Severe Radiation-Induced Lymphopenia Affects the Outcomes of Esophageal Cancer: A Comprehensive Systematic Review and Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Inclusion and Exclusion Criteria
2.3. Review Process and Data Extraction
2.4. Statistical Analyses
3. Results
3.1. Results of the Review Process
3.2. The Association between RIL and pCR of EC Patients
3.3. The Association between RIL and Survival Outcomes of EC Patients
3.4. The Heterogeneity and Bias
3.5. Summary of Factors Associated with Severe RIL
3.6. The Influence of CRT on ALC
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajani, J.A.; D’Amico, T.A.; Bentrem, D.J.; Chao, J.; Corvera, C.; Das, P.; Denlinger, C.S.; Enzinger, P.C.; Fanta, P.; Farjah, F.; et al. Esophageal and Esophagogastric Junction Cancers, Version 2.2019, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw. 2019, 17, 855–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Lin, S.H. Advances in radiotherapy for esophageal cancer. Ann. Transl. Med. 2018, 6, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Wang, P.; Zhao, Z.; Mao, Q.; Yu, J.; Li, M. A review of radiation-induced lymphopenia in patients with esophageal cancer: An immunological perspective for radiotherapy. Ther. Adv. Med. Oncol. 2020, 12, 1758835920926822. [Google Scholar] [CrossRef] [PubMed]
- Yovino, S.; Kleinberg, L.; Grossman, S.A.; Narayanan, M.; Ford, E. The etiology of treatment-related lymphopenia in patients with malignant gliomas: Modeling radiation dose to circulating lymphocytes explains clinical observations and suggests methods of modifying the impact of radiation on immune cells. Cancer Investig. 2013, 31, 140–144. [Google Scholar] [CrossRef] [Green Version]
- Domouchtsidou, A.; Barsegian, V.; Mueller, S.P.; Best, J.; Ertle, J.; Bedreli, S.; Horn, P.A.; Bockisch, A.; Lindemann, M. Impaired lymphocyte function in patients with hepatic malignancies after selective internal radiotherapy. Cancer Immunol. Immunother. 2018, 67, 843–853. [Google Scholar] [CrossRef]
- Campian, J.L.; Ye, X.; Brock, M.; Grossman, S.A. Treatment-related lymphopenia in patients with stage III non-small-cell lung cancer. Cancer Investig. 2013, 31, 183–188. [Google Scholar] [CrossRef]
- van Meir, H.; Nout, R.A.; Welters, M.J.; Loof, N.M.; de Kam, M.L.; van Ham, J.J.; Samuels, S.; Kenter, G.G.; Cohen, A.F.; Melief, C.J.; et al. Impact of (chemo)radiotherapy on immune cell composition and function in cervical cancer patients. Oncoimmunology 2017, 6, e1267095. [Google Scholar] [CrossRef]
- Santin, A.D.; Hermonat, P.L.; Ravaggi, A.; Bellone, S.; Roman, J.; Pecorelli, S.; Cannon, M.; Parham, G.P. Effects of concurrent cisplatinum administration during radiotherapy vs. radiotherapy alone on the immune function of patients with cancer of the uterine cervix. Int. J. Radiat. Oncol. Biol. Phys. 2000, 48, 997–1006. [Google Scholar] [CrossRef]
- Terrones-Campos, C.; Ledergerber, B.; Vogelius, I.R.; Helleberg, M.; Specht, L.; Lundgren, J. Hematological toxicity in patients with solid malignant tumors treated with radiation—Temporal analysis, dose response and impact on survival. Radiother. Oncol. 2021, 158, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Venkatesulu, B.P.; Mallick, S.; Lin, S.H.; Krishnan, S. A systematic review of the influence of radiation-induced lymphopenia on survival outcomes in solid tumors. Crit. Rev. Oncol. Hematol. 