K.C.; Mangino, J.; Mizukawa, B.; Breese, E.H.; Shah, R.; Perentesis, J.P. A Phase I/Pilot Study of CPX-351 for Children, Adolescents and Young Adults with Recurrent or Refractory Hematologic Malignancies. J. Clin. Oncol. 2016, 34, 10541. [Google Scholar] [CrossRef]
- Cooper, T.M.; Absalon, M.J.; Alonzo, T.A.; Gerbing, R.B.; Leger, K.J.; Hirsch, B.A.; Pollard, J.; Razzouk, B.I.; Aplenc, R.; Kolb, E.A. Phase I/II Study of CPX-351 Followed by Fludarabine, Cytarabine, and Granulocyte-Colony Stimulating Factor for Children With Relapsed Acute Myeloid Leukemia: A Report From the Children’s Oncology Group. J. Clin. Oncol. 2020, 38, 2170–2177. [Google Scholar] [CrossRef]
- Cortes, J.E.; Lin, T.L.; Uy, G.L.; Ryan, R.J.; Faderl, S.; Lancet, J.E. Quality-Adjusted Time Without Symptoms of Disease or Toxicity (Q-TWiST) Analysis of CPX-351 versus 7 + 3 in Older Adults with Newly Diagnosed High-Risk/Secondary AML. J. Hematol. Oncol. 2021, 14, 110. [Google Scholar] [CrossRef]
- Urbantat, R.M.; Popper, V.; Menschel, E.; Pfeilstöcker, M.; Forjan, E.; Nader, A.; Sieghart, C.R.; Keil, F.; Koller, E. CPX-351 (Vyxeos®) Can Cause Severe Rash in Acute Myeloid Leukemia—A Case Report. Clin. Case Rep. 2021, 9, 1933–1936. [Google Scholar] [CrossRef] [PubMed]
- Leblanc, T.W.; Morris, S.; Hooks, M.; Locke, S.C.; El-Jawahri, A. Patient Experiences with Liposomal Daunorubicin and Cytarabine (CPX-351) Versus Conventional Induction Regimens: An Analysis of Patient-Reported Outcomes Data from a Prospective Trial. Blood 2020, 136, 29–30. [Google Scholar] [CrossRef]
- Matza, L.S.; Deger, K.A.; Howell, T.A.; Koetter, K.; Yeager, A.M.; Hogge, D.; Fisher, V.; Louie, A.C.; Chung, K.C. Health State Utilities Associated with Treatment Options for Acute Myeloid Leukemia (AML). J. Med. Econ. 2019, 22, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, E.K.; Miah, S.K.; Lee, S.; Curcio, T.; Desai, P.; Ball, J.; Samuel, M.B.; Roboz, G.J. CPX-351 As First Intensive Therapy for Elderly Patients with AML. Blood 2019, 134, 3858. [Google Scholar] [CrossRef]
- Solem, C.T.; Kwon, Y.; Shah, R.M.; Aly, A.; Botteman, M.F. Systematic Review and Benchmarking of Quality-Adjusted Time Without Symptoms or Toxicity (Q-TWiST) in Oncology. Expert Rev. Pharm. Outcomes Res. 2018, 18, 245–253. [Google Scholar] [CrossRef]
- Rivera, D.; Kadia, T.M.; Montalban-Bravo, G.; Faderl, S.; Sasaki, K.; Short, N.J.; Daver, N.; DiNardo, C.D.; Masarova, L.; Ferrajoli, A.; et al. Liposomal Cytarabine and Daunorubicin (CPX-351) in Combination with Gemtuzumab Ozogamicin (GO) in Relapsed Refractory (R/R) Acute Myeloid Leukemia (AML) and Post-Hypomethylating Agent (Post-HMA) Failure High-Risk Myelodysplastic Syndrome (HR-MDS). Blood 2021, 138, 2323. [Google Scholar] [CrossRef]
- Edwards, D.K.; Javidi-Sharifi, N.; Rofelty, A.; Rosenfeld, C.; Roth-Carter, R.; Tardi, P.; Mayer, L.; Tyner, J.W. Effective Combination of CPX-351 with FLT3 Inhibitors in AML Blasts Harboring the FLT3-ITD Mutation. Blood 2016, 128, 5124. [Google Scholar] [CrossRef]
