Mucosal-Associated Invariant T Cells in T-Cell Non-Hodgkin Lymphomas: A Case Series
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Patients and Chemotherapy Regimens
2.2. Immunofluorescence Staining for MAIT Cells Identification
2.3. DNA Extraction, Amplification, and Purification for TCR VαJα Rearrangements Detection via Deep Sequencing
2.4. Data Analysis
3. Results
3.1. MAIT Cells Identification
3.2. Clinical Characteristics and Outcomes of Patients with Positive Biopsy to MAIT Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Toubal, A.; Nel, I.; Lotersztajn, S.; Lehuen, A. Mucosal-associated invariant T cells and disease. Nat. Rev. Immunol. 2019, 19, 643–657. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, D.I.; Koay, H.-F.; McCluskey, J.; Gherardin, N.A. The biology and functional importance of MAIT cells. Nat. Immunol. 2019, 20, 1110–1128. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, D.I.; Uldrich, A.P.; McCluskey, J.; Rossjohn, J.; Moody, D.B. The burgeoning family of unconventional T cells. Nat. Immunol. 2015, 16, 1114–1123. [Google Scholar] [CrossRef]
- Reantragoon, R.; Corbett, A.J.; Sakala, I.G.; Gherardin, N.A.; Furness, J.B.; Chen, Z.; Eckle, S.B.G.; Uldrich, A.P.; Birkinshaw, R.W.; Patel, O.; et al. Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J. Exp. Med. 2013, 210, 2305–2320. [Google Scholar] [CrossRef] [PubMed]
- Gold, M.C.; McLaren, J.E.; Reistetter, J.A.; Smyk-Pearson, S.; Ladell, K.; Swarbrick, G.M.; Yu, Y.Y.; Hansen, T.H.; Lund, O.; Nielsen, M.; et al. MR1-restricted MAIT cells display ligand discrimination and pathogen selectivity through distinct T cell receptor usage. J. Exp. Med. 2014, 211, 1601–1610. [Google Scholar] [CrossRef] [PubMed]
- Corbett, A.J.; Awad, W.; Wang, H.; Chen, Z. Antigen Recognition by MR1-Reactive T Cells; MAIT Cells, Metabolites, and Remaining Mysteries. Front. Immunol. 2020, 11. [Google Scholar] [CrossRef]
- Xiao, X.; Cai, J. Mucosal-Associated Invariant T Cells: New Insights into Antigen Recognition and Activation. Front. Immunol. 2017, 8, 1540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.; Deng, W.; Li, D.; Zeng, T.; Huang, L.; Wang, Q.; Wang, J.; Zhang, W.; Yu, X.; Duan, D.; et al. Circulating Mucosal-Associated Invariant T Cells in a Large Cohort of Healthy Chinese Individuals From Newborn to Elderly. Front. Immunol. 2019, 10. [Google Scholar] [CrossRef]
- Xie, C.; Li, X.; Zeng, H.; Qian, W. Molecular insights into pathogenesis and targeted therapy of peripheral T cell lymphoma. Exp. Hematol. Oncol. 2020, 9, 1–15. [Google Scholar] [CrossRef]
- Malcolm, T.I.; Hodson, D.J.; Macintyre, E.A.; Turner, S.D. Challenging perspectives on the cellular origins of lymphoma. Open Biol. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Marchi, E.; O′Connor, O.A. The rapidly changing landscape in mature T-cell lymphoma (MTCL) biology and management. CA Cancer J. Clin. 2020, 70, 47–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phan, A.; Veldman, R.; Lechowicz, M.J. T-cell Lymphoma Epidemiology: The Known and Unknown. Curr. Hematol. Malig. Rep. 2016, 11, 492–503. [Google Scholar] [CrossRef] [PubMed]
- Bachy, E.; Urb, M.; Chandra, S.; Robinot, R.; Bricard, G.; de Bernard, S.; Traverse-Glehen, A.; Gazzo, S.; Blond, O.; Khurana, A.; et al. CD1d-restricted peripheral T cell lymphoma in mice and humans. J. Exp. Med. 2016, 213, 841–857. [Google Scholar] [CrossRef] [PubMed]
