A Platform of Patient-Derived Microtumors Identifies Individual Treatment Responses and Therapeutic Vulnerabilities in Ovarian Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Human Specimens
2.2. Isolation and Cultivation of Patient-Derived Microtumors and Tumor-Infiltrating Lymphocytes
2.3. RPPA and Protein Data Analysis
2.4. Efficacy of Compounds Validated in PDM Cultures
2.5. FACS Analysis
2.6. Co-Culture of PDM and Autologous TILs
2.7. Statistical Analysis
3. Results
3.1. Isolation of Patient-Derived Microtumors with High Viability from Primary OvCa Tissue Specimen by Limited Enzymatic Digestion
3.2. OvCa PDM Sections Display Histopathological Characteristics Comparable to the Corresponding Primary Tumor Tissue (PTT)
3.3. Immunohistochemical Staining of PDM Identifies Expression of Histopathological OvCa Markers and Patterns of Extracellular Matrix and Tumour Microenvironment Components Comparable to Corresponding Primary Tumour Tissue Sections
3.4. Protein Signaling Pathway Profiling of OvCa PDM by RPPA
3.5. Heterogeneous Treatment Responses towards Chemo- and Targeted Therapy Assessed by Functional Compound Testing in OvCa PDM
3.6. Correlation of Carboplatin Treatment Response and Activation State of Protein Signaling Pathways
3.6.1. Carboplatin Treatment Sensitivity of OvCa PDM Correlates with High Protein Abundance of G2-M Cell Cycle Proteins
3.6.2. Carboplatin Treatment Is Associated with Early Induction of Stress Response and Late Apoptosis
3.7. Characterization of Tumor-Infiltrating Lymphocyte Populations from Primary OvCa Tissue Samples
3.7.1. Isolated CD8+ OvCa TILs Are Composed of Tumor-Specific CD39+, Stem-like CD39−PD1+ and Terminally Differentiated CD39+PD1+ Populations
3.7.2. Specific TIL Phenotypes Isolated from OvCa Tumor Specimen Correlate with Regional Lymph Node Metastasis
3.8. OvCa PDM Killing by Autologous TIL Populations Is Enhanced by Immune Checkpoint Inhibitor Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Izar, B.; Tirosh, I.; Stover, E.H.; Wakiro, I.; Cuoco, M.S.; Alter, I.; Rodman, C.; Leeson, R.; Su, M.J.; Shah, P.; et al. A single-cell landscape of high-grade serous ovarian cancer. Nat. Med. 2020, 26, 1271–1279. [Google Scholar] [CrossRef] [PubMed]
- The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011, 474, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, T.; Zhang, Z.; Payne, S.H.; Zhang, B.; McDermott, J.E.; Zhou, J.-Y.; Petyuk, V.A.; Chen, L.; Ray, D.; et al. Integrated proteogenomic characterization of human high-grade serous ovarian cancer. Cell 2016, 166, 755–765. [Google Scholar] [CrossRef]
- Verduin, M.; Hoeben, A.; De Ruysscher, D.; Vooijs, M. Patient-derived cancer organoids as predictors of treatment response. Front. Oncol. 2021, 11, 641980. [Google Scholar] [CrossRef]
- Chen, H.; Gotimer, K.; De Souza, C.; Tepper, C.G.; Karnezis, A.N.; Leiserowitz, G.S.; Chien, J.; Smith, L.H. Short-term organoid culture for drug sensitivity testing of high-grade serous carcinoma. Gynecol. Oncol. 2020, 157, 783–792. [Google Scholar] [CrossRef]
