Three-Dimensional Quantitative Tumor Response and Survival Analysis of Hepatocellular Carcinoma Patients Who Failed Initial Transarterial Chemoembolization: Repeat or Switch Treatment?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Transarterial Chemoembolization
2.3. Follow-Up
2.4. Tumor-Response Evaluation
2.5. Statistical Analysis
3. Results
3.1. Tumor Response
3.2. Survival Analysis
3.3. Univariate and Multivariate Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation Barcelona Clinic Liver Cancer (BCLC) staging system. The 2022 update. J. Hepatol. 2021, 76, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Terzi, E.; Golfieri, R.; Piscaglia, F.; Galassi, M.; Dazzi, A.; Leoni, S.; Giampalma, E.; Renzulli, M.; Bolondi, L. Response rate and clinical outcome of HCC after first and repeated cTACE performed “on demand”. J. Hepatol. 2012, 57, 1258–1267. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. Electronic address eee, European Association for the Study of the L. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georgiades, C.; Geschwind, J.F.; Harrison, N.; Hines-Peralta, A.; Liapi, E.; Hong, K.; Wu, Z.; Kamel, I.; Frangakis, C. Lack of response after initial chemoembolization for hepatocellular carcinoma: Does it predict failure of subsequent treatment? Radiology 2012, 265, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Peng, Z.; Zhang, Y.; Chen, M.; Li, J.; Guo, R.; Li, J.; Li, B.; Mei, J.; Feng, S.; et al. Lack of Response to Transarterial Chemoembolization for Intermediate-Stage Hepatocellular Carcinoma: Abandon or Repeat? Radiology 2021, 298, 680–692. [Google Scholar] [CrossRef]
- Gonzalez-Guindalini, F.D.; Botelho, M.P.F.; Harmath, C.B.; Sandrasegaran, K.; Miller, F.H.; Salem, R.; Yaghmai, V. Assessment of liver tumor response to therapy: Role of quantitative imaging. Radiographics 2013, 33, 1781–1800. [Google Scholar] [CrossRef]
- Lin, M.; Pellerin, O.; Bhagat, N.; Rao, P.P.; Loffroy, R.; Ardon, R.; Mory, B.; Reyes, D.K.; Geschwind, J.-F. Quantitative and volumetric European Association for the Study of the Liver and Response Evaluation Criteria in Solid Tumors measurements: Feasibility of a semiautomated software method to assess tumor response after transcatheter arterial chemoembolization. J. Vasc. Interv. Radiol. 2012, 23, 1629–1637. [Google Scholar]
- Duran, R.; Chapiro, J.; Frangakis, C.; Lin, M.; Schlachter, T.R.; Schernthaner, R.E.; Wang, Z.; Savic, L.J.; Tacher, V.; Kamel, I.R.; et al. Uveal Melanoma Metastatic to the Liver: The Role of Quantitative Volumetric Contrast-Enhanced MR Imaging in the Assessment of Early Tumor Response after Transarterial Chemoembolization. Transl. Oncol. 2014, 7, 447–455. [Google Scholar] [CrossRef]
- Chapiro, J.; Duran, R.; Lin, M.; Schernthaner, R.; Lesage, D.; Wang, Z.; Savic, L.J.; Geschwind, J.-F. Early survival prediction after intra-arterial therapies: A 3D quantitative MRI assessment of tumour response after TACE or radioembolization of colorectal cancer metastases to the liver. Eur. Radiol. 2015, 25, 1993–2003. [Google Scholar] [CrossRef]