- McGregor, S.; Shah, A.; Raca, G.; Mirza, M.K.; Smith, S.M.; Anastasi, J.; Vardiman, J.W.; Hyjek, E.; Gurbuxani, S. PLZF staining identifies peripheral T-cell lymphomas derived from innate-like T-cells with TRAV1-2-TRAJ33 TCR-α rearrangement. Blood 2014, 123, 2742–2743. [Google Scholar] [CrossRef] [Green Version]
- Jeon, Y.K.; Go, H.; Nam, S.J.; Keam, B.; Kim, T.M.; Jung, K.C.; Kang, H.J.; Lee, D.S.; Huh, J.R.; Park, S.H. Expression of the promyelocytic leukemia zinc-finger in T-lymphoblastic lymphoma and leukemia has strong implications for their cellular origin and greater association with initial bone marrow involvement. Mod. Pathol. 2012, 25, 1236–1245. [Google Scholar] [CrossRef] [Green Version]
- Association, W.M. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Swerdlow, S.H.; Campo, E.; Pileri, S.A.; Harris, N.L.; Stein, H.; Siebert, R.; Advani, R.; Ghielmini, M.; Salles, G.A.; Zelenetz, A.D.; et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016, 127, 2375–2390. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, E.S. The 2008 WHO classification of lymphomas: Implications for clinical practice and translational research. Hematol. Am. Soc. Hematol. Educ. Program. 2009, 523–531. [Google Scholar] [CrossRef] [Green Version]
- Chiaretti, S.; Messina, M.; Della Starza, I.; Piciocchi, A.; Cafforio, L.; Cavalli, M.; Taherinasab, A.; Ansuinelli, M.; Elia, L.; Albertini Petroni, G.; et al. Philadelphia-like acute lymphoblastic leukemia is associated with minimal residual disease persistence and poor outcome. First report of the minimal residual disease-oriented GIMEMA LAL1913. Haematologica 2021, 106, 1559–1568. [Google Scholar] [CrossRef]
- Corbett, A.J.; Eckle, S.B.G.; Birkinshaw, R.W.; Liu, L.; Patel, O.; Mahony, J.; Chen, Z.; Reantragoon, R.; Meehan, B.; Cao, H.; et al. T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 2014, 509, 361–365. [Google Scholar] [CrossRef]
- Amodio, G.; Margarucci, L.; Moltedo, O.; Casapullo, A.; Remondelli, P. Identification of Cysteine Ubiquitylation Sites on the Sec23A Protein of the COPII Complex Required for Vesicle Formation from the ER. Open Biochem. J. 2017, 11, 36–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolotin, D.A.; Poslavsky, S.; Mitrophanov, I.; Shugay, M.; Mamedov, I.Z.; Putintseva, E.V.; Chudakov, D.M. MiXCR: Software for comprehensive adaptive immunity profiling. Nat. Methods 2015, 12, 380–381. [Google Scholar] [CrossRef] [PubMed]
- Crooks, G.E.; Hon, G.; Chandonia, J.M.; Brenner, S.E. WebLogo: A sequence logo generator. Genome Res. 2004, 14, 1188–1190. [Google Scholar] [CrossRef] [Green Version]
- Weinreich, M.A.; Odumade, O.A.; Jameson, S.C.; Hogquist, K.A. T cells expressing the transcription factor PLZF regulate the development of memory-like CD8+ T cells. Nat. Immunol. 2010, 11, 709–716. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Suryadevara, N.; Hill, T.M.; Bezbradica, J.S.; Van Kaer, L.; Joyce, S. Natural Killer T Cells: An Ecological Evolutionary Developmental Biology Perspective. Front. Immunol. 2017, 8, 1858. [Google Scholar] [CrossRef] [Green Version]
- Constantinides, M.G.; Picard, D.; Savage, A.K.; Bendelac, A. A naive-like population of human CD1d-restricted T cells expressing intermediate levels of promyelocytic leukemia zinc finger. J. Immunol. 2011, 187, 309–315. [Google Scholar] [CrossRef]
