Deep Learning Model for Grading Metastatic Epidural Spinal Cord Compression on Staging CT
Abstract
:Simple Summary
Abstract
1. Introduction
- Develop a deep learning model for automatic detection of MESCC on a staging CT. To our knowledge, this has not been done previously and could expedite earlier diagnosis of MESCC and identify suitable patients for initial radiotherapy versus surgical decompression.
- Model training and testing will be done using reference standard MESCC gradings on staging CT studies provided by experienced radiologists using axial T2-weighted MRI scans (the current gold standard for MESCC evaluation) performed within two months of the CT.
- Once the deep learning model is trained, the clinical performance of the model will be compared with that of both subspecialized radiologists with experience in reporting advanced spine imaging and general radiologists on a test set.
2. Materials and Methods
2.1. Dataset Preparation
2.2. Dataset Labelling
2.3. Deep Learning Model Development
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics in Datasets
3.2. Reference Standard
3.3. Trichotomous Bilsky Classification
3.4. Normal/Low Versus High-Grade Dichotomous Bilsky Classification
3.5. Normal Versus Low/High-Grade Dichotomous Bilsky Classification
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chiu, R.G.; Mehta, A.I. Spinal Metastases. JAMA 2020, 323, 2438. [Google Scholar] [CrossRef] [PubMed]
- Yáñez, M.L.; Miller, J.J.; Batchelor, T.T. Diagnosis and treatment of epidural metastases. Cancer 2017, 123, 1106–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barzilai, O.; Fisher, C.G.; Bilsky, M.H. State of the Art Treatment of Spinal Metastatic Disease. Neurosurgery 2018, 82, 757–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzik, G. Analysis of factors delaying the surgical treatment of patients with neurological deficits in the course of spinal metastatic disease. BMC Palliat. Care 2018, 17, 44. [Google Scholar] [CrossRef] [Green Version]
- National Institute for Health and Care Excellence. Metastatic Spinal Cord Compression: Diagnosis and Management of Adults at Risk of and with Metastatic Spinal Cord Compression NICE Guidelines (CG75); NICE: London, UK, 2008. [Google Scholar]
- Flanagan, E.; Pittock, S. Diagnosis and management of spinal cord emergencies. Handb. Clin. Neurol. 2017, 140, 319–335. [Google Scholar] [CrossRef]
- Vellayappan, B.A.; Kumar, N.; Chang, E.L.; Sahgal, A.; Sloan, A.A.; Lo, S.S. Novel multidisciplinary approaches in the management of metastatic epidural spinal cord compression. Future Oncol. 2018, 14, 1665–1668. [Google Scholar] [CrossRef]
- Bilsky, M.H.; Laufer, I.; Fourney, D.R.; Groff, M.; Schmidt, M.H.; Varga, P.P.; Vrionis, F.D.; Yamada, Y.; Gerszten, P.C.; Kuklo, T.R. Reliability analysis of the epidural spinal cord compression scale. J. Neurosurg. Spine 2010, 13, 324–328. [Google Scholar] [CrossRef]
