Mesenchymal Stem/Stromal Cells May Decrease Success of Cancer Treatment by Inducing Resistance to Chemotherapy in Cancer Cells
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Ambivalent Nature of MSCs in the Tumour Microenvironment
3. MSCs Promote Resistance of Cancer Cells to Chemotherapeutic Agents
3.1. Blood Cancers
3.1.1. Acute Lymphoblastic Leukaemia
3.1.2. Acute Myeloid Leukaemia
3.1.3. Chronic Lymphocytic Leukaemia
3.1.4. Multiple Myeloma
3.2. Glioma
3.3. Neuroblastoma
3.4. Oral Squamous Cell Carcinoma
3.5. Head and Neck Cancers
3.6. Breast Cancer
3.7. Lung Adenocarcinoma
3.8. Gastric Cancer
3.9. Pancreatic Adenocarcinoma
3.10. Genitourinary Cancers
3.11. Liver Cancer
3.12. Bone Cancers
Type of Cancer | Source of MSCs | In Vitro Model | In Vivo Model | Chemotherapeutic Agent | Effects of MSCs on Chemotherapeutic-Agent-Treated Cancer Cells | References |
---|---|---|---|---|---|---|
ALL | Human umbilical-cord-derived MSCs | Human patient-derived ALL cells | N/A | Vincristine | MSCs mediated vincristine resistance by blocking the CXCR4/CXCL12 axis. | [96] |
Human bone-marrow-derived MSCs from ALL patients and healthy volunteers | Human CCRF-SB B lymphoma cell line | NOD/SCID mice | Vincristine | Protein tyrosine phosphatase 2 (Shp2) activation in the BMSC upregulates VCAM-1 expression through activating the PI3K/AKT signalling pathway, which thereby interacts with VLA-4 in B-ALL cells to resist vincristine. | [92] | |
Human bone-marrow-derived MSCs | Human B-cell precursor-ALL cells and AML cells; human normal Epstein–Barr-virus-infected B lymphocytes | N/A | Peptide 4-1-17, small molecule 8673, cytarabine, doxorubicin | Peptide 4-1-17 and small molecule 8673 inhibit leukaemia cell proliferation and induce a pro-apoptotic effect that is not reduced by the presence of MSCs. The combined treatment with 4-1-17 and 8673 has a stronger pro-apoptotic effect, particularly on cells cultured on MSCs in normoxic and hypoxic conditions, and can overcome MSC-induced resistance to cytarabine. | [97] | |
Human bone-marrow-derived MSCs | Human T-cell ALL cell line Jurkat; human primary T-cell ALL cells | N/A | Cytarabine | The chemotherapeutic drug causes intracellular oxidative stress in Jurkat cells. Jurkat cells transfer mitochondria to MSCs via tunnelling membrane nanotubes but receive few mitochondria from MSCs, resulting in chemoresistance. | [100] | |
Human bone-marrow-derived MSCs from healthy volunteers | Human leukaemia pre-B ALL cells; human primary ALL mononuclear cells | N/A | Everolimus | BM stromal cells enhance HIF-1α expression under hypoxia, leading to an HIF-1α-dependent upregulation of glucose transport and a switch to glycolytic metabolism in leukaemic cells and primary ALL blasts. Downregulation of HIF-1α expression or blockade of mTOR signalling with everolimus promoted chemosensitivity. | [153] | |
Human bone-marrow-derived MSCs, human MSC line HS-5, murine MSC line M2-10B4 | The human leukaemia cell lines Reh, RS4;11, and SEMK2 | NOD/SCID mice | Cytarabine | MSCs induce activation of the Wnt pathway in ALL cells, and this activation contributes to the survival of ALL cells. Blocking the Wnt pathway with the β-catenin inhibitor XAV939 partially overcame the MSC-mediated cytarabine resistance of ALL cells both in vitro and in vivo. | [99] | |
Human bone-marrow-derived MSCs from patients with ALL or AML | The human leukaemia cell lines OCI-AML3, Reh, NALM6-luciferaseCopGFP, and RS4;11 | N/A | Vincristine, doxorubicine, cytarabidine | The blockade of NF-κB activation via chemical agents or the overexpression of the mutant form of the inhibitor κB-α (IκBα) in BM-MSCs markedly reduced the stromal-mediated chemotherapeutic drug resistance in leukaemia cells in vitro and in vivo. An in vivo model of the human leukaemia BM microenvironment also illustrated a direct link between NF-κB activation and stromal-associated chemoprotection. | [93] | |
AML | Human bone-marrow-derived MSCs from patients | Leukaemic cell line HL-60 | N/A | Cytarabine | Primary mesenchymal stromal cells in co-culture with leukaemic HL-60 cells are sensitized to cytarabine-induced genotoxicity, while leukaemic cells are protected. Malignant HSCs and MSCs bidirectionally modulate genotoxicity. | [101] |