- Koay, H.F.; Gherardin, N.A.; Enders, A.; Loh, L.; Mackay, L.K.; Almeida, C.F.; Russ, B.E.; Nold-Petry, C.A.; Nold, M.F.; Bedoui, S.; et al. A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage. Nat. Immunol. 2016, 17, 1300–1311. [Google Scholar] [CrossRef]
- Koppejan, H.; Jansen, D.T.S.L.; Hameetman, M.; Thomas, R.; Toes, R.E.M.; van Gaalen, F.A. Altered composition and phenotype of mucosal-associated invariant T cells in early untreated rheumatoid arthritis. Arthritis Res. Ther. 2019, 21, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Freeman, M.L.; Morris, S.R.; Lederman, M.M. CD161 Expression on Mucosa-Associated Invariant T Cells is Reduced in HIV-Infected Subjects Undergoing Antiretroviral Therapy Who Do Not Recover CD4(+) T Cells. Pathog. Immun. 2017, 2, 335–351. [Google Scholar] [CrossRef]
- Kronenberg, M.; Zajonc, D.M. A 'GEM' of a cell. Nat. Immunol. 2013, 14, 694–695. [Google Scholar] [CrossRef] [PubMed]
- Riva, A.; Patel, V.; Kurioka, A.; Jeffery, H.C.; Wright, G.; Tarff, S.; Shawcross, D.; Ryan, J.M.; Evans, A.; Azarian, S.; et al. Mucosa-associated invariant T cells link intestinal immunity with antibacterial immune defects in alcoholic liver disease. Gut 2018, 67, 918–930. [Google Scholar] [CrossRef] [PubMed]
- Gherardin, N.A.; Souter, M.N.; Koay, H.F.; Mangas, K.M.; Seemann, T.; Stinear, T.P.; Eckle, S.B.; Berzins, S.P.; d′Udekem, Y.; Konstantinov, I.E.; et al. Human blood MAIT cell subsets defined using MR1 tetramers. Immunol. Cell Biol. 2018, 96, 507–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gherardin, N.A.; Keller, A.N.; Woolley, R.E.; Le Nours, J.; Ritchie, D.S.; Neeson, P.J.; Birkinshaw, R.W.; Eckle, S.B.; Waddington, J.N.; Liu, L.; et al. Diversity of T Cells Restricted by the MHC Class I-Related Molecule MR1 Facilitates Differential Antigen Recognition. Immunity 2016, 44, 32–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gherardin, N.A.; McCluskey, J.; Rossjohn, J.; Godfrey, D.I. The Diverse Family of MR1-Restricted T Cells. J. Immunol. 2018, 201, 2862–2871. [Google Scholar] [CrossRef] [Green Version]
- Kansal, R.; Grody, W.W.; Zhou, J.; Dong, L.; Li, X. The Value of T-Cell Receptor γ (TRG) Clonality Evaluation by Next-Generation Sequencing in Clinical Hematolymphoid Tissues. Am. J. Clin. Pathol. 2018, 150, 193–223. [Google Scholar] [CrossRef]
- Mahe, E.; Pugh, T.; Kamel-Reid, S. T cell clonality assessment: Past, present and future. J. Clin. Pathol. 2018, 71, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Langerak, A.W.; Groenen, P.J.; Brüggemann, M.; Beldjord, K.; Bellan, C.; Bonello, L.; Boone, E.; Carter, G.I.; Catherwood, M.; Davi, F.; et al. EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations. Leukemia 2012, 26, 2159–2171. [Google Scholar] [CrossRef]
- Iyer, A.; Hennessey, D.; Gniadecki, R. Clonotype pattern in T-cell lymphomas map the cell of origin to immature lymphoid precursors. Blood Adv. 2022, 6, 2334–2345. [Google Scholar] [CrossRef]
- Blom, B.; Verschuren, M.C.M.; Heemskerk, M.H.M.; Bakker, A.Q.; van Gastel-Mol, E.J.; Wolvers-Tettero, I.L.M.; van Dongen, J.J.M.; Spits, H. TCR Gene Rearrangements and Expression of the Pre-T Cell Receptor Complex During Human T-Cell Differentiation. Blood 1999, 93, 3033–3043. [Google Scholar] [CrossRef]
- Walia, R.; Yeung, C.C.S. An Update on Molecular Biology of Cutaneous T Cell Lymphoma. Front. Oncol. 2020, 9, 1558. [Google Scholar] [CrossRef] [PubMed]