2018, 123, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Damen, P.J.J.; Kroese, T.E.; van Hillegersberg, R.; Schuit, E.; Peters, M.; Verhoeff, J.J.C.; Lin, S.H.; van Rossum, P.S.N. The Influence of Severe Radiation-Induced Lymphopenia on Overall Survival in Solid Tumors: A Systematic Review and Meta-Analysis. Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, 936–948. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.; Tian, Q.; Shui, Y.; Li, J.; Wei, Q. The impact of radiation induced lymphopenia in the prognosis of head and neck cancer: A systematic review and meta-analysis. Radiother. Oncol. 2022, 168, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Li, X.; Cheng, H.; Wang, Y.; Tian, Y. The Impact of Lymphopenia and Dosimetric Parameters on Overall Survival of Esophageal Cancer Patients Treated with Definitive Radiotherapy. Cancer Manag. Res. 2021, 13, 2917–2924. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Lin, M.; Hu, Y.; Zhang, L.; Li, Q.; Zhu, J.; Wang, S.; Xi, M. Lymphopenia during Definitive Chemoradiotherapy in Esophageal Squamous Cell Carcinoma: Association with Dosimetric Parameters and Patient Outcomes. Oncologist 2021, 26, e425–e434. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, Z.; Wang, P.; Geng, X.; Zhu, L.; Li, M. Low Lymphocyte Count Is Associated with Radiotherapy Parameters and Affects the Outcomes of Esophageal Squamous Cell Carcinoma Patients. Front. Oncol. 2020, 10, 997. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Jin, J.Y.; Zhang, M.; Liu, A.; Wang, J.; Mohan, R.; Kong, F.S.; Lin, S.H. The impact of the effective dose to immune cells on lymphopenia and survival of esophageal cancer after chemoradiotherapy. Radiother. Oncol. 2020, 146, 180–186. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, S.; Liu, S.; Liu, S.; Yang, H.; Zhao, L.; Liu, M.; Hu, Y.; Xi, M. Treatment-Related Lymphopenia Predicts Pathologic Complete Response and Recurrence in Esophageal Squamous Cell Carcinoma Undergoing Neoadjuvant Chemoradiotherapy. Ann. Surg. Oncol. 2019, 26, 2882–2889. [Google Scholar] [CrossRef]
- Deng, W.; Xu, C.; Liu, A.; van Rossum, P.S.N.; Deng, W.; Liao, Z.; Koong, A.C.; Mohan, R.; Lin, S.H. The relationship of lymphocyte recovery and prognosis of esophageal cancer patients with severe radiation-induced lymphopenia after chemoradiation therapy. Radiother. Oncol. 2019, 133, 9–15. [Google Scholar] [CrossRef]
- Davuluri, R.; Jiang, W.; Fang, P.; Xu, C.; Komaki, R.; Gomez, D.R.; Welsh, J.; Cox, J.D.; Crane, C.H.; Hsu, C.C.; et al. Lymphocyte Nadir and Esophageal Cancer Survival Outcomes After Chemoradiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2017, 99, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.L.; Zhu, W.G.; Zhu, Z.J.; Wang, W.W.; Deng, X.; Tao, W.J.; Ji, F.Z.; Tong, Y.S. Lymphopenia in Esophageal Squamous Cell Carcinoma: Relationship to Malnutrition, Various Disease Parameters, and Response to Concurrent Chemoradiotherapy. Oncologist 2019, 24, e677–e686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, E.; Deng, M.; Egleston, B.; Wong, J.K.; Su, S.; Denlinger, C.; Meyer, J.E. Dose to Heart, Spine, Aorta, and Body Predict for Severe Lymphopenia and Poor Survival in Patients Undergoing Chemoradiation for Esophageal Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, E206–E207. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- Wells, G.A.; O’Connell, B.S.D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 4 May 2022).