- Kopper, O.; De Witte, C.J.; Lõhmussaar, K.; Valle-Inclan, J.E.; Hami, N.; Kester, L.; Balgobind, A.V.; Korving, J.; Proost, N.; Begthel, H.; et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nat. Med. 2019, 25, 838–849. [Google Scholar] [CrossRef]
- Hill, S.J.; Decker, B.; Roberts, E.A.; Horowitz, N.S.; Muto, M.G.; Worley, M.J., Jr.; Feltmate, C.M.; Nucci, M.R.; Swisher, E.M.; Nguyen, H.; et al. Prediction of DNA repair inhibitor response in short-term patient-derived ovarian cancer organoids. Cancer Discov. 2018, 8, 1404–1421. [Google Scholar] [CrossRef]
- Neal, J.T.; Li, X.; Zhu, J.; Giangarra, V.; Grzeskowiak, C.L.; Ju, J.; Liu, I.H.; Chiou, S.-H.; Salahudeen, A.A.; Smith, A.R.; et al. Organoid modeling of the tumor immune microenvironment. Cell 2018, 175, 1972–1988.e1916. [Google Scholar] [CrossRef]
- Wensink, G.E.; Elias, S.G.; Mullenders, J.; Koopman, M.; Boj, S.F.; Kranenburg, O.W.; Roodhart, J.M.L. Patient-derived organoids as a predictive biomarker for treatment response in cancer patients. NPJ Precis. Oncol. 2021, 5, 30. [Google Scholar] [CrossRef]
- Kondo, J.; Endo, H.; Okuyama, H.; Ishikawa, O.; Iishi, H.; Tsujii, M.; Ohue, M.; Inoue, M. Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer. Proc. Natl. Acad. Sci. USA 2011, 108, 6235–6240. [Google Scholar] [CrossRef] [PubMed]
- Shuford, S.; Wilhelm, C.; Rayner, M.; Elrod, A.; Millard, M.; Mattingly, C.; Lotstein, A.; Smith, A.M.; Guo, Q.J.; O’Donnell, L.; et al. Prospective validation of an ex vivo, patient-derived 3d spheroid model for response predictions in newly diagnosed ovarian cancer. Sci. Rep. 2019, 9, 11153. [Google Scholar] [CrossRef] [PubMed]
- Pirnia, F.; Pawlak, M.; Thallinger, G.G.; Gierke, B.; Templin, M.F.; Kappeler, A.; Betticher, D.C.; Gloor, B.; Borner, M.M. Novel functional profiling approach combining reverse phase protein microarrays and human 3-d ex vivo tissue cultures: Expression of apoptosis-related proteins in human colon cancer. Proteomics 2009, 9, 3535–3548. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, M.; Carragher, N.O. Reverse phase protein arrays elucidate mechanisms-of-action and phenotypic response in 2d and 3d models. Drug Discov. Today Technol. 2017, 23, 7–16. [Google Scholar] [CrossRef]
- Kresbach, G.M.; Pawlak, M. High precision rppa: Concept, features, and application performance of the integrated zeptosens platform. Adv. Exp. Med. Biol. 2019, 1188, 31–59. [Google Scholar]
- Pawlak, M.; Schick, E.; Bopp, M.A.; Schneider, M.J.; Oroszlan, P.; Ehrat, M. Zeptosens’ protein microarrays: A novel high performance microarray platform for low abundance protein analysis. Proteomics 2002, 2, 383–393. [Google Scholar] [CrossRef]
- Iglewicz, B.; Hoaglin, D.C. How to Detect and Handle Outliers; ASQC Quality Press: Milwaukee, WI, USA, 1993; p. ix. 87p. [Google Scholar]
- Köbel, M.; Rahimi, K.; Rambau, P.F.; Naugler, C.; Le Page, C.; Meunier, L.; De Ladurantaye, M.; Lee, S.; Leung, S.; Goode, E.L.; et al. An immunohistochemical algorithm for ovarian carcinoma typing. Int. J. Gynecol. Pathol. 2016, 35, 430–441. [Google Scholar] [CrossRef]