- Tacher, V.; Lin, M.; Duran, R.; Yarmohammadi, H.; Lee, H.; Chapiro, J.; Chao, M.; Wang, Z.; Frangakis, C.; Sohn, J.H.; et al. Comparison of Existing Response Criteria in Patients with Hepatocellular Carcinoma Treated with Transarterial Chemoembolization Using a 3D Quantitative Approach. Radiology 2016, 278, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Chapiro, J.; Wood, L.D.; Lin, M.; Duran, R.; Cornish, T.; Lesage, D.; Charu, V.; Schernthaner, R.; Wang, Z.; Tacher, V.; et al. Radiologic-pathologic analysis of contrast-enhanced and diffusion-weighted MR imaging in patients with HCC after TACE: Diagnostic accuracy of 3D quantitative image analysis. Radiology 2014, 273, 746–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tacher, V.; Lin, M.; Chao, M.; Gjesteby, L.; Bhagat, N.; Mahammedi, A.; Ardon, R.; Mory, B.; Geschwind, J.F. Semiautomatic volumetric tumor segmentation for hepatocellular carcinoma: Comparison between C-arm cone beam computed tomography and MRI. Acad. Radiol. 2013, 20, 446–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonekamp, D.; Bonekamp, S.; Halappa, V.G.; Geschwind, J.-F.H.; Eng, J.; Corona-Villalobos, C.P.; Pawlik, T.M.; Kamel, I.R. Interobserver agreement of semi-automated and manual measurements of functional MRI metrics of treatment response in hepatocellular carcinoma. Eur. J. Radiol. 2014, 83, 487–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shim, J.H.; Lee, H.C.; Won, H.J.; Shin, Y.M.; Kim, K.M.; Lim, Y.-S.; Suh, D.J. Maximum number of target lesions required to measure responses to transarterial chemoembolization using the enhancement criteria in patients with intrahepatic hepatocellular carcinoma. J. Hepatol. 2012, 56, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Palmer, D.H.; Malagari, K.; Kulik, L.M. Role of locoregional therapies in the wake of systemic therapy. J. Hepatol. 2020, 72, 277–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rexha, I.; Laage-Gaupp, F.; Chapiro, J.; Miszczuk, M.A.; van Breugel, J.M.M.; Lin, M.; Konstantinidis, M.; Duran, R.; Gebauer, B.; Georgiades, C.; et al. Role of 3D quantitative tumor analysis for predicting overall survival after conventional chemoembolization of intrahepatic cholangiocarcinoma. Sci. Rep. 2021, 11, 9337. [Google Scholar] [CrossRef]
- Corona-Villalobos, C.P.; Halappa, V.G.; Geschwind, J.-F.H.; Bonekamp, S.; Reyes, D.; Cosgrove, D.; Pawlik, T.M.; Kamel, I.R. Volumetric assessment of tumour response using functional MR imaging in patients with hepatocellular carcinoma treated with a combination of doxorubicin-eluting beads and sorafenib. Eur. Radiol. 2015, 25, 380–390. [Google Scholar] [CrossRef]
- Cheng, A.-L.; Amarapurkar, D.; Chao, Y.; Chen, P.-J.; Geschwind, J.-F.; Goh, K.L.; Han, K.-H.; Kudo, M.; Lee, H.C.; Lee, R.-C.; et al. Re-evaluating transarterial chemoembolization for the treatment of hepatocellular carcinoma: Consensus recommendations and review by an International Expert Panel. Liver Int. 2014, 34, 174–183. [Google Scholar] [CrossRef]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.; Oliveira, A.; Santoro, A.; Raoul, J.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef] [Green Version]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- Granito, A.; Facciorusso, A.; Sacco, R.; Bartalena, L.; Mosconi, C.; Cea, U.V.; Cappelli, A.; Antonino, M.; Modestino, F.; Brandi, N.; et al. TRANS-TACE: Prognostic Role of the Transient Hypertransaminasemia after Conventional Chemoembolization for Hepatocellular Carcinoma. J. Pers. Med. 2021, 11, 1041. [Google Scholar] [CrossRef] [PubMed]
Variable | No. (%) |
---|---|
Age/years, median (range) | 62 (22–87) |
Male | 82 (87.2%) |
Etiology | |
Hepatitis B/C infection | 63 (67.0%) |