- Jackson, D.; White, I.R.; Riley, R.D. Quantifying the impact of between-study heterogeneity in multivariate meta-analyses. Stat. Med. 2012, 31, 3805–3820. [Google Scholar] [CrossRef] [Green Version]
- Routman, D.; Lester, S.; Arnett, A.; Harmsen, S.; Wittich, M.N.; Martenson, J.; Haddock, M.; Hallemeier, C.; Merrell, K. Lymphocyte count nadir and disease recurrence for patients undergoing trimodality therapy for esophageal cancer. J. Radiat. Oncol. 2018, 7, 112–138. [Google Scholar] [CrossRef]
- Wang, Q.; Qiu, Q.; Zhang, Z.; Zhang, J.; Yang, G.; Liu, C.; Li, B. Bone marrow dosimetric analysis of lymphopenia in patients with esophageal squamous cell carcinoma treated with chemoradiotherapy. Cancer Med. 2021, 10, 5847–5858. [Google Scholar] [CrossRef]
- Nishida, M.; Sato, S.; Higashizono, K.; Taki, Y.; Nagai, E.; Wataanbe, M.; Ohata, K.; Kanemoto, H.; Oba, N. Total lymphocytes count (TLC) predicts the overall survival after chemoradiotherapy in esophageal carcinoma patients. Dis. Esophagus 2021, 34, 5. [Google Scholar] [CrossRef]
- Cai, S.; Fan, Y.; Guo, Q.; Sun, Y.; Zhao, P.; Tian, Y.; Fan, Q. Impact of Radiation Dose to Circulating Immune Cells on Tumor Control and Survival in Esophageal Cancer. Cancer Biother. Radiopharm. 2021; Online ahead of print. [Google Scholar] [CrossRef]
- Kroese, T.E.; Jairam, J.; Ruurda, J.P.; Lin, S.H.; Mohan, R.; Mook, S.; Haitjema, S.; Hoefer, I.; Haj Mohammad, N.; Peters, M.; et al. Severe lymphopenia acquired during chemoradiotherapy for esophageal cancer: Incidence and external validation of a prediction model. Radiother. Oncol. 2021, 163, 192–198. [Google Scholar] [CrossRef]
- So, T.H.; Chan, S.K.; Chan, W.L.; Choi, H.; Chiang, C.L.; Lee, V.; Lam, T.C.; Wong, I.; Law, S.; Kwong, D.; et al. Lymphopenia and Radiation Dose to Circulating Lymphocytes with Neoadjuvant Chemoradiation in Esophageal Squamous Cell Carcinoma. Adv. Radiat. Oncol. 2020, 5, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Sherry, A.D.; Newman, N.B.; Anderson, J.L.; Osmundson, E.C. Systemic inflammatory dynamics during chemoradiotherapy predict response, relapse, metastasis, and survival in esophageal carcinoma. J. Surg. Oncol. 2019, 121, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Fang, P.; Jiang, W.; Davuluri, R.; Xu, C.; Krishnan, S.; Mohan, R.; Koong, A.C.; Hsu, C.C.; Lin, S.H. High lymphocyte count during neoadjuvant chemoradiotherapy is associated with improved pathologic complete response in esophageal cancer. Radiother. Oncol. 2018, 128, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Douglas, P.S.; O’Toole, M.L.; Hiller, W.D.; Hackney, K.; Reichek, N. Cardiac fatigue after prolonged exercise. Circulation 1987, 76, 1206–1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraehenbuehl, L.; Weng, C.H.; Eghbali, S.; Wolchok, J.D.; Merghoub, T. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat. Rev. Clin. Oncol. 2022, 19, 37–50. [Google Scholar] [CrossRef]
- Puhr, H.C.; Preusser, M.; Ilhan-Mutlu, A. Immunotherapy for Esophageal Cancers: What Is Practice Changing in 2021? Cancers 2021, 13, 4632. [Google Scholar] [CrossRef]
- Teixeira Farinha, H.; Digklia, A.; Schizas, D.; Demartines, N.; Schafer, M.; Mantziari, S. Immunotherapy for Esophageal Cancer: State-of-the Art in 2021. Cancers 2022, 14, 554. [Google Scholar] [CrossRef]