- Hilliard, T. The impact of mesothelin in the ovarian cancer tumor microenvironment. Cancers 2018, 10, 277. [Google Scholar] [CrossRef]
- Hassan, R.; Kreitman, R.J.; Pastan, I.; Willingham, M.C. Localization of mesothelin in epithelial ovarian cancer. Appl. Immunohistochem. Mol. Morphol. 2005, 13, 243–247. [Google Scholar] [CrossRef]
- Chang, M.-C.; Chen, C.-A.; Chen, P.-J.; Chiang, Y.-C.; Chen, Y.-L.; Mao, T.-L.; Lin, H.-W.; Lin Chiang, W.-H.; Cheng, W.-F. Mesothelin enhances invasion of ovarian cancer by inducing mmp-7 through mapk/erk and jnk pathways. Biochem. J. 2012, 442, 293–302. [Google Scholar] [CrossRef]
- Tornos, C.; Soslow, R.; Chen, S.; Akram, M.; Hummer, A.J.; Abu-Rustum, N.; Norton, L.; Tan, L.K. Expression of wt1, ca 125, and gcdfp-15 as useful markers in the differential diagnosis of primary ovarian carcinomas versus metastatic breast cancer to the ovary. Am. J. Surg. Pathol. 2005, 29, 1482–1489. [Google Scholar] [CrossRef] [PubMed]
- Kriplani, D.; Patel, M.M. Immunohistochemistry: A diagnostic aid in differentiating primary epithelial ovarian tumors and tumors metastatic to the ovary. S. Asian J. Cancer 2013, 2, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Neunteufel, W.; Breitenecker, G. Tissue expression of ca 125 in benign and malignant lesions of ovary and fallopian tube: A comparison with ca 19-9 and cea. Gynecol. Oncol. 1989, 32, 297–302. [Google Scholar] [CrossRef]
- Cox, T.R. The matrix in cancer. Nat. Rev. Cancer 2021, 21, 217–238. [Google Scholar] [CrossRef] [PubMed]
- Bhat, R.; Bissell, M.J. Of plasticity and specificity: Dialectics of the microenvironment and macroenvironment and the organ phenotype. WIREs Dev. Biol. 2014, 3, 147–163. [Google Scholar] [CrossRef]
- Roskelley, C.D.; Bissell, M.J. The dominance of the microenvironment in breast and ovarian cancer. Semin. Cancer Biol. 2002, 12, 97–104. [Google Scholar] [CrossRef]
- Mhawech-Fauceglia, P.; Yan, L.; Sharifian, M.; Ren, X.; Liu, S.; Kim, G.; Gayther, S.A.; Pejovic, T.; Lawrenson, K. Stromal expression of fibroblast activation protein alpha (fap) predicts platinum resistance and shorter recurrence in patients with epithelial ovarian cancer. Cancer Microenviron. 2015, 8, 23–31. [Google Scholar] [CrossRef]
- Nissen, N.I.; Karsdal, M.; Willumsen, N. Collagens and cancer associated fibroblasts in the reactive stroma and its relation to cancer biology. J. Exp. Clin. Cancer Res. 2019, 38, 115. [Google Scholar] [CrossRef]
- Saha, P.; Datta, K. Multi-functional, multicompartmental hyaluronan-binding protein 1 (habp1/p32/gc1qr): Implication in cancer progression and metastasis. Oncotarget 2018, 9, 10784–10807. [Google Scholar] [CrossRef]
- Iyengar, M.; O’Hayer, P.; Cole, A.; Sebastian, T.; Yang, K.; Coffman, L.; Buckanovich, R.J. Cdk4/6 inhibition as maintenance and combination therapy for high grade serous ovarian cancer. Oncotarget 2018, 9, 15658–15672. [Google Scholar] [CrossRef]