Human bone-marrow-derived MSCs from healthy volunteers | Leukaemic cell line HL-60 | NOD/SCID mice | Cytarabine | BM stromal cells induce ALDH activity in AML cells through increased expression of the ALDH2 isoform. BM-MSCs secrete TGF-β1, which exerts its effect through a noncanonical/p38-dependent signalling mechanism, leading to a stem-like phenotype in AML cells. Inhibition of downstream targets of this pathway, such as p38 MAPK, inhibits ALDH activity in AML cells. ALDH2 inhibition sensitizes AML cells to standard cytarabine chemotherapy in vitro. However, these findings were not validated in vivo. | [106] | |
Human bone-marrow-derived MSCs from healthy volunteers | Human leukaemia cell line OCI-AML3; human primary cells from AML patients or healthy volunteers | NSG mice | Cytarabine | Cox-2 expression and PGE2 generation are ARC/IL1β-dependent. The apoptosis repressor with caspase recruitment domain (ARC) protein, regulated by β-catenin, is an integral component of an IL1β/PGE2/β-catenin circuit. Cox-2/PGE2, regulated by ARC and induced by AML-MSC co-culture contributes to MSC-mediated chemoprotection in AML. | [114] | |
Human bone-marrow-derived MSCs | Human leukaemia cell lines OCI-AML2, OCI-AML3, HL-60, ML-1, and Molm-13 | N/A | BH3 mimetics, cytarabine, and daunorubicin | Bcl-2/Bcl-XL and Mcl-1 act redundantly as effectors of BMM-mediated AML drug resistance, highlighting the potential of Mcl-1 suppression to reverse BMM-mediated drug resistance in the leukaemic stem cell population, thus preventing disease relapse and ultimately improving patient survival. Suppression of Mcl-1 expression by the CDC7/CDK9 inhibitor PHA-767491 overcomes bone marrow stroma-mediated drug resistance in AML. | [110] | |
Human bone-marrow-derived MSCs from ALL patients | Murine cell line MS-5; human bone-marrow-derived cells from patients with AML | N/A | Cytarabine | Human MSCs are potent feeder cells that are able to maintain AML cells in long-term culture. Co-culture of AML cells on MSCs results in a significantly higher proliferation capacity than on MS-5 or liquid culture. This favourable co-existence seems to be due, in part, to molecules important for communication within the niche. Blockade of TGF-β1 increases AML cell proliferation and chemosensitivity, while the CXCR4 antagonist plerixafor shows anti-proliferative effects and does not change cytarabine-induced cell death compared to control. | [105] | |
Human MSCs from healthy volunteers | Human bone-marrow-derived and peripheral blood cells from AML patients | N/A | Cytarabine | Human MSCs contribute to quiescence and therapy resistance of persistent AML cells. Co-culture studies demonstrate that hMSCs protect leukaemic cells from the effect of AraC (cytarabine) treatment by enriching quiescent cells, mimicking the effects observed in patients. This effect is even detectable when no direct stromal contact is established. | [102] | |
Human bone-marrow-derived MSCs from ALL patients | Leukaemia cell lines U937, HL60, and KG1a | NOD/SCID mice | Mitoxantrone | MSC protects AML cells from apoptosis through the c-Myc-dependent pathway. The expression of microRNA-494 (miR-494) in AML cells after co-culture with MSCs is downregulated. In the co-culture system, activation of miR-494 in AML cells suppresses proliferation and induces apoptosis of AML cells in vitro. After the addition of mitoxantrone to the co-culture system, the proliferation of AML cells with miR-494 activation is suppressed more than that of control cells. After subcutaneous injection of AML cell lines in combination with MSC, tumour growth is suppressed in mice injected with miR-494-overexpressing AML cells. The rate of tumour formation is even lower after mitoxantrone treatment in the miR-494-overexpressing group. miR-494 suppresses drug resistance in AML cells by downregulating c-Myc through interaction with MSCs. | [109] | |
Human bone-marrow-derived MSCs from healthy volunteers | Leukaemia cell lines OCI-AML3, KG-1 cells, and Molm13 | NSG mice | Cytarabine | ARC enhances the migration and adhesion of leukaemia cells to MSCs both in vitro and in a novel human extramedullary bone/bone marrow mouse model. ARC induces IL1β expression in AML cells and increases CCL2, CCL4, and CXCL12 expression in MSCs, both through ARC-mediated activation of NFκB. Cells from AML patients express the receptors for and migrate toward CCL2, CCL4, and CXCL12. Inhibition of IL1β suppresses AML cell migration and sensitizes the cells co-cultured with MSCs to chemotherapy. | [115] | |