- Aoto, K.; Mimura, K.; Okayama, H.; Saito, M.; Chida, S.; Noda, M.; Nakajima, T.; Saito, K.; Abe, N.; Ohki, S.; et al. Immunogenic tumor cell death induced by chemotherapy in patients with breast cancer and esophageal squamous cell carcinoma. Oncol. Rep. 2018, 39, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Kelly, R.J.; Zaidi, A.H.; Smith, M.A.; Omstead, A.N.; Kosovec, J.E.; Matsui, D.; Martin, S.A.; DiCarlo, C.; Werts, E.D.; Silverman, J.F.; et al. The Dynamic and Transient Immune Microenvironment in Locally Advanced Esophageal Adenocarcinoma Post Chemoradiation. Ann. Surg. 2018, 268, 992–999. [Google Scholar] [CrossRef]
- Cho, Y.; Park, S.; Byun, H.K.; Lee, C.G.; Cho, J.; Hong, M.H.; Kim, H.R.; Cho, B.C.; Kim, S.; Park, J.; et al. Impact of Treatment-Related Lymphopenia on Immunotherapy for Advanced Non-Small Cell Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, 1065–1073. [Google Scholar] [CrossRef]
- Terrones-Campos, C.; Ledergerber, B.; Vogelius, I.R.; Specht, L.; Helleberg, M.; Lundgren, J. Lymphocyte Count Kinetics, Factors Associated with the End-of-Radiation-Therapy Lymphocyte Count, and Risk of Infection in Patients with Solid Malignant Tumors Treated with Curative-Intent Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, 812–823. [Google Scholar] [CrossRef]
- Jin, J.Y.; Hu, C.; Xiao, Y.; Zhang, H.; Ellsworth, S.; Schild, S.E.; Bogart, J.A.; Dobelbower, M.C.; Kavadi, V.S.; Narayan, S.; et al. Higher radiation dose to immune system is correlated with poorer survival in patients with stage III non-small cell lung cancer: A secondary study of a phase 3 cooperative group trial (NRG Oncology RTOG 0617). Int. J. Radiat. Oncol. Biol. Phys. 2017, 99, S151–S152. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Fu, P.; Jin, J.Y.; Gao, S.; Wang, W.; Machtay, M.; Wang, L.; Kong, F.S.; Yu, J. Impact of effective dose to immune cells (EDIC) on lymphocyte nadir and survival in limited-stage SCLC. Radiother. Oncol. 2021, 162, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.Y.; Hu, C.; Xiao, Y.; Zhang, H.; Paulus, R.; Ellsworth, S.G.; Schild, S.E.; Bogart, J.A.; Dobelbower, M.C.; Kavadi, V.S.; et al. Higher Radiation Dose to the Immune Cells Correlates with Worse Tumor Control and Overall Survival in Patients with Stage III NSCLC: A Secondary Analysis of RTOG0617. Cancers 2021, 13, 6193. [Google Scholar] [CrossRef] [PubMed]
- Ladbury, C.J.; Rusthoven, C.G.; Camidge, D.R.; Kavanagh, B.D.; Nath, S.K. Impact of Radiation Dose to the Host Immune System on Tumor Control and Survival for Stage III Non-Small Cell Lung Cancer Treated with Definitive Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, 346–355. [Google Scholar] [CrossRef]
- Alexandru, M.; Rodica, A.; Dragos-Eugen, G.; Mihai-Teodor, G. Assessing the Spleen as an Organ at Risk in Radiation Therapy and Its Relationship with Radiation-Induced Lymphopenia: A Retrospective Study and Literature Review. Adv. Radiat. Oncol. 2021, 6, 100761. [Google Scholar] [CrossRef]
- Yalamanchali, A.; Zhang, H.; Huang, K.C.; Mohan, R.; Lin, S.H.; Zhu, C.; Grossman, S.A.; Jin, J.Y.; Ellsworth, S.G. Patient-Specific Lymphocyte Loss Kinetics as Biomarker of Spleen Dose in Patients Undergoing Radiation Therapy for Upper Abdominal Malignancies. Adv. Radiat. Oncol. 2021, 6, 100545. [Google Scholar] [CrossRef]