- Edwards, D.K.; Javidi-Sharif, N.; Rofelty, A.; Gordon, M.; Roth-Carter, R.; Tardi, P.; Mayer, L.; Tyner, J.W. CPX-351 works synergistically in combination with FLT3 inhibitors against AML with FLT3-ITD. Cancer Res. 2017, 77 (Suppl. 13), 1087. [Google Scholar] [CrossRef]
- Kim, K.; Kantarjian, H.; Borthakur, G.; Takahashi, K.; Short, N.J.; DiNardo, C.D.; Jabbour, E.J.; Chien, K.S.; Daver, N.; Pemmaraju, N.; et al. A Phase II Study of CPX-351 Plus Venetoclax in Patients with Relapsed/Refractory (R/R) or Newly Diagnosed Acute Myeloid Leukemia (AML). Blood 2021, 138, 1275. [Google Scholar] [CrossRef]
- Daver, N. Immune checkpoint inhibitors in acute myeloid leukemia. Best Pract. Res. Clin. Haematol. 2021, 34, 101247. [Google Scholar] [CrossRef]
- Gardin, C.; Pautas, C.; Fournier, E.; Itzykson, R.; Lemasle, E.; Bourhis, J.H.; Adès, L.; Marolleau, J.P.; Malfuson, J.V.; Gastaud, L.; et al. Added Prognostic Value of Secondary AML-like Gene Mutations in ELN Intermediate-Risk Older AML: ALFA-1200 study Results. Blood Adv. 2020, 4, 1942. [Google Scholar] [CrossRef] [PubMed]
- Gordon, M.J.; Tardi, P.; Loriaux, M.M.; Spurgeon, S.E.; Traer, E.; Kovacsovics, T.; Mayer, L.D.; Tyner, J.W. CPX-351 exhibits potent and direct ex vivo cytotoxicity against AML blasts with enhanced efficacy for cells harboring the FLT3-ITD mutation. Leuk. Res. 2017, 53, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Gillis, N.K.; Ball, M.; Zhang, Q.; Ma, Z.; Zhao, Y.; Yoder, S.J.; Balasis, M.E.; Mesa, T.E.; Sallman, D.A.; Lancet, J.E.; et al. Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: A proof-of-concept, case-control study. Lancet Oncol. 2017, 18, 112–121. [Google Scholar] [CrossRef]
- Goldberg, A.D.; Talati, C.D.; Desai, P.; Famulare, C.; Devlin, S.M.; Farnoud, N.; Sallman, D.A.; Lancet, J.E.; Roboz, G.J.; Sweet, K.L.; et al. TP53 Mutations Predict Poorer Responses to CPX-351 in Acute Myeloid Leukemia. Blood 2018, 132, 1433. [Google Scholar] [CrossRef]
- Lindsley, R.C.; Gibson, C.J.; Murdock, H.M.; Stone, R.M.; Cortes, J.; Uy, G.; Lin, T.; Ritchie, E.; Prebet, T.; Ryan, R.J.; et al. Genetic characteristics and outcomes by mutation status in a phase 3 study of CPX-351 versus 7+3 in older adults with newly diagnosed, high-risk/secondary acute myeloid leukemia (AML). Blood 2019, 134, 15. [Google Scholar] [CrossRef]
Treatment | Median OS 1 (Range) | OS 1 Rate at 3 Years (%) | OS 1 Rate at 5 Years (%) | ||||
---|---|---|---|---|---|---|---|
CPX-351 | 3+7 | CPX-351 | 3+7 | CPX-351 | 3+7 | CPX-351 | 3+7 |
All patients | 9.33 months (6.37–11.86) | 59.93 months (59.73–60.50) | 21 | 9 | 18 | 8 | |
N = 153 | N = 156 | ||||||
Patients aged 60–69 years | 9.59 months (6.01–12.62) | 6.87 months (4.63–8.84) | 23 | 14 | 20 | 0 | |