Human bone-marrow-derived MSCs from AML patients | AML cell line HEL; ossification cell line hFOB1.19 | N/A | Daunorubicin | A strong positive correlation between the thrombopoietin (TPO) level and c-MPL expression is found in the bone marrow mononuclear cells of relapsed AML patients. A high level of TPO/c-MPL signalling may protect MSCs from daunorubicin chemotherapy in AML. The effects of inhibition of the TPO/c-MPL pathway on enhancing the chemotherapy sensitivity of AML cells and on their downstream effector molecules that direct the interactions between patient-derived blasts and leukaemia-repopulating cells need to be further studied. | [107] | |
CLL | Human bone-marrow-derived MSCs from CLL patients and healthy volunteers | Human peripheral-blood-derived cells from patients with CLL | N/A | Fludarabine, Cyclophosphamide, Bendamustine, Prednisone, and Hydrocortisone | The presence of BM-MSCs rescues chronic lymphocytic leukaemia (CLL) cells from apoptosis both spontaneously and following induction with various drugs, including fludarabine, cyclophosphamide, bendamustine, prednisone, and hydrocortisone. The treatment with a combination of anti-Notch-1, Notch-2, and Notch-4 antibodies or γ-secretase inhibitor XII reverts this protective effect by day 3, even in the presence of the above-mentioned drugs. | [116] |
Multiple myeloma | Human bone-marrow-derived MSCs from patients with multiple myeloma and healthy volunteers | Human multiple myeloma cell lines U266 and RPMI-8226 | N/A | Melphalan or doxorubicin | BM-MSCs derived from patients with multiple myeloma (MM-MSCs), but not from healthy subjects (NM-MSCs), protect MM cells against the cytotoxicity of two chemotherapeutic agents (melphalan and doxorubicin). The pyrrolidine dithiocarbamate (PDTC), a potent and specific inhibitor of NF-κB, reverses the protective effects of MM-MSCs on MM cells in response to chemotherapy-induced apoptosis. Moreover, blocking autophagy by CQ or 3MA induces I-κBα phosphorylation and consequently prevents MM-MSC-mediated NF-κB signalling activation in MM cells. The results highlight the significance of MM-MSC-activated autophagy in MM chemotherapy resistance. | [119] |
Glioma | Human glioma-associated MSCs from patients | Human cell line U87MG; human primary glioblastoma cells | BALB/c-nu mice | Temozolomide | Conditioned media of glioma-associated mesenchymal stromal/stem cells (gaMSCs) promotes the proliferation, migration, and chemotherapy resistance of glioma cells. The increased expression of FOXS1 and the activation of the EMT process in glioma cells under gaMSC-conditioned media was detected. The relationship of FOXS1, EMT, and temozolomide resistance in glioma cells was demonstrated through the regulation of FOXS1 expression in vitro and in vivo. | [122] |
Glioblastoma | Human umbilical cord perivascular cells | Human glioblastoma cell lines SNB-19 and U251 | Chicken chorioallantoic membrane | Temozolomide | Human umbilical cord perivascular cells (HUCPVCs, an MSC population present in the Wharton’s jelly of the umbilical cord) secrete molecules that contribute to glioblastoma aggressiveness by increasing cell proliferation, migration, and viability in vitro and by stimulating higher tumour growth in vivo. In contrast, the resistance of glioblastoma cells to temozolomide chemotherapy is not significantly affected by HUCPVC-conditioned medium. | [124] |
Neuroblastoma | Human bone-marrow-derived MSCs from patients with neuroblastoma | Human neuroblastoma cell lines CHLA-171 and CHLA-255 | N/A | Etoposide, JAK inhibitor (AZD1480) | Human bone marrow mesenchymal stromal cells induce tumour expression of sphingosine-1-phosphate receptor-1 (S1PR1), leading to their resistance to chemotherapy. Targeting S1PR1 by shRNA markedly enhances etoposide-induced apoptosis in neuroblastoma (NB) cells, while overexpression of S1PR1 significantly protects NB cells from multidrug-induced apoptosis via activating JAK-STAT3 signalling. Treatment with FTY720, an FDA-approved drug and antagonist of S1PR1, dramatically sensitizes drug-resistant NB cells to etoposide in in vitro and human neuroblastoma xenograft models. | [125] |
Oral squamous cell carcinoma | Human bone-marrow-derived MSCs | Human oral squamous cell carcinoma cell lines JHU-012, JHU-019, and OKF-TERT1 | N/A | Cisplatin | The crosstalk between human oral squamous carcinoma cells and MSCs is mediated, at least in part, by the activation of the autocrine PDGF-AA/PDGFR-α loop driving AKT-mediated signalling pathways, resulting in reduced cancer cell sensitivity to cisplatin through alterations in apoptosis. | [129] |