- Saito, T.; Toya, R.; Yoshida, N.; Shono, T.; Matsuyama, T.; Ninomura, S.; Watakabe, T.; Sasaki, Y.; Baba, H.; Oya, N. Spleen Dose-Volume Parameters as a Predictor of Treatment-related Lymphopenia During Definitive Chemoradiotherapy for Esophageal Cancer. In Vivo 2018, 32, 1519–1525. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Liu, X.; Cao, S.; Dong, X.; Rao, S.; Cai, K. Understanding Esophageal Cancer: The Challenges and Opportunities for the Next Decade. Front. Oncol. 2020, 10, 1727. [Google Scholar] [CrossRef]
- Lin, S.H.; Hobbs, B.P.; Verma, V.; Tidwell, R.S.; Smith, G.L.; Lei, X.; Corsini, E.M.; Mok, I.; Wei, X.; Yao, L.; et al. Randomized Phase IIB Trial of Proton Beam Therapy Versus Intensity-Modulated Radiation Therapy for Locally Advanced Esophageal Cancer. J. Clin. Oncol. 2020, 38, 1569–1579. [Google Scholar] [CrossRef]
- Upadhyay, R.; Venkatesulu, B.P.; Giridhar, P.; Kim, B.K.; Sharma, A.; Elghazawy, H.; Dhanireddy, B.; Elumalai, T.; Mallick, S.; Harkenrider, M. Risk and impact of radiation related lymphopenia in lung cancer: A systematic review and meta-analysis. Radiother. Oncol. 2021, 157, 225–233. [Google Scholar] [CrossRef] [PubMed]
First Author/Year | Ref. | Region | No. Patients/Stage | Age (Years) | Histology | Tumor Location | Median Follow-Up (Months) | RT Technique | Dose (Gy) | Chemotherapy | Surgery Rate after CRT | Definition of Severe RIL/Data Collection Time a | Severe RIL Rate |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
For meta-analysis | |||||||||||||
Xu H/2021 | [16] | China | 436/I-IVA | Median (range) = 59 (27–74) | ESCC | Upper/Middle (86.7%), Lower (13.3%) | 21.7 | IMRT (73.6%), 3D-CRT (26.4%) | Median (range) = 60 (40–70), with 25–30 fractions. | Concurrent weekly chemotherapy, with 54.8% cisplatin + taxane, 17.2% cisplatin + 5-FU, 28% other | 0% | G4/During RT | 23.6% |
Liu M/2021 | [15] | China | 99/II-IVA | Median (range) = 67 (43–83) | ESCC | Upper/Middle (75%), Lower (25%) | 24.7 | IMRT (100%) | Median (range) = 55.75 (46–66), with 1.8–2.2 per fraction | Concurrent chemoradiotherapy (59%), sequential chemoradiotherapy (9%); the others were RT alone | 0% | <300/Within 2 months after RT started | NA |
Wang X/2020 | [17] | China | 189/I-IVA | Median (range) = 67 (44–92) | ESCC | Upper/Middle (76.2%), Lower (23.8%) | 46 | IMRT (65.1%), 3D-CRT (34.9%) | 50–68 | Concurrent chemotherapy receiving platinum and 5-FU doublet chemotherapy (16.9%), followed by combination of platinum and taxane (12.7%) | 0% | <380/During RT | 58.2% |
Zhou X/2019 | [22] | China | 286/II-IVA | Median (range) = 67 (47–84) | ESCC | Upper/Middle (88.1%), Lower (11.9%) | NA | IMRT (76.6%), Proton (23.4%) | Median = 50.4, with 1.8 per fraction | Concurrent cisplatin + docetaxel (72.4%) or S-1 (27.6%) | NA | G4/During RT | 31.0% |
Zhang E/2019 | [23] | United States | 189/ I-III | Median (range) = 65 (35–84) | EAC (78%), other (22%) | Upper/Middle (15%), Lower (85%) | 27.6 | NA | Median (range) = 50.4 (41.4–70.2) | Concurrent carboplatin/paclitaxel (55%) or 5-FU (40%)-based regimens | 68% | G4/During RT | 45.0% |