Other | 31 (33.0%) |
Cirrhosis | |
Yes | 69 (73.4%) |
No/unknown | 25 (26.6%) |
Child–Pugh class | |
A (5–6) | 71 (75.5%) |
B (7) | 23 (24.5%) |
Ascites | |
No | 76 (80.9%) |
Yes | 18 (19.1%) |
No. of HCC nodules | |
1–2 | 41 (43.6%) |
≥3 | 53 (56.4%) |
AFP * | |
<400 ng/dL | 68 (72%) |
≥400 ng/dL | 25 (27%) |
Baseline laboratory values, mean (range) | |
International normalized ratio | 1.1 (0.9–1.8) |
Albumin, g/dL | 3.8 (2.3–4.8) |
Total bilirubin, mg/dL | 1.1 (0.2–4.6) |
Post-TACE therapies | |
Liver transplant | 13 (13.8%) |
Liver resection | 2 (2.1%) |
Sorafenib | 68 (72.3%) |
Variable | First TACE | Second TACE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Univariate Analysis | Multivariate Analysis | Univariate Analysis | Multivariate Analysis | |||||||||
HR | 95% CI | p | HR | 95% CI | p | HR | 95% CI | p | HR | 95% CI | p | |
Age | 1.012 | 0.991–1.034 | 0.250 | 1.016 | 0.986–1.047 | 0.293 | ||||||
Gender (male/female) | 1.081 | 0.489–2.387 | 0.848 | 0.899 | 0.343–2.360 | 0.829 | ||||||
Etiology (hepatitis infection/other) | 1.294 | 0.755–2.218 | 0.348 | 0.92 | 0.444–1.907 | 0.822 | ||||||
AFP (≥400/<400) | 1.473 | 0.849–2.556 | 0.168 | 1.098 | 0.533–2.261 | 0.8 | ||||||
Child–Pugh (B/A) | 2.658 | 1.498–4.715 | 0.001 | 2.450 | 1.060–5.664 | 0.036 | 3.370 | 1.499–7.576 | 0.003 | 3.472 | 0.942–12.803 | 0.062 |
Ascites (Yes/no) | 1.707 | 1.088–2.680 | 0.02 | 0.985 | 0.493–1.967 | 0.965 | 2.495 | 1.112–5.597 | 0.027 | 0.923 | 0.256–3.325 | 0.902 |
Tumor number (≥3/1–2) | 1.408 | 0.826–2.401 | 0.208 | 1.227 | 0.525–2.870 | 0.637 | ||||||
ECOG (1/0) * | - | - | - | - | - | - | 0.747 | 0.300–1.859 | 0.53 | |||
qEASL (non-response vs. response) | 1.724 | 0.946–3.141 | 0.075 | 1.502 | 0.809–2.789 | 0.197 | 2.817 | 1.238–6.411 | 0.014 | 2.756 | 1.196–6.352 | 0.017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Haroun, R.R.; Sahu, S.; Schernthaner, R.E.; Smolka, S.; Lin, M.-D.; Hong, K.K.; Georgiades, C.; Duran, R. Three-Dimensional Quantitative Tumor Response and Survival Analysis of Hepatocellular Carcinoma Patients Who Failed Initial Transarterial Chemoembolization: Repeat or Switch Treatment? Cancers 2022, 14, 3615. https://doi.org/10.3390/cancers14153615
Zhao Y, Haroun RR, Sahu S, Schernthaner RE, Smolka S, Lin M-D, Hong KK, Georgiades C, Duran R. Three-Dimensional Quantitative Tumor Response and Survival Analysis of Hepatocellular Carcinoma Patients Who Failed Initial Transarterial Chemoembolization: Repeat or Switch Treatment? Cancers. 2022; 14(15):3615. https://doi.org/10.3390/cancers14153615
Chicago/Turabian StyleZhao, Yan, Reham R. Haroun, Sonia Sahu, Ruediger E. Schernthaner, Susanne Smolka, Ming-De Lin, Kelvin K. Hong, Christos Georgiades, and Rafael Duran. 2022. "Three-Dimensional Quantitative Tumor Response and Survival Analysis of Hepatocellular Carcinoma Patients Who Failed Initial Transarterial Chemoembolization: Repeat or Switch Treatment?" Cancers 14, no. 15: 3615. https://doi.org/10.3390/cancers14153615
APA StyleZhao, Y., Haroun, R. R., Sahu, S., Schernthaner, R. E., Smolka, S., Lin, M. -D., Hong, K. K., Georgiades, C., & Duran, R. (2022). Three-Dimensional Quantitative Tumor Response and Survival Analysis of Hepatocellular Carcinoma Patients Who Failed Initial Transarterial Chemoembolization: Repeat or Switch Treatment? Cancers, 14(15), 3615. https://doi.org/10.3390/cancers14153615