Head and neck cancer | Human bone-marrow-derived MSCs | Human head and neck cancer cell line SCC-25 | BALB/c nude mice | Paclitaxel | MSC-exposed head and neck cancer cells develop paclitaxel resistance that can be maintained up to 30 d after the initial co-incubation period. The secretory profile of the MSCs suggested IL-6 to be a potential mediator of epigenetic imprinting on the head and neck cancer cells. When the MSC-imprinted cancer cells are exposed to the demethylation agent 5-aza-2′deoxycytidine, it restores the expression of the drug resistance genes to that of parental cells. | [130] |
Breast cancer | Human bone-marrow-derived MSCs from healthy volunteers; Murine bone-marrow- or blood-derived MSCs | Human breast cancer cell line MDA-MB-231, human colon carcinoma cell line C26, human lung adenocarcinoma cell line LLC | BALB/c, C57Bl/6, athymic nude mice. | Cisplatin, irinotecan | MSCs become activated during treatment with platinum analogues and secrete factors that protect cancer cells against a range of chemotherapeutics. A metabolomics approach reveals two distinct platinum-induced polyunsaturated fatty acids (PIFAs), 12-oxo-5,8,10-heptadecatrienoic acid (KHT) and hexadeca-4,7,10,13-tetraenoic acid (16:4(n-3)), that in minute quantities, induce resistance to a broad spectrum of chemotherapeutic agents. Blocking central enzymes involved in the production of these PIFAs (cyclooxygenase-1 and thromboxane synthase) prevents MSC-induced resistance. | [154] |
Human bone-marrow-derived MSCs | Human breast cancer cell lines MDA-MB-231 and MCF-7 | BALB/c female nude mice | Doxorubicin | Doxorubicin treatment induces the expression of miR-21-5p in MSCs and in mesenchymal stem-cell-derived exosomes, leading to the induction of S100A6 in the breast cancer cells (BCs). Silencing of miR-21-5p expression in MSCs and MSC exosomes abolished the resistance of BCs to doxorubicin, indicating an exosomal miR-21-5p regulated the role of S100A6 in chemoresistance both in vitro and in vivo. | [133] | |
Human bone-marrow-derived MSCs | Human breast cancer cell line HCC1806 | NOD/SCID mice | Mithramycin A, Doxycycline, 5-fluorouracil | When GFP-labelled BMMSCs and RFP-labelled HCC1806 cells are injected together in vivo, they create tumours that contain a new hybrid cell that has characteristics of both BMMSCs and HCC1806 cells. When hybrid cells are injected into the mammary fat pad of NOD/SCID mice, they produce xenograft tumours that are smaller in size and exhibit resistance to chemotherapy drugs (i.e., doxorubicin and 5-fluorouracil) compared tumours from HCC1806 cells alone. This chemoresistance is shown to be associated with an increased expression of tetraspanins (CD9 and CD81) and drug resistance proteins (BCRP and MDR1). Subsequent siRNA-mediated knockdown of BMMSC-CD9 in DP-HCC1806:BMMSCs results in an attenuation of doxorubicin and 5-fluorouracil chemoresistance associated with decreased BCRP and serum cytokine expression (CCL5, CCR5, and CXCR12). It is suggested that within the tumour microenvironment CD9 is responsible for the crosstalk between BMMSCs and HCC1806 breast cancer cells (via CCL5, CCR5, and CXCR12), which contributes to chemoresistance. | [131] | |
Bone-marrow-derived MSCs | Human breast cancer cell line MDA-MB-231 | N/A | Valproic acid | In vitro experiments confirm that VA inhibits NF-kB activation in cancer cells. In addition, analysing gene expression data in patients taking oral valproic acid showed that this drug decreased the expression of antioxidant enzymes, culminating in increased oxidative stress in tumour cells. Analysis of publicly available genome-wide drug-induced effects reveals that valproic acid, as a histone deacetylase inhibitor (HDACI), is the most effective drug in disturbing the signalling pathways activated by tumour–stromal interaction. | [136] | |
Human adipose-derived MSCs | Human breast cancer cell line MCF-7/ADR | N/A | Adriamycin hydrochloride | Conditioned medium derived from adipose mesenchymal stem cells induces increased expression of C-terminal Src kinase (Csk)-binding protein (Cbp), accompanied by enhanced cell proliferation and chemotherapy resistance in MCF-7/ADR breast cancer cells. Depletion of Cbp in breast cancer cells by RNA interference leads to remarkable inhibition of cell proliferation and invasion as well as synergy with adriamycin hydrochloride to suppress tumour growth. | [134] | |