- Iyer, A.; Hennessey, D.; O′Keefe, S.; Patterson, J.; Wang, W.; Salopek, T.; Wong, G.K.; Gniadecki, R. Clonotypic heterogeneity in cutaneous T-cell lymphoma (mycosis fungoides) revealed by comprehensive whole-exome sequencing. Blood Adv. 2019, 3, 1175–1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | n = 16 |
---|---|
Age, median (range)—years | 60 (17–79) |
M/F | 10/6 |
Diagnosis | |
PTCL—NOS | 5 |
ENKTL-NT | 2 |
EATL | 2 |
Intestinal TCL | 1 |
ALCL | |
ALK+ | 2 |
ALK− | 2 |
T-ALL | 2 |
Extranodal sites | |
Bone marrow (BM) | 4 |
Skin | 2 |
Gastrointestinal | 3 |
Central nervous system (CNS) | 1 |
Nasopharyngeal | 2 |
First-line treatment | 11/16 |
CHOEP/CHOP | 7 |
SMILE | 1 |
LAL1913 | 2 |
Cyclophosphamide | 1 |
Autologous HSCT | 5/11 |
Refractory/relapse | 7/11 |
Second-line treatment | |
GDP | 3 |
COEPL | 1 |
BeGEV | 1 |
Bendamustine | 1 |
Brentuximab-vedotin/cyclophosphamide | 1 |
UPN | Diagnosis | Tissue | CD3 | Vα7.2 | MR1-Ag tet. | MAIT Cell TCRs |
---|---|---|---|---|---|---|
NHL-01 | PTCL-NOS | Lymph node | + | + | + | + |
NHL-02 | PTCL-NOS | Lymph node | + | - | - | / |
NHL-03 | PTCL-NOS | Lymph node | + | - | - | / |
NHL-04 | PTCL-NOS | Lymph node | + | - | - | / |
NHL-05 | PTCL-NOS | Skin | + | - | - | / |
NHL-06 | ALCL Alk- | Lymph node | + | - | - | / |
NHL-07 | ALCL Alk- | Spinal cord/vertebrae | + | + | + | + |
NHL-08 | ALCL Alk+ | Lymph node | + | - | - | / |
NHL-09 | ALCL Alk+ | Lymph node | + | - | - | / |
NHL-10 | EATL | Ileum | + | - | - | / |
NHL-11 | EATL | Ileum | + | - | - | / |
NHL-12 | Intestinal TCL | Ileum | + | - | - | / |
NHL-13 | T-ALL | Lymph node | + | - | - | / |
NHL-14 | T-ALL | Lymph node | + | - | - | / |
NHL-15 | ENKTL-NT | Nasal cavity | + | + | + | + |
NHL-16 | ENKTL-NT | Nasal/oral cavity | + | + | + | + |
Characteristics | MAIT Cells+ (n = 4) | MAIT Cells− (n = 12) |
---|---|---|
Age, median (range)—years | 60 (55–72) | 58 (17–79) |
M/F | 3/1 | 7/5 |
Diagnosis | ||
PTCL—NOS | 1 | 4 |
ENKTL-NT | 2 | - |
EATL | - | 2 |
intestinal TCL | - | 1 |
ALCL | 1 | 3 |
T-ALL | - | 2 |
Extranodal sites | 4/4 | 7/12 |
Bone marrow (BM) | 1 | 3 |
Skin | - | 2 |
Gastrointestinal | - | 3 |
Central nervous system (CNS) | 1 | - |
Nasopharyngeal | 2 | - |
PFS | 4.7 months | 23.9 months |
3 years OS | 66.7% | 50% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torre, P.; Brescia, A.; Giurato, G.; D’Auria, R.; Rizzo, F.; Motta, B.M.; Giudice, V.; Selleri, C.; Zeppa, P.; Caputo, A.; et al. Mucosal-Associated Invariant T Cells in T-Cell Non-Hodgkin Lymphomas: A Case Series. Cancers 2022, 14, 2921. https://doi.org/10.3390/cancers14122921
Torre P, Brescia A, Giurato G, D’Auria R, Rizzo F, Motta BM, Giudice V, Selleri C, Zeppa P, Caputo A, et al. Mucosal-Associated Invariant T Cells in T-Cell Non-Hodgkin Lymphomas: A Case Series. Cancers. 2022; 14(12):2921. https://doi.org/10.3390/cancers14122921
Chicago/Turabian StyleTorre, Pietro, Annalisa Brescia, Giorgio Giurato, Raffaella D’Auria, Francesca Rizzo, Benedetta Maria Motta, Valentina Giudice, Carmine Selleri, Pio Zeppa, Alessandro Caputo, and et al. 2022. "Mucosal-Associated Invariant T Cells in T-Cell Non-Hodgkin Lymphomas: A Case Series" Cancers 14, no. 12: 2921. https://doi.org/10.3390/cancers14122921
APA StyleTorre, P., Brescia, A., Giurato, G., D’Auria, R., Rizzo, F., Motta, B. M., Giudice, V., Selleri, C., Zeppa, P., Caputo, A., Casolaro, V., & Persico, M. (2022). Mucosal-Associated Invariant T Cells in T-Cell Non-Hodgkin Lymphomas: A Case Series. Cancers, 14(12), 2921. https://doi.org/10.3390/cancers14122921