- Farley, J.; Brady, W.E.; Vathipadiekal, V.; Lankes, H.A.; Coleman, R.; Morgan, M.A.; Mannel, R.; Yamada, S.D.; Mutch, D.; Rodgers, W.H.; et al. Selumetinib in women with recurrent low-grade serous carcinoma of the ovary or peritoneum: An open-label, single-arm, phase 2 study. Lancet Oncol. 2013, 14, 134–140. [Google Scholar] [CrossRef]
- McGivern, N.; El-Helali, A.; Mullan, P.; McNeish, I.A.; Paul Harkin, D.; Kennedy, R.D.; McCabe, N. Activation of mapk signalling results in resistance to saracatinib (azd0530) in ovarian cancer. Oncotarget 2018, 9, 4722–4736. [Google Scholar] [CrossRef] [PubMed]
- Liston, D.R.; Davis, M. Clinically relevant concentrations of anticancer drugs: A guide for nonclinical studies. Clin. Cancer. Res. 2017, 23, 3489–3498. [Google Scholar] [CrossRef]
- Aramburu, J.; Ortells, M.C.; Tejedor, S.; Buxadé, M.; López-Rodríguez, C. Transcriptional regulation of the stress response by mtor. Sci. Signal. 2014, 7, re2. [Google Scholar] [CrossRef] [PubMed]
- Sato, E.; Olson, S.H.; Ahn, J.; Bundy, B.; Nishikawa, H.; Qian, F.; Jungbluth, A.A.; Frosina, D.; Gnjatic, S.; Ambrosone, C.; et al. Intraepithelial cd8+ tumor-infiltrating lymphocytes and a high cd8+/regulatory t cell ratio are associated with favorable prognosis in ovarian cancer. Proc. Natl. Acad. Sci. USA 2005, 102, 18538–18543. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Conejo-Garcia, J.R.; Katsaros, D.; Gimotty, P.A.; Massobrio, M.; Regnani, G.; Makrigiannakis, A.; Gray, H.; Schlienger, K.; Liebman, M.N.; et al. Intratumoral t cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 2003, 348, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Hamanishi, J.; Mandai, M.; Iwasaki, M.; Okazaki, T.; Tanaka, Y.; Yamaguchi, K.; Higuchi, T.; Yagi, H.; Takakura, K.; Minato, N.; et al. Programmed cell death 1 ligand 1 and tumor-infiltrating cd8+ t lymphocytes are prognostic factors of human ovarian cancer. Proc. Natl. Acad. Sci. USA 2007, 104, 3360–3365. [Google Scholar] [CrossRef]
- Ye, Q.; Song, D.G.; Poussin, M.; Yamamoto, T.; Best, A.; Li, C.; Coukos, G.; Powell, D.J. Cd137 accurately identifies and enriches for naturally occurring tumor-reactive t cells in tumor. Clin. Cancer. Res. 2014, 20, 44–55. [Google Scholar] [CrossRef]
- Duhen, T.; Duhen, R.; Montler, R.; Moses, J.; Moudgil, T.; de Miranda, N.F.; Goodall, C.P.; Blair, T.C.; Fox, B.A.; McDermott, J.E.; et al. Co-expression of cd39 and cd103 identifies tumor-reactive cd8 t cells in human solid tumors. Nat. Commun. 2018, 9, 2724. [Google Scholar] [CrossRef]
- Simoni, Y.; Becht, E.; Fehlings, M.; Loh, C.Y.; Koo, S.-L.; Teng, K.W.W.; Yeong, J.P.S.; Nahar, R.; Zhang, T.; Kared, H.; et al. Bystander cd8+ t cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 2018, 557, 575–579. [Google Scholar] [CrossRef]