Human adipose-derived MSCs | Human breast cancer cell line MDA-MB-231 | N/A | Doxorubicin | Conditioned medium collected from hAdSCs elicits doxorubicin resistance and enhances the expression of ABCG2, which is a transporter responsible for the efflux of doxorubicin. CXCL1 secreted by hAdSCs downregulates miR-106a expression in triple-negative breast cancer and thus upregulates the ABCG2 and doxorubicin resistance. | [132] | |
Lung adenocarcinoma | Human bone-marrow-derived MSCs from patients with non-haematological malignant tumours | Human lung adenocarcinoma cell lines H358, A549, and H460 and murine LLC cell line | C57BL/6 mice | Erlotinib | Bone-marrow-derived MSCs residing in the hypoxic solid cancer microenvironment produce high levels of molecules associated with adipocytes, including adipokine leptin and IGFBPs. It is suggested that leptin induces the resistance of lung cancer cells to erlotinib through activating IGF-1R signalling. IGFBP2 induces erlotinib resistance by activating IGF-1R signalling in an IGF-1-independent manner. IGFBP2 had a synergistic effect with leptin to induce erlotinib resistance in vitro and in vivo. | [137] |
Gastric cancer | Human bone-marrow-derived MSCs | Human gastric cancer cell lines AGS and MKN45 | BALB/C nude mice | FOLFOX regiment, composed of 5-FU, oxaliplatin, and calcium folinate | MSCs promote stemness and chemoresistance in gastric cancer (GC) cells through fatty acid oxidation (FAO). TGF-β1 secreted by MSCs activates SMAD2/3 through TGF-β receptors, which then induce lncRNA MACC1-AS1 expression in GC cells and promote FAO-dependent stemness and chemoresistance through antagonizing miR145-5p. Pharmacologic inhibition of FAO with etomoxir (ETX) attenuates MSC-induced FOLFOX regiment resistance in vivo. | [141] |
Human gastric-cancer-associated MSCs from patients | The human GC cell lines SGC-7901, MGC-803, HGC-27, and AGS | BALB/c nude mice | 5-fluorouracil | Gastric cancer MSCs upregulate the levels of PD-L1 bound to the transcription factor CCCTC binding factor (CTCF), enhance the CSC-like properties of GC cells, and lead to tumorigenesis. In vivo, PD-L1-positive GC cells have greater stemness potential and tumorigenicity than PD-L1-negative GC cells. GC cells are heterogeneous, and PD-L1s in GC cells have different reactivities to GCMSCs. | [138] | |
Human bone-marrow-derived MSCs | Human gastric cancer cell lines AGS and MKN45, human renal epithelial cell line HEK293T | BALB/C nude mice | FOLFOX regiment, composed of 5-FU, oxaliplatin, and calcium folinate | MSC co-culture improves stemness and drug-resistance of gastric cancer (GC) cells. LncRNA histocompatibility leukocyte antigen complex P5 (HCP5) is induced in GC cells by MSC co-culture, contributing to stemness and drug resistance. MSC-induced lncRNA HCP5 drives FAO through miR-3619-5p/AMPK/PGC1α/CEBPB axis to promote stemness and chemo-resistance of GC. | [140] | |
Human bone-marrow-derived MSCs | Human gastric cancer cell lines SGC7901, KATO-III, MKN45, and AGS | N/A | Cisplatin | Bone marrow MSCs increase the antiapoptotic abilities and chemoresistance of CD133+ cells via upregulation of Bcl-2 and downregulation of BAX. BM-MSCs triggered activation of the PI3K/AKT signalling cascade in CD133+ cells. Blocking the PI3K/AKT pathway inhibited the promotion of chemoresistance. BM-MSCs enhance the drug resistance of CD133-overexpressing cells in vitro and in vivo but not that of CD133-knockdown cells, which demonstrates the contribution of CD133 to this process. | [143] | |
Human umbilical-cord-derived MSCs | Human gastric cancer cell lines HGC-27, MGC-803, and SGC-7901 and human foetal lung fibroblast cell line HFL1 | BALB/c nu/nu mice | 5-fluorouracil, cisplatin | MSC exosomes induce the resistance of gastric cancer cells to 5-fluorouracil both in vivo and ex vivo. MSC exosomes antagonise 5-fluorouracil-induced apoptosis and enhance the expression of multi-drug-resistance-associated proteins, including MDR, MRP, and LRP. MSC exosomes trigger the activation of calcium/calmodulin-dependent protein kinases (CaMKs) and Raf/MEK/ERK kinase cascade in gastric cancer cells. Blocking the CaM-Ks/Raf/MEK/ERK pathway inhibits the promoting role of MSC exosomes in chemoresistance. | [142] | |