- Laufer, I.; Rubin, D.G.; Lis, E.; Cox, B.W.; Stubblefield, M.D.; Yamada, Y.; Bilsky, M.H. The NOMS Framework: Approach to the Treatment of Spinal Metastatic Tumors. Oncology 2013, 18, 744–751. [Google Scholar] [CrossRef] [Green Version]
- Shah, L.M.; Salzman, K.L. Imaging of Spinal Metastatic Disease. Int. J. Surg. Oncol. 2011, 2011, 769753. [Google Scholar] [CrossRef] [Green Version]
- Crocker, M.; Anthantharanjit, R.; Jones, T.; Shoeb, M.; Joshi, Y.; Papadopoulos, M.; Bell, B.; Rich, P. An extended role for CT in the emergency diagnosis of malignant spinal cord compression. Clin. Radiol. 2011, 66, 922–927. [Google Scholar] [CrossRef]
- Tsai, J.-Y.; Hung, I.Y.-J.; Guo, Y.L.; Jan, Y.-K.; Lin, C.-Y.; Shih, T.T.-F.; Chen, B.-B.; Lung, C.-W. Lumbar Disc Herniation Automatic Detection in Magnetic Resonance Imaging Based on Deep Learning. Front. Bioeng. Biotechnol. 2021, 9, 708137. [Google Scholar] [CrossRef] [PubMed]
- Hallinan, J.T.P.D.; Zhu, L.; Yang, K.; Makmur, A.; Algazwi, D.A.R.; Thian, Y.L.; Lau, S.; Choo, Y.S.; Eide, S.E.; Yap, Q.V.; et al. Deep Learning Model for Automated Detection and Classification of Central Canal, Lateral Recess, and Neural Foraminal Stenosis at Lumbar Spine MRI. Radiology 2021, 300, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Jamaludin, A.; Kadir, T.; Zisserman, A. SpineNet: Automated classification and evidence visualization in spinal MRIs. Med. Image Anal. 2017, 41, 63–73. [Google Scholar] [CrossRef]
- Wang, J.; Fang, Z.; Lang, N.; Yuan, H.; Su, M.-Y.; Baldi, P. A multi-resolution approach for spinal metastasis detection using deep Siamese neural networks. Comput. Biol. Med. 2017, 84, 137–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belal, S.L.; Sadik, M.; Kaboteh, R.; Enqvist, O.; Ulén, J.; Poulsen, M.H.; Simonsen, J.A.; Høilund-Carlsen, P.F.; Edenbrandt, L.; Trägårdh, E. Deep learning for segmentation of 49 selected bones in CT scans: First step in automated PET/CT-based 3D quantification of skeletal metastases. Eur. J. Radiol. 2019, 113, 89–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, P.; Zhi, X.; Sun, C.; Wang, S.; Liu, X.; Chen, L.; Hong, N. Radiomics Models for the Preoperative Prediction of Pelvic and Sacral Tumor Types: A Single-Center Retrospective Study of 795 Cases. Front. Oncol. 2021, 11, 709659. [Google Scholar] [CrossRef] [PubMed]
- England, J.R.; Cheng, P. Artificial Intelligence for Medical Image Analysis: A Guide for Authors and Reviewers. Am. J. Roentgenol. 2019, 212, 513–519. [Google Scholar] [CrossRef]
- Lurie, J.D.; Tosteson, A.N.; Tosteson, T.D.; Carragee, E.; Carrino, J.A.; Kaiser, J.; Sequeiros, R.B.; LeComte, A.R.; Grove, M.R.; Blood, E.A.; et al. Reliability of Readings of Magnetic Resonance Imaging Features of Lumbar Spinal Stenosis. Spine 2008, 33, 1605–1610. [Google Scholar] [CrossRef]