n = 96 | n = 102 | ||||||
Patients aged 70–75 years | 8.87 months (4.73–12.19) | 5.62 months (3.29–7.52) | 18 | 12 | 16 | 0 | |
n = 57 | n = 54 | ||||||
Patents who achieved CR 2/CRi 3 | 21.72 months (13.01–29.70) | 10.41 months (7.82–15.21) | 36 | 23 | 30 | 19 | |
n = 73 | n = 52 | ||||||
Patients who received a HSCT 4 | NR 6 | 11.65 months (4.57–24.28) | 58 | 29 | / | / | |
n = 41 | n = 24 | ||||||
Patients with previous HMA 5 exposure who had CR 2 or CRi 3 | 14.72 months (7.75–55.56) | 10.17 months (4.86–17.91) | / | / | / | / | |
n = 23 | n = 20 | ||||||
Patients with previous HMA 5 exposure who had CR 2 or CRi 3 and proceed to HSCT 4 | NR 6 | 14.09 months (2.14–not estimable) | / | / | / | / | |
n = 13 | n = 7 | ||||||
Responder patients who relapsed | 3.16 months, (9.33–16.82) | 7.82 months, (4.86–13.40) | / | / | / | / | |
n = 22 | n = 15 |
References | Number of pts 1/Median Age | Median Age (Years) | Overall Response Rate (CR 2/Cri 3) after Induction (%) | MRD 4 (10<3) Negativity Rate (%) in Evaluable pts 1 | Cumulative Incidence of Relapse (%) | Median Follow-Up | Median OS 5 | Pts Receiving HSCT 6 after Response (%) | Negative Prognostic Factors on OS 5 | Negative Prognostic Factors on OS 5 |
---|---|---|---|---|---|---|---|---|---|---|
Italian group | 71 (36 s-AML, 22 t-AML, 13 MRC-AML) | 66 | 70.4 | 37.5 | 23.6 | 12 months | 1-year OS 5 68.6% | 20 | Complex karyotype | HSCT 6 performed in first CR 2 |
French group | 103 (27 t-AML, 74 MRC-AML, 2 other) | 67 | 59 | 57 | 25 | 8.6 months | 16.1 months | 37 | Monosomal karyotype, DNMT3A mutation, TP53 mutation | Presence of spliceosome mutations |
German group | 188 (56 t-AML, 132 MRC-AML) | 65 | 47 | 64 | 23 after transplant | 9.3 months | 21 months; 1-year OS 5 64% | 62 | Pretreatment with HMA 7, adverse ELN2017 risk, complex karyotype, MRD positivity after induction not undergoing allo-HSCT 6 | Intermediate ELN2017 risk, no pretreatment with HMA 7 |
UK group | 57 (8 t-AML, 29 s-AML, 11 MRC-AML, 9 other) | 63 | 61 | / | / | 12 months | 429 days | 38 | TP53 mutation | Wt-TP53 mutation |
Disease | Characteristic | Combination | NCT Number | Phase |
---|---|---|---|---|
R/R 1 AML 2 | CD33 positive (>3%). Excluding prior treatment with CPX-351 or GO 6 | GO 6 -induction: GO 6 on day 1 -consolidation: GO 6 on day 1 -maintenance: GO 6 on day 1 every 6 weeks for up to 6 cycles | NCT03672539 | Phase 1 |
Frontline AML 2 | Age > 55 years. Excluding prior treatment with CPX-351, HSCT 5 or GO 6 | GO 6 Induction: -cohort A: GO 6 on day 1 -cohort B: GO 6 on days 1, 4 -cohort C: GO 6 on days 1, 4, 7 Consolidation: -GO 6 on day 1 | NCT03878927 | Phase 1 |
Frontline, post-MPN 3 AML 2 | Secondary AML transformed from MPNs 3 (PV 7, ET 8 and MF 9) | Ruxolitinib -identification of the maximum-tolerated dose of ruxolitinib in combination with CPX-351 | NCT03878199 | Phase 1/2 |