Pancreatic cancer | Human bone-marrow-derived MSCs | Human pancreatic adenocarcinoma cell lines PANC1, MIA PaCa-2, and BxPC3, human glioblastoma cell line U-87MG, human colon carcinoma cell line HT29, human non-small-cell lung carcinoma cell line A549, human breast carcinoma cell line MCF7 | SCID mice | Gemcitabine | The inhibiting of crosstalk between MSCs and tumour-initiating cells (TIC) disrupts the CXCL10–CXCR3 axis and sensitizes tumour cells to chemotherapy, mainly by targeting TICs residing in the treated tumour. Based on the ability of MSCs to specifically home to tumours and target the TIC population, the use of MSC-derived nanovesicles as “Trojan horses” is presented as a strategy to overcome resistance, especially in desmoplastic cancers such as pancreatic adenocarcinomas. | [144] |
Genitourinary cancers | Human bone-marrow-derived MSCs | Human prostatic carcinoma cell lines PC3 and DU145 | Nude mice | Docetaxel | MSCs reduce the sensitivity of castration-resistant prostate cancer (CRPC) cells to docetaxel-induced proliferation inhibition and apoptosis promotion in vivo and in vitro. CRPC cells co-cultured with MSCs under docetaxel administration have an increased autophagy activation through TGF-β1 signalling. The autophagy inhibitor could effectively reverse MSC-induced resistance to docetaxel, e.g., inhibition of TGF-β1 secretion in MSCs increases the sensitivity of CRPC cells to docetaxel. | [145] |
Human adipose-derived MSCs | Human epithelial ovarian carcinoma cell lines ES2 and SKOV3 | N/A | Cisplatin | Primary omental adipose-derived mesenchymal stem cells (ADSCs) are a contributor to cisplatin resistance, exhibiting an ability to reduce caspase-3-dependent apoptosis and intracellular platinum accumulation in epithelial ovarian carcinoma EOC. | [147] | |
Human amniotic-fluid-derived MSCs and adipose-derived MSCs from healthy volunteers | Human renal carcinoma cell line 786-0, human bladder carcinoma line T24 | N/A | Ciprofloxacin | MSC-conditioned medium reduces bladder and renal cancer cell viability in vitro, induces cell cycle perturbations in bladder cancer T24 cells without significant influence on apoptosis rate in both studied cancer cell lines, and reduces cell sensitivity to ciprofloxacin after incubation in vitro with conditioned media. | [146] | |
Human ovarian-cancer-associated MSCs from patients; human adipose-derived MSCs from healthy volunteers, human ovary-derived MSCs from healthy volunteers | Human ovarian cancer cell lines SKOV3, CAOV-3, COV318, Hey1, and PEO1 | NOD/SCID mice | Cisplatin | Ovarian tumour-cell-secreted Hedgehog (HH) induces CA-MSC BMP4 expression. CA-MSC-derived BMP4 reciprocally increases ovarian tumour cell HH expression, indicating a positive feedback loop. Interruption of this loop with an HH pathway inhibitor or BMP4-blocking antibody decreases CA-MSC-derived BMP4 and tumour-derived HH, preventing enrichment of cancer stem-like cells (CSCs) and reversing chemotherapy resistance. The impact of HH inhibition is only seen in CA-MSC-containing tumours, indicating the importance of a humanized stroma. The results are reciprocal to findings in pancreatic and bladder cancer, suggesting HH signalling effects are tumour-tissue-specific, warranting careful investigation in each tumour type. | [148] | |
Liver cancer | Human MSCs | Human hepatocarcinoma cell lines SMMC-7721 and HepG2 | N/A | 3-methyladenine | Tumour inflammatory microenvironment is a key player in activating MSCs to induce chemoresistance of hepatocarcinoma cells. Inflammation is a fundamental feature during the development of hepatocellular carcinoma, which exists not only within the tumour tissue but also in the tissues surrounding the tumour. MSCs in the inflammatory microenvironment may persistently promote the development of chemoresistance in HCC cells during tumour growth. One mechanism underlying the MSC-promoted development of chemoresistance in HCC cells is their overexpression of TGF-β in response to inflammatory stimuli in the tumour microenvironment. Treatment of HCC cells with autophagy inhibitor effectively reverses the MSC-induced resistance to chemotherapy, and knockdown of TGF-β expression by MSCs with siRNA attenuates MSC-induced chemoresistance in HCC cells. | [151] |