- Fardon, D.F.; Williams, A.L.; Dohring, E.J.; Reed Murtagh, F.; Gabriel Rothman, S.L.; Sze, G.K. Lumbar disc nomenclature: Version 2.0: Recommendations of the combined task forces of the North American Spine Society, the American Society of Spine Radiology and the American Society of Neuroradiology. Spine J. 2014, 14, 2525–2545. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Baltrusaitis, T.; Ahuja, C.; Morency, L.-P. Multimodal Machine Learning: A Survey and Taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 423–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.M.; Zhang, X.Y.; Yin, F.; Liu, C.L. Robust classification with convolutional prototype learning. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 3474–3482. [Google Scholar]
- Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), Honolulu, HW, USA, 21–26 July 2017; pp. 1492–1500. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International conference on machine learning PMLR, Lille, France, 7–9 July 2015; pp. 448–456. [Google Scholar]
- Chicco, D. Ten quick tips for machine learning in computational biology. BioData Min. 2017, 10, 35. [Google Scholar] [CrossRef] [PubMed]
- Ooi, B.C.; Tan, K.L.; Wang, S.; Wang, W.; Cai, Q.; Chen, G.; Gao, J.; Luo, Z.; Tung, A.K.; Wang, Y.; et al. SINGA: A Distributed Deep Learning Platform. In Proceedings of the 23rd ACM International Conference on Multimedia, Brisbane, Australia, 26–30 October 2015; pp. 685–688. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; Yeung, S.H.; Zhang, M.; Zheng, K.; Zhu, L.; Chen, G.; Fan, F.; Lin, Q.; Ngiam, K.Y.; Ooi, B.C. MLCask: Efficient management of component evolution in collaborative data analytics pipelines. In Proceedings of the 2021 IEEE 37th International Conference on Data Engineering (ICDE) 2021, Chania, Crete, Greece, 19–22 April 2021; pp. 1655–1666. [Google Scholar] [CrossRef]
- Power, S.P.; Moloney, F.; Twomey, M.; James, K.; O’Connor, O.J.; Maher, M.M. Computed tomography and patient risk: Facts, perceptions and uncertainties. World J. Radiol. 2016, 8, 902–915. [Google Scholar] [CrossRef]
- Ahmad, M.; Qadri, S.F.; Qadri, S.; Saeed, I.A.; Zareen, S.S.; Iqbal, Z.; Alabrah, A.; Alaghbari, H.M.; Rahman, S.M.M. A Lightweight Convolutional Neural Network Model for Liver Segmentation in Medical Diagnosis. Comput. Intell. Neurosci. 2022, 2022, 7954333. [Google Scholar] [CrossRef]
- Qadri, S.F.; Shen, L.; Ahmad, M.; Qadri, S.; Zareen, S.S.; Akbar, M.A. SVseg: Stacked Sparse Autoencoder-Based Patch Classification Modeling for Vertebrae Segmentation. Mathematics 2022, 10, 796. [Google Scholar] [CrossRef]
- Liu, X.; Li, K.-W.; Yang, R.; Geng, L.-S. Review of Deep Learning Based Automatic Segmentation for Lung Cancer Radiotherapy. Front. Oncol. 2021, 11, 717039. [Google Scholar] [CrossRef]