Li Q/2019 | [19] | China | 220/II-III | Median (range) = 56 (42–73) | ESCC | Upper/Middle (77.3%), Lower (22.7%) | 24.8 | IMRT (33.2%), 3D-CRT (66.8%) | Median (range) =40 (40–50.4), with 20–25 fractions | Concurrent cisplatin + vinorelbine (57.3%), cisplatin + taxane (29.5%), or cisplatin + 5-FU (13.2%) | 100% | G4/During RT | 21.8% |
Deng W/2019 | [20] | United States | 755/I-III | Median (IQR) = 64 (57–71) | ESCC (17.6%), EAC (81.8%), other (0.5%) | Upper/Middle (14.8%), Lower (85.2%) | 65.5 | IMRT (67.7%), Proton (32.3%) | Median (range) = 50.4 (41.4–66.0) | Concurrent weekly taxane, 5-FU, or platinum-based compound | 49.9% | G4/During RT | 38.9% |
Fang P/2018 | [34] | United States | 313/I-IVA | Mean (SD) = 59.3 (10.8) | ESCC (5%), EAC (95%) | Upper/Middle (2.3%), Lower (97.7%) | NA | IMRT (67%), Proton (33%) | Mean (SD) = 50 (1.9) | Concurrent taxane + 5-FU (43.1%), platinum + 5-FU (38.7%), platinum + taxane (10.9%), or other regimens (7.4%) | 100% | <350/During RT | 56.0% |
Only for systematic review | |||||||||||||
Wang Q/2021 | [28] | China | 476/I-IV | Median (range) = 63 (37–85) | ESCC | Upper/Middle (84.2%), Lower (15.8%) | Total 60 months | IMRT (65.8%), 3D-CRT (34.2%) | 50–60, with 25–33 fractions | Concurrent vs. Non-concurrent = 12.2% vs. 87.8%, Paclitaxel vs. 5-FU = 58% vs. 42% | NA | <800/During RT | 54.2% |
Nishida M/2021 | [29] | Japan | 298 | NA | EC | NA | NA | NA | NA | CRT | NA | G3-4/During RT | NA |
Kroese T/2021 | [31] | Netherlands | 219/I-IV | NA | EC | Upper/Middle (30.6%), Lower (69.4%) | 26.7 | IMRT | 41.4 or 50.4, with 1.8 per fraction | Concurrent chemotherapy for all, CROSS regime | 100% | G4/During RT | 16.0% |
Cai S/2021 | [30] | China | 146/I-IVA | Median (range) = 71 (50–91) | ESCC (95.2%), EAC and others (4.8%) | Upper/Middle (83.6%), Distal (16.4%) | 17.9 | IMRT | 45–50.4 for neoadjuvant CRT and 60–64 for definitive RT, with 1.8–2 per fraction | 15.1% received neoadjuvant chemotherapy, 45.2% received consolidation chemotherapy; Carboplatin and paclitaxel were most used | 21.90% | G4/During RT and 1 week after RT | 24.7% |
Xu C/2020 | [18] | United States | 488/I-IV | Median (range) = 61 (20–84) | ESCC (9.8%), EAC (90.2%); | Upper/Middle (7%), Lower (93%) | 29.6 | IMRT | 45–50.4 | Concurrent chemotherapy for all | 55.9% | G4/During RT | 50.0% |
So T/2020 | [32] | Hong Kong | 92/II-IVA | <65 year (45.7%), ≥65 (54.3%) | ESCC | NA | 16.9 | IMRT (43.5%), 3D-CRT (56.5%) | 41.4, with 23 fractions | Concurrent weekly carboplatin, with area under the curve = 2 and paclitaxel = 50 mg/m2 | 100% | G3-4/During RT and after 2 months after completion of RT | NA |
Sherry A/2019 | [33] | United States | 93/II-III | Median (IQR) = 64 (55–72) | ESCC (17%), EAC (82%) | Upper/Middle (12%), Lower (88%) | 19.2 | IMRT (35%), 3D-CRT (65%) | 50.4 (IQR, 50–50.4), with 28 fractions (IQR, 25–28) | Concurrent platinum + taxane (78%), platinum + 5-FU (14%), other (7%) | 71% | NA/During RT | NA |
Routman D/2017 | [27] | United States | 176/NA | NA | EC | NA | 39.6 | NA | NA | NA | NA | G4/During RT and before surgery | 46.0% |
Davuluri R/2017 | [21] | United States | 504/I-III | Median (SD) = 62.5 (11.2) | ESCC (15%), EAC (85%) | Upper/Middle (11%), Lower (89%) | 32.1 | IMRT (63%), Proton (37%) | 50.4 for all | Concurrent taxane + 5-FU (49%), platinum + taxane (13%), platinum + 5-FU (31%), other (7%) | 46% | G4/During RT | 27.0% |