- Canale, F.P.; Ramello, M.C.; Núñez, N.; Furlan, C.L.A.; Bossio, S.N.; Serrán, M.G.; Boari, J.T.; Del Castillo, A.; Ledesma, M.; Sedlik, C.; et al. Cd39 expression defines cell exhaustion in tumor-infiltrating cd8+t cells. Cancer Res. 2018, 78, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Jansen, C.S.; Prokhnevska, N.; Master, V.A.; Sanda, M.G.; Carlisle, J.W.; Bilen, M.A.; Cardenas, M.; Wilkinson, S.; Lake, R.; Sowalsky, A.G.; et al. An intra-tumoral niche maintains and differentiates stem-like cd8 t cells. Nature 2019, 576, 465–470. [Google Scholar] [CrossRef]
- Przystal, J.M.; Becker, H.; Canjuga, D.; Tsiami, F.; Anderle, N.; Keller, A.-L.; Pohl, A.; Ries, C.H.; Schmittnaegel, M.; Korinetska, N.; et al. Targeting csf1r alone or in combination with pd1 in experimental glioma. Cancers 2021, 13, 2400. [Google Scholar] [CrossRef] [PubMed]
- Walter, B.; Canjuga, D.; Yüz, S.G.; Ghosh, M.; Bozko, P.; Przystal, J.M.; Govindarajan, P.; Anderle, N.; Keller, A.L.; Tatagiba, M.; et al. Argyrin f treatment-induced vulnerabilities lead to a novel combination therapy in experimental glioma. Adv. Ther. 2021, 4, 2100078. [Google Scholar] [CrossRef]
- Yu, G.; Wang, J. Significance of hyaluronan binding protein (habp1/p32/gc1qr) expression in advanced serous ovarian cancer patients. Exp. Mol. Pathol. 2013, 94, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Liu, Q.; Xin, T.; Xing, L.; Dong, G.; Jiang, Q.; Lv, Y.; Song, X.; Teng, C.; Huang, D.; et al. Elevated expression of hyaluronic acid binding protein 1 (habp1)/p32/c1qbp is a novel indicator for lymph node and peritoneal metastasis of epithelial ovarian cancer patients. Tumor Biol. 2013, 34, 3981–3987. [Google Scholar] [CrossRef] [PubMed]
- Barnett, B.; Kryczek, I.; Cheng, P.; Zou, W.; Curiel, T.J. Regulatory t cells in ovarian cancer: Biology and therapeutic potential. Am. J. Reprod. Immunol. 2005, 54, 369–377. [Google Scholar] [CrossRef]
- Valeriote, F.; van Putten, L. Proliferation-dependent cytotoxicity of anticancer agents: A review. Cancer Res. 1975, 35, 2619–2630. [Google Scholar]
- Vasey, P.A. Resistance to chemotherapy in advanced ovarian cancer: Mechanisms and current strategies. Br. J. Cancer 2003, 89, 23–28. [Google Scholar] [CrossRef]
- Haygood, C.L.W. Ovarian cancer stem cells: Can targeted therapy lead to improved progression-free survival? World J. Stem Cells 2014, 6, 441. [Google Scholar] [CrossRef]
- Bapat, S.A.; Mali, A.M.; Koppikar, C.B.; Kurrey, N.K. Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res. 2005, 65, 3025–3029. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Wang, L.; Chen, H.; Hao, J.; Ni, J.; Chang, L.; Duan, W.; Graham, P.; Li, Y. Targeting epithelial-mesenchymal transition and cancer stem cells for chemoresistant ovarian cancer. Oncotarget 2016, 7, 55771–55788. [Google Scholar] [CrossRef]
- Liu, S.; Sun, J.; Cai, B.; Xi, X.; Yang, L.; Zhang, Z.; Feng, Y.; Sun, Y. Nanog regulates epithelial-mesenchymal transition and chemoresistance through activation of the stat3 pathway in epithelial ovarian cancer. Tumor Biol. 2016, 37, 9671–9680. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Inoki, K.; Karbowniczek, M.; Petroulakis, E.; Sonenberg, N.; Henske, E.P.; Guan, K.L. Constitutive mtor activation in tsc mutants sensitizes cells to energy starvation and genomic damage via p53. EMBO J. 2007, 26, 4812–4823. [Google Scholar] [CrossRef]