- Massaad, E.; Fatima, N.; Hadzipasic, M.; Alvarez-Breckenridge, C.; Shankar, G.M.; Shin, J.H. Predictive Analytics in Spine Oncology Research: First Steps, Limitations, and Future Directions. Neurospine 2019, 16, 669–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merali, Z.; Wang, J.Z.; Badhiwala, J.H.; Witiw, C.D.; Wilson, J.R.; Fehlings, M.G. A deep learning model for detection of cervical spinal cord compression in MRI scans. Sci. Rep. 2021, 11, 10473. [Google Scholar] [CrossRef] [PubMed]
- Hallinan, J.T.P.D.; Zhu, L.; Zhang, W.; Lim, D.S.W.; Baskar, S.; Low, X.Z.; Yeong, K.Y.; Teo, E.C.; Kumarakulasinghe, N.B.; Yap, Q.V.; et al. Deep Learning Model for Classifying Metastatic Epidural Spinal Cord Compression on MRI. Front. Oncol. 2022, 12, 849447. [Google Scholar] [CrossRef]
- Chapelle, O.; Scholkopf, B.; Zien, E.A. Semi-Supervised Learning (Chapelle, O. et al., Eds.; 2006) [Book reviews]. IEEE Trans. Neural Netw. 2009, 20, 542. [Google Scholar] [CrossRef]
- Zhu, L.; Yang, K.; Zhang, M.; Chan, L.L.; Ng, T.K.; Ooi, B.C. Semi-Supervised Unpaired Multi-Modal Learning for Label-Efficient Medical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Strasbourg, France, 27 September–1 October 2021; Springer: Cham, Switzerland, 2021; pp. 394–404. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, L.; Hallinan, J.; Makmur, A.; Zhang, S.; Cai, Q.; Ooi, B.C. BoostMIS: Boosting Medical Image Semi-supervised Learning with Adaptive Pseudo Labeling and Informative Active Annotation. arXiv 2022, arXiv:2203.02533. [Google Scholar]
- Gottumukkala, S.; Srivastava, U.; Brocklehurst, S.; Mendel, J.T.; Kumar, K.; Yu, F.F.; Agarwal, A.; Shah, B.R.; Vira, S.; Raj, K.M. Fundamentals of Radiation Oncology for Treatment of Vertebral Metastases. RadioGraphics 2021, 41, 2136–2156. [Google Scholar] [CrossRef] [PubMed]
- Hwang, E.J.; Park, C.M. Clinical Implementation of Deep Learning in Thoracic Radiology: Potential Applications and Challenges. Korean J. Radiol. 2020, 21, 511–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Internal Training/Validation Set (n = 155) | Internal Test Set (n = 30) |
---|---|---|
Age (years) * | 60 ± 12.1 (18–93) | 58 ± 11.6 (32–76) |
Women | 77 (49.7) | 12 (40.0) |
Men | 78 (50.3) | 18 (60.0) |
Cancer Subtype | ||
Lung | 36 (23.2) | 8 (26.7) |
Breast | 33 (21.3) | 9 (30.0) |
Colon | 15 (9.7) | 3 (10.0) |
Prostate | 13 (8.4) | 0 (0) |
Renal cell carcinoma | 12 (7.7) | 2 (6.7) |
Multiple Myeloma | 10 (6.5) | 1 (3.3) |
Hepatocellular carcinoma | 8 (5.2) | 1 (3.3) |
Nasopharyngeal carcinoma | 6 (3.9) | 0 (0) |
Others | 22 (14.2) | 6 (20.0) |
No. of staging CT thoracic studies | 316/358 (88) | 42/358 (12) |
MESCC location | ||
Diffuse thoracic # | 49 (15.5) | 8 (19.0) |
C7-T2 | 21 (6.6) | 2 (4.8) |
T3-T10 | 97 (30.7) | 14 (33.3) |
T11-L3 | 128 (40.5) | 15 (35.7) |
No epidural disease | 21 (6.6) | 3 (7.1) |
MESCC Grade on CT | Internal Training/Validation Set | Internal Test Set |
---|---|---|