Group | Number of Studies | Sample Size | Pooled OR or HR (95% CI) | I2 (%) | Egger’s p Value |
---|---|---|---|---|---|
pCR | 3 | 819 | 0.44 (0.30–0.66) a | 0 | 0.4391 |
OS | 5 | 1668 | 1.50 (1.29–1.75) b | 6 | 0.1053 |
PFS | 4 | 1660 | 1.51 (1.20–1.89) b | 52 | 0.2824 |
First Author/Year | Ref. | Dosimetric Factors ab | Others a | Non-Significant Factors b |
---|---|---|---|---|
Xu H/2021 | [16] | Larger PTV, higher heart V10, higher lung V10 | Lower baseline ALC, lower ECOG performance status | Sex, smoking history, alcohol history, tumor location (upper vs. middle/distal), clinical N stage (N0–1 vs. N2–3), lung V5, lung V20, MLD, MHD, VB V10, mean VB dose |
Liu M/2021 | [15] | Higher EDIC, higher mean dose, higher V20 of TVB | Chemotherapy regimen (CRT vs. RT alone) | V5 and V10 of TVB, RT dose (<60 vs. ≥60 Gy) |
Wang X/2020 | [17] | Larger PTV, higher heart V10 | Higher clinical stage, lower baseline ALC | Tumor length, lung V5, lung V10, lung V20, lung V30, lung V40, lung mean dose, heart V5, heart V30, heart V40, heart mean dose |
So T/2020 | [32] | Larger PTV, higher EDIC | Lower baseline ALC | The number of courses of chemotherapy (5 courses vs. fewer than 5 courses) |
Zhou X/2019 | [22] | Larger PTV | Distal EC, tumor length > 5 cm, older age | MLD |
Zhang E/2019 | [23] | Heart V15 > 73%, TVB V5 > 72%, body V10 > 18%, aorta V5 > 93% | Lower baseline TLC | Total lung V5 > 50%, spleen V20 > 45% |
Li Q/2019 | [19] | Higher radiation dose (>40 Gy) | Distal EC, tumor length > 5 cm | Age, alcohol history, dose per fraction > 2.0 Gy, IMRT vs. 3D-CRT, clinical TNM stage (II vs. III), pretreatment ALC (<1.8 vs. ≥1.8 × 109/L) |
Fang P/2018 | [34] | Higher mean body dose | Higher clinical stage, no smoking at diagnosis | Age, tumor histology, tumor differentiation, tumor location, tumor size, RT modality, induction chemotherapy or chemotherapy type between the groups |
Davuluri R/2017 | [21] | Higher mean body dose | Concurrent Taxane/5-FU vs. platinum/5-FU | Age, comorbidities, tumor characteristics (location, length, stage, histology, differentiation), surgery, RT modality, induction chemotherapy |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, D.; Tian, Q.; Yu, G.; Shui, Y.; Jiang, H.; Wei, Q. Severe Radiation-Induced Lymphopenia Affects the Outcomes of Esophageal Cancer: A Comprehensive Systematic Review and Meta-Analysis. Cancers 2022, 14, 3024. https://doi.org/10.3390/cancers14123024
Dai D, Tian Q, Yu G, Shui Y, Jiang H, Wei Q. Severe Radiation-Induced Lymphopenia Affects the Outcomes of Esophageal Cancer: A Comprehensive Systematic Review and Meta-Analysis. Cancers. 2022; 14(12):3024. https://doi.org/10.3390/cancers14123024
Chicago/Turabian StyleDai, Dongjun, Qiaoying Tian, Genhua Yu, Yongjie Shui, Hao Jiang, and Qichun Wei. 2022. "Severe Radiation-Induced Lymphopenia Affects the Outcomes of Esophageal Cancer: A Comprehensive Systematic Review and Meta-Analysis" Cancers 14, no. 12: 3024. https://doi.org/10.3390/cancers14123024
APA StyleDai, D., Tian, Q., Yu, G., Shui, Y., Jiang, H., & Wei, Q. (2022). Severe Radiation-Induced Lymphopenia Affects the Outcomes of Esophageal Cancer: A Comprehensive Systematic Review and Meta-Analysis. Cancers, 14(12), 3024. https://doi.org/10.3390/cancers14123024