- Vadysirisack, D.D.; Baenke, F.; Ory, B.; Lei, K.; Ellisen, L.W. Feedback control of p53 translation by redd1 and mtorc1 limits the p53-dependent DNA damage response. Mol. Cell. Biol. 2011, 31, 4356–4365. [Google Scholar] [CrossRef] [PubMed]
- Leontieva, O.V.; Blagosklonny, M.V. DNA damaging agents and p53 do not cause senescence in quiescent cells, while consecutive re-activation of mtor is associated with conversion to senescence. Aging 2010, 2, 924–935. [Google Scholar] [CrossRef] [PubMed]
- Astle, M.V.; Hannan, K.M.; Ng, P.Y.; Lee, R.S.; George, A.J.; Hsu, A.K.; Haupt, Y.; Hannan, R.D.; Pearson, R.B. Akt induces senescence in human cells via mtorc1 and p53 in the absence of DNA damage: Implications for targeting mtor during malignancy. Oncogene 2012, 31, 1949–1962. [Google Scholar] [CrossRef] [PubMed]
- Gajewski, T.F.; Schreiber, H.; Fu, Y.-X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 2013, 14, 1014–1022. [Google Scholar] [CrossRef]
- Hwang, W.T.; Adams, S.F.; Tahirovic, E.; Hagemann, I.S.; Coukos, G. Prognostic significance of tumor-infiltrating t cells in ovarian cancer: A meta-analysis. Gynecol. Oncol. 2012, 124, 192–198. [Google Scholar] [CrossRef]
- Curiel, T.J.; Coukos, G.; Zou, L.; Alvarez, X.; Cheng, P.; Mottram, P.; Evdemon-Hogan, M.; Conejo-Garcia, J.R.; Zhang, L.; Burow, M.; et al. Specific recruitment of regulatory t cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 2004, 10, 942–949. [Google Scholar] [CrossRef]
- Leem, G.; Park, J.; Jeon, M.; Kim, E.-S.; Kim, S.W.; Lee, Y.J.; Choi, S.J.; Choi, B.; Park, S.; Ju, Y.S.; et al. 4-1bb co-stimulation further enhances anti-pd-1-mediated reinvigoration of exhausted cd39+ cd8 t cells from primary and metastatic sites of epithelial ovarian cancers. J. Immunol. Ther. Cancer 2020, 8, e001650. [Google Scholar] [CrossRef] [PubMed]
- Grönholm, M.; Feodoroff, M.; Antignani, G.; Martins, B.; Hamdan, F.; Cerullo, V. Patient-derived organoids for precision cancer immunotherapy. Cancer Res. 2021, 81, 3149–3155. [Google Scholar] [CrossRef] [PubMed]
- Aisenbrey, E.A.; Murphy, W.L. Synthetic alternatives to matrigel. Nat. Rev. Mater. 2020, 5, 539–551. [Google Scholar] [CrossRef] [PubMed]
- Kozlowski, M.T.; Crook, C.J.; Ku, H.T. Towards organoid culture without matrigel. Commun. Biol. 2021, 4, 1387. [Google Scholar] [CrossRef]
- Ruifrok, A.C.; Johnston, D.A. Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. Histol. 2001, 23, 291–299. [Google Scholar]
Sample OvCa # | Age at Surgery | Histopathological Classification | Cellular Origin | Grade | FIGO Stage | T | N | M | L | V | Pn | R | Isolated PDM | Expanded TIL |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
#1 | 53 | HGSC | epithelial | HG | III | pT3c (liver/splenic capsule) | pN1a (2/14) | Mx | L1 | V1 | Pn1 | Rx | yes | yes |