Bone cancer | Human bone-marrow-derived MSCs | Human osteosarcoma cell lines Saos-2 and U2-OS; primary cells from patients with osteosarcoma | BALB/c nude mice | Doxorubicin | MSCs promote osteosarcoma cell survival and drug resistance through activation of STAT3. Inhibition of STAT3 prolongs the survival time of tumour-bearing mice by suppressing tumour growth and increasing the sensitivity of tumour cells to doxorubicin. The increased expression of p-STAT3, multidrug resistance protein (MRP), and P-glycoprotein (MDR-1) is associated with high chemotherapy resistance in clinical osteosarcoma samples. | [152] |
4. For a Successful Treatment, the Whole Tumour Microenvironment Must Be Considered: Crucial Findings
4.1. MSCs Affect Various Signalling Pathways in Cancer Cells to Protect Them from Chemotherapy-Induced Damage
4.2. MSCs Affect the Susceptibility of Cancer Cells to Chemotherapy When within the Tumour Microenvironment and Distant from the Tumour (Systemic Use)
4.3. How to Improve Treatment Outcomes
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ALDH | Aldehyde dehydrogenase |
ALL | Acute lymphocytic leukaemia |
AML | Acute myeloid leukaemia |
ARC | Apoptosis repressor with caspase recruitment domain |
BDNF | Brain-derived neurotrophic factor |
CXCL | Chemokine (C-X-C motif) ligand |
CXCR | Chemokine (C-X-C motif) receptor |
FGF-2 | Fibroblast growth factor 2 |
HGF | Hepatocyte growth factor |
ICAM-1 | Intercellular adhesion molecule 1 |
IDO | Indoleamine 2,3-dioxygenase |
IFNγ | Interferon γ |
IGF-1 | Insulin-like growth factor 1 |
IGFBP-2 | Insulin-like growth factor-binding protein-2 |
IL-8 | Interleukin-8 |
IGF-1R | Insulin-like growth factor 1 receptor |
LIF | Leukaemia inhibitory factor |
MAPK | Mitogen-activated protein kinase |
Mcl-1 | Myeloid cell leukaemia -1 |
MCP-1 | Monocyte chemotactic protein-1 |
M-CSF | Macrophage colony-stimulating factor |
MIP-2 | Macrophage inflammatory protein 2 |
MSCs | Mesenchymal stem/stromal cells |
PGDF | Platelet-derived growth factor |
PGE2 | Prostaglandin E2 |
PI3K | Phosphoinositide 3-kinase |
S1PR1 | Sphingosine-1-phosphate receptor 1 |
SDF-1 | Stromal cell-derived factor 1 |
STAT3 | Signal transducer and activator of transcription 3 |
TGF-β | Transforming growth factor β |
TNFα | Tumour necrosis factor α |
VCAM-1 | Vascular cell adhesion protein 1 |
VEGF | Vascular endothelial growth factor |
VLA-4 | Very late antigen-4 |
References
- Ridge, S.M.; Sullivan, F.J.; Glynn, S.A. Mesenchymal stem cells: Key players in cancer progression. Mol. Cancer 2017, 16, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pittenger, M.F.; Mackay, A.M.; Beck, S.C.; Jaiswal, R.K.; Douglas, R.; Mosca, J.D.; Moorman, M.A.; Simonetti, D.W.; Craig, S.; Marshak, D.R. Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284, 143–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, M.; Zhang, J.; Xin, H.; He, X.; Zhang, X. Current Perspectives on Role of MSC in Renal Pathophysiology. Front. Physiol. 2018, 9, 1323. [Google Scholar] [CrossRef] [Green Version]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Heidari, B.; Shirazi, A.; Akhondi, M.M.; Hassanpour, H.; Behzadi, B.; Naderi, M.M.; Sarvari, A.; Borjian, S. Comparison of proliferative and multilineage differentiation potential of sheep mesenchymal stem cells derived from bone marrow, liver, and adipose tissue. Avicenna J. Med. Biotechnol. 2013, 5, 104–117. [Google Scholar] [PubMed]
- Gronthos, S.; Mankani, M.; Brahim, J.; Robey, P.G.; Shi, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 13625–13630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erices, A.; Conget, P.; Minguell, J.J. Mesenchymal progenitor cells in human umbilical cord blood. Br. J. Haematol. 2000, 109, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Fukuchi, Y.; Nakajima, H.; Sugiyama, D.; Hirose, I.; Kitamura, T.; Tsuji, K. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells 2004, 22, 649–658. [Google Scholar] [CrossRef] [Green Version]
- Schwab, K.E.; Gargett, C.E. Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum. Reprod. 2007, 22, 2903–2911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- In ’t Anker, P.S.; Scherjon, S.A.; Kleijburg-van der Keur, C.; Noort, W.A.; Claas, F.H.; Willemze, R.; Fibbe, W.E.; Kanhai, H.H. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 2003, 102, 1548–1549. [Google Scholar] [CrossRef] [PubMed]