R/R 1 AML 2 | IDH2 mutated. Not excluding prior IDH2 inhibitor treatment | Enasidenib -identification of the maximum-tolerated dose of enasidenib in combination with CPX-351 | NCT03825796 | Phase 2 |
Frontline and R/R 1 AML 2 and HR-MDS 4 | IDH1-R132 mutated. Excluding patients with prior anthracycline exposure of >360 mg/mq daunorubicin | Ivosidenib -induction: 500 mg/die on days 1–28 -consolidation: 500 mg/die on days 1–28 -maintenance: 500 mg/die for up to 2 years in the absence of disease progression or unacceptable toxicity | NCT04493164 | Phase 2 |
Frontline AML 2 | Excluding prior treatment with cell cycle inhibitors or CPX-351 | Palbociclib Induction: - palbociclib administered orally on days -1 and -2 at 125 mg PO during the phase IIa portion (dose level 0). Day 0 will be rest and then Palbociclib on days 2, 4, and 6 followed by rest/monitoring period (days 7–28) | NCT03844997 | Phase 1/2 |
Frontline and R/R 1 AML 2 | Excluding prior treatment with CPX-351 or venetoclax | Venetoclax -induction: venetoclax 300 mg/die on days 2–21 -consolidation: venetoclax 300 mg/die on days 2–21 | NCT03629171 | Phase 2 |
R/R 1 Acute Leukemia | Ages 1–39 years AML/T-ALL/ETP-ALL/MPAL/AUL/KMT2A rearranged ALL 10 | Venetoclax induction and consolidation: -dose level 0–400 mg daily for 21 days -dose level -1–400 mg daily for 14 days | NCT03826992 | Phase 1/2 |
R/R 1 AML 2 | FLT3 mutated. Including patients who received a prior FLT3 inhibitor | Quizrtinib -induction: 30 mg on days 8–21 -consolidation: 30 mg on days 6–21 -maintenance 30 mg daily | NCT04209725 | Phase 2 |
Frontline AML 2 | Previously untreated t-AML or MRC-AML. Excluding patients who received prior CPX-351 or glasdegib | Glasdegib -induction: 100 mg daily on days 6 to 28 -consolidation: 100 mg daily on days 6 to 28 -maintenance: 100 mg daily for up to one year | NCT04231851 | Phase 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molica, M.; Perrone, S.; Mazzone, C.; Cesini, L.; Canichella, M.; de Fabritiis, P. CPX-351: An Old Scheme with a New Formulation in the Treatment of High-Risk AML. Cancers 2022, 14, 2843. https://doi.org/10.3390/cancers14122843
Molica M, Perrone S, Mazzone C, Cesini L, Canichella M, de Fabritiis P. CPX-351: An Old Scheme with a New Formulation in the Treatment of High-Risk AML. Cancers. 2022; 14(12):2843. https://doi.org/10.3390/cancers14122843
Chicago/Turabian StyleMolica, Matteo, Salvatore Perrone, Carla Mazzone, Laura Cesini, Martina Canichella, and Paolo de Fabritiis. 2022. "CPX-351: An Old Scheme with a New Formulation in the Treatment of High-Risk AML" Cancers 14, no. 12: 2843. https://doi.org/10.3390/cancers14122843
APA StyleMolica, M., Perrone, S., Mazzone, C., Cesini, L., Canichella, M., & de Fabritiis, P. (2022). CPX-351: An Old Scheme with a New Formulation in the Treatment of High-Risk AML. Cancers, 14(12), 2843. https://doi.org/10.3390/cancers14122843