#3 | 88 | HGSC | epithelial | HG | IIB | pT2b (peritoneum douglas) | Nx | Mx | L0 | V0 | Pn0 | Rx | yes | yes |
#4 | 54 | HGSC | epithelial | HG/ G3 | IIIC | ypT3c | ypN0 | Mx | L0 | V0 | Pn0 | Rx | yes | yes |
#5 | 59 | HGSC | epithelial | HG/ G3 | IIIC | pT3c | pN1a (2/18) | Mx | L0 | V0 | Pn0 | Rx | no | yes |
#7 | 67 | HGSC | epithelial/ peritoneal | HG | IVa | Tx | Nx | Mx | Lx | Vx | Pnx | Rx | yes | yes |
#8 | 44 | MC | epithelial | LG | Ia | T1a | Nx | Mx | Lx | Vx | Pnx | Rx | yes | no |
#13 | 71 | LGSC | epithelial | LG/G2 | IIIC | pT3c | pN0 | Mx | L0 | V0 | Pn0 | Rx | yes | yes |
#17 | 62 | HGSC | epithelial | HG | IIIC | pT3c | pN0 | Mx | L1 | V0 | Pn0 | Rx | yes | yes |
#18 | 61 | HGSC | epithelial | HG/ G3 | IIIC | ypT3c | ypN0 | cM0 | L0 | V0 | Pnx | R0 | yes | yes |
#19 | 60 | HGSC | epithelial | HG/ G3 | IIIB | pT3b | pN0 | cM0 | L0 | V0 | Pn0 | R0 | yes | no |
#20 | 66 | HGSC | epithelial | HG | IVa | pT3c (pleural effusion) | pN1a | pM1a | L0 | V0 | Pn0 | Rx | no | yes |
#21 | 74 | adult-type GCT | sex cord-stromal | - | IA | pT1a | pNx | cM0 | L0 | V0 | Pn0 | R0 | yes | no |
#23 | 71 | HGSC | epithelial | HG/ G3 | IIIC | pT3c (Omentum metastasis) | pN1a | pMx | L1 | V0 | Pn0 | Rx | yes | yes |
#24 | 73 | HGSC | epithelial | HG | IIIC | pT3c | pN1b (58/75) | Mx | L1 | V0 | Pnx | R0 | yes | yes |
#25 | 54 | HGSC | epithelial | HG | IIA | pT2a (tube) | pN0 | cM0 | L0 | V0 | Pn0 | cR0 | yes | yes |
#26 | 67 | HGSC | epithelial | HG/ G3 | IIIC | pT3c | pNx | Mx | L1 | V0 | Pn0 | cR0 | yes | yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anderle, N.; Koch, A.; Gierke, B.; Keller, A.-L.; Staebler, A.; Hartkopf, A.; Brucker, S.Y.; Pawlak, M.; Schenke-Layland, K.; Schmees, C. A Platform of Patient-Derived Microtumors Identifies Individual Treatment Responses and Therapeutic Vulnerabilities in Ovarian Cancer. Cancers 2022, 14, 2895. https://doi.org/10.3390/cancers14122895
Anderle N, Koch A, Gierke B, Keller A-L, Staebler A, Hartkopf A, Brucker SY, Pawlak M, Schenke-Layland K, Schmees C. A Platform of Patient-Derived Microtumors Identifies Individual Treatment Responses and Therapeutic Vulnerabilities in Ovarian Cancer. Cancers. 2022; 14(12):2895. https://doi.org/10.3390/cancers14122895
Chicago/Turabian StyleAnderle, Nicole, André Koch, Berthold Gierke, Anna-Lena Keller, Annette Staebler, Andreas Hartkopf, Sara Y. Brucker, Michael Pawlak, Katja Schenke-Layland, and Christian Schmees. 2022. "A Platform of Patient-Derived Microtumors Identifies Individual Treatment Responses and Therapeutic Vulnerabilities in Ovarian Cancer" Cancers 14, no. 12: 2895. https://doi.org/10.3390/cancers14122895
APA StyleAnderle, N., Koch, A., Gierke, B., Keller, A. -L., Staebler, A., Hartkopf, A., Brucker, S. Y., Pawlak, M., Schenke-Layland, K., & Schmees, C. (2022). A Platform of Patient-Derived Microtumors Identifies Individual Treatment Responses and Therapeutic Vulnerabilities in Ovarian Cancer. Cancers, 14(12), 2895. https://doi.org/10.3390/cancers14122895