- Young, H.E.; Steele, T.A.; Bray, R.A.; Hudson, J.; Floyd, J.A.; Hawkins, K.; Thomas, K.; Austin, T.; Edwards, C.; Cuzzourt, J.; et al. Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat. Rec. 2001, 264, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, W.Z.; Lin, Y.H.; Su, L.J.; Wu, M.S.; Jeng, H.Y.; Chang, H.C.; Huang, Y.H.; Ling, T.Y. Mesenchymal stem/stromal cell-based therapy: Mechanism, systemic safety and biodistribution for precision clinical applications. J. Biomed. Sci. 2021, 28, 28. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Wang, S.; Zhao, R.C. The roles of mesenchymal stem cells in tumor inflammatory microenvironment. J. Hematol. Oncol. 2014, 7, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, B.S.; Pelagalli, A.; Passaro, N.; Zannetti, A. Tumor-educated mesenchymal stem cells promote pro-metastatic phenotype. Oncotarget 2017, 8, 73296–73311. [Google Scholar] [CrossRef] [Green Version]
- Kouris, N.A.; Schaefer, J.A.; Hatta, M.; Freeman, B.T.; Kamp, T.J.; Kawaoka, Y.; Ogle, B.M. Directed Fusion of Mesenchymal Stem Cells with Cardiomyocytes via VSV-G Facilitates Stem Cell Programming. Stem Cells Int. 2012, 2012, 414038. [Google Scholar] [CrossRef] [Green Version]
- Caplan, A.I.; Bruder, S.P. Mesenchymal stem cells: Building blocks for molecular medicine in the 21st century. Trends Mol. Med. 2001, 7, 259–264. [Google Scholar] [CrossRef]
- Thompson, M.; Mei, S.H.J.; Wolfe, D.; Champagne, J.; Fergusson, D.; Stewart, D.J.; Sullivan, K.J.; Doxtator, E.; Lalu, M.; English, S.W.; et al. Cell therapy with intravascular administration of mesenchymal stromal cells continues to appear safe: An updated systematic review and meta-analysis. EClinicalMedicine 2020, 19, 100249. [Google Scholar] [CrossRef] [Green Version]
- Coffelt, S.B.; Marini, F.C.; Watson, K.; Zwezdaryk, K.J.; Dembinski, J.L.; LaMarca, H.L.; Tomchuck, S.L.; Honer zu Bentrup, K.; Danka, E.S.; Henkle, S.L.; et al. The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc. Natl. Acad. Sci. USA 2009, 106, 3806–3811. [Google Scholar] [CrossRef] [Green Version]
- Christodoulou, I.; Goulielmaki, M.; Devetzi, M.; Panagiotidis, M.; Koliakos, G.; Zoumpourlis, V. Mesenchymal stem cells in preclinical cancer cytotherapy: A systematic review. Stem Cell Res. Ther. 2018, 9, 336. [Google Scholar] [CrossRef]
- Balkwill, F.R.; Capasso, M.; Hagemann, T. The tumor microenvironment at a glance. J. Cell Sci. 2012, 125, 5591–5596. [Google Scholar] [CrossRef] [Green Version]
- Atiya, H.; Frisbie, L.; Pressimone, C.; Coffman, L. Mesenchymal Stem Cells in the Tumor Microenvironment. Adv. Exp. Med. Biol. 2020, 1234, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yang, J.; Zheng, P.; Li, H.; Zhao, S. The Origins and Generation of Cancer-Associated Mesenchymal Stromal Cells: An Innovative Therapeutic Target for Solid Tumors. Front. Oncol. 2021, 11, 723707. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.Y. The Role of MSCs in the Tumor Microenvironment and Tumor Progression. Anticancer. Res. 2020, 40, 3039–3047. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Sun, R.; Origuchi, M.; Kanehira, M.; Takahata, T.; Itoh, J.; Umezawa, A.; Kijima, H.; Fukuda, S.; Saijo, Y. Mesenchymal stromal cells promote tumor growth through the enhancement of neovascularization. Mol. Med. 2011, 17, 579–587. [Google Scholar] [CrossRef]
- Liang, W.; Chen, X.; Zhang, S.; Fang, J.; Chen, M.; Xu, Y. Mesenchymal stem cells as a double-edged sword in tumor growth: Focusing on MSC-derived cytokines. Cell Mol. Biol. Lett. 2021, 26, 3. [Google Scholar] [CrossRef] [PubMed]
- Galland, S.; Stamenkovic, I. Mesenchymal stromal cells in cancer: A review of their immunomodulatory functions and dual effects on tumor progression. J. Pathol. 2020, 250, 555–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papait, A.; Stefani, F.R.; Cargnoni, A.; Magatti, M.; Parolini, O.; Silini, A.R. The Multifaceted Roles of MSCs in the Tumor Microenvironment: Interactions With Immune Cells and Exploitation for Therapy. Front. Cell Dev. Biol. 2020, 8, 447. [Google Scholar] [CrossRef]
- Fan, H.; Atiya, H.I.; Wang, Y.; Pisanic, T.R.; Wang, T.H.; Shih, I.M.; Foy, K.K.; Frisbie, L.; Buckanovich, R.J.; Chomiak, A.A.; et al. Epigenomic Reprogramming toward Mesenchymal-Epithelial Transition in Ovarian-Cancer-Associated Mesenchymal Stem Cells Drives Metastasis. Cell Rep. 2020, 33, 108473. [Google Scholar] [CrossRef]
- Li, C.; Zhao, H.; Wang, B. Mesenchymal stem/stromal cells: Developmental origin, tumorigenesis and