Normal/Bilsky 0 | 10,594 (79.1%) | 2323 (84.9%) |
Low-grade Bilsky (1a, 1b) | 1477 (11.0%) | 209 (7.6%) |
High-grade Bilsky (1c, 2, 3) | 1329 (9.9%) | 203 (7.4%) |
Totals | 13,400 | 2735 |
Trichotomous Grading | Dichotomous Grading | |||||
---|---|---|---|---|---|---|
Normal, Low and High | Normal/Low vs. High | Normal vs. Low/High | ||||
Reader | Kappa (95% CI) | p-Value | Kappa (95% CI) | p-Value | Kappa (95% CI) | p-Value |
AJLC | 0.907 (0.895–0.919) | <0.001 | 0.960 (0.952–0.968) | <0.001 | 0.915 (0.903–0.928) | <0.001 |
SEE | 0.907 (0.895–0.919) | <0.001 | 0.963 (0.956–0.971) | <0.001 | 0.928 (0.916–0.940) | <0.001 |
FEM | 0.820 (0.803–0.837) | <0.001 | 0.954 (0.945–0.963) | <0.001 | 0.816 (0.796–0.836) | <0.001 |
HYO | 0.726 (0.706–0.747) | <0.001 | 0.975 (0.968–0.981) | <0.001 | 0.683 (0.656–0.710) | <0.001 |
Combined method | ||||||
Abdomen-window | 0.891 (0.878–0.904) | <0.001 | 0.966 (0.959–0.974) | <0.001 | 0.929 (0.917–0.941) | <0.001 |
Bone-window | 0.903 (0.891–0.916) | <0.001 | 0.965 (0.957–0.972) | <0.001 | 0.901 (0.887–0.915) | <0.001 |
Spine-window | 0.901 (0.888–0.914) | <0.001 | 0.972 (0.965–0.979) | <0.001 | 0.927 (0.915–0.939) | <0.001 |
Max Fusion-1 | 0.909 (0.896–0.921) | <0.001 | 0.968 (0.961–0.975) | <0.001 | 0.919 (0.906–0.932) | <0.001 |
Average Fusion-1 | 0.911 (0.899–0.923) | <0.001 | 0.968 (0.961–0.975) | <0.001 | 0.929 (0.917–0.941) | <0.001 |
Separated method | ||||||
Abdomen-window | 0.885 (0.871–0.899) | <0.001 | 0.938 (0.928–0.949) | <0.001 | 0.914 (0.900–0.927) | <0.001 |
Bone-window | 0.897 (0.884–0.910) | <0.001 | 0.953 (0.944–0.962) | <0.001 | 0.908 (0.894–0.921) | <0.001 |
Spine-window | 0.873 (0.858–0.887) | <0.001 | 0.971 (0.964–0.978) | <0.001 | 0.889 (0.874–0.905) | <0.001 |
Max Fusion | 0.891 (0.878–0.905) | <0.001 | 0.956 (0.947–0.965) | <0.001 | 0.915 (0.901–0.928) | <0.001 |
Average Fusion | 0.904 (0.892–0.917) | <0.001 | 0.962 (0.954–0.970) | <0.001 | 0.923 (0.910–0.935) | <0.001 |
Reader | Sensitivity (95% CI) | Specificity (95% CI) | AUC (95% CI) |
---|---|---|---|
AJLC | 66.5 (59.6–73.0) | 98.9 (98.5–99.3) | 0.827 (0.795–0.860) |
SEE | 59.1 (52.0–65.9) | 99.8 (99.5–99.9) | 0.794 (0.760–0.828) |
FEM | 80.8 (74.7–86.0) | 97.3 (96.6–97.9) | 0.891 (0.863–0.918) |
HYO | 78.8 (72.5–84.2) | 99.3 (98.9–99.6) | 0.891 (0.863–0.919) |
Combined method | |||
Abdomen-window | 96.6 (93.0–98.6) | 97.2 (96.5–97.8) | 0.969 (0.956–0.982) |
Bone-window | 95.6 (91.8–98.0) | 97.1 (96.4–97.8) | 0.964 (0.949–0.978) |
Spine-window | 95.1 (91.1–97.6) | 97.8 (97.2–98.4) | 0.965 (0.949–0.980) |
Max Fusion-1 | 96.6 (93.0–98.6) | 97.4 (96.7–97.9) | 0.970 (0.957–0.982) |
Average Fusion-1 | 96.6 (93.0–98.6) | 97.4 (96.7–97.9) | 0.970 (0.957–0.982) |
Separated method | |||
Abdomen-window | 96.6 (93.0–98.6) | 94.8 (93.8–95.6) | 0.957 (0.943–0.970) |
Bone-window | 97.0 (93.7–98.9) | 96.0 (95.1–96.7) | 0.965 (0.953–0.978) |
Spine-window | 92.6 (88.1–95.8) | 97.9 (97.3–98.4) | 0.953 (0.934–0.971) |
Max Fusion-1 | 98.0 (95.0–99.5) | 96.2 (95.3–96.9) | 0.971 (0.961–0.981) |
Average Fusion-1 | 95.6 (91.8–98.0) | 96.9 (96.1–97.5) | 0.962 (0.948–0.977) |
Reader | Sensitivity (95% CI) | Specificity (95% CI) | AUC (95% CI) |
---|---|---|---|
AJLC | 58.5 (53.6–63.3) | 99.5 (99.2–99.8) | 0.790 (0.766–0.814) |
SEE | 68.4 (63.7–72.9) | 99.1 (98.6–99.4) | 0.838 (0.815–0.860) |
FEM | 85.7 (81.9–88.9) | 87.6 (86.2–88.9) | 0.866 (0.848–0.885) |
HYO | 89.3 (85.9–92.1) | 78.0 (76.3–79.7) | 0.837 (0.820–0.854) |
Combined method | |||
Abdomen-window | 83.0 (79.0–86.5) | 96.8 (96.0–97.5) | 0.899 (0.881–0.918) |
Bone-window | 88.3 (84.7–91.2) | 93.8 (92.7–94.7) | 0.910 (0.894–0.927) |
Spine-window | 84.1 (80.2–87.5) | 96.5 (95.7–97.2) | 0.903 (0.885–0.921) |
Max Fusion-1 | 87.1 (83.5–90.2) | 95.3 (94.4–96.1) | 0.912 (0.895–0.929) |
Average Fusion-1 | 85.2 (81.4–88.5) | 96.4 (95.6–97.1) | 0.908 (0.891–0.926) |
Separated method | |||
Abdomen-window | 89.1 (85.7–91.9) | 94.6 (93.6–95.5) | 0.918 (0.903–0.934) |
Bone-window | 89.0 (85.6–91.9) | 94.2 (93.1–95.1) | 0.916 (0.900–0.932) |
Spine-window | 92.7 (89.7–95.0) | 92.2 (91.0–93.2) | 0.924 (0.910–0.938) |
Max Fusion-1 | 89.6 (86.2–92.3) | 94.6 (93.6–95.5) | 0.921 (0.905–0.936) |
Average Fusion-1 | 89.3 (85.9–92.1) | 95.3 (94.3–96.1) | 0.923 (0.907–0.938) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hallinan, J.T.P.D.; Zhu, L.; Zhang, W.; Kuah, T.; Lim, D.S.W.; Low, X.Z.; Cheng, A.J.L.; Eide, S.E.; Ong, H.Y.; Muhamat Nor, F.E.; et al. Deep Learning Model for Grading Metastatic Epidural Spinal Cord Compression on Staging CT. Cancers 2022, 14, 3219. https://doi.org/10.3390/cancers14133219
Hallinan JTPD, Zhu L, Zhang W, Kuah T, Lim DSW, Low XZ, Cheng AJL, Eide SE, Ong HY, Muhamat Nor FE, et al. Deep Learning Model for Grading Metastatic Epidural Spinal Cord Compression on Staging CT. Cancers. 2022; 14(13):3219. https://doi.org/10.3390/cancers14133219
Chicago/Turabian StyleHallinan, James Thomas Patrick Decourcy, Lei Zhu, Wenqiao Zhang, Tricia Kuah, Desmond Shi Wei Lim, Xi Zhen Low, Amanda J. L. Cheng, Sterling Ellis Eide, Han Yang Ong, Faimee Erwan Muhamat Nor, and et al. 2022. "Deep Learning Model for Grading Metastatic Epidural Spinal Cord Compression on Staging CT" Cancers 14, no. 13: 3219. https://doi.org/10.3390/cancers14133219
APA StyleHallinan, J. T. P. D., Zhu, L., Zhang, W., Kuah, T., Lim, D. S. W., Low, X. Z., Cheng, A. J. L., Eide, S. E., Ong, H. Y., Muhamat Nor, F. E., Alsooreti, A. M., AlMuhaish, M. I., Yeong, K. Y., Teo, E. C., Barr Kumarakulasinghe, N., Yap, Q. V., Chan, Y. H., Lin, S., Tan, J. H., ... Makmur, A. (2022). Deep Learning Model for Grading Metastatic Epidural Spinal Cord Compression on Staging CT. Cancers, 14(13), 3219. https://doi.org/10.3390/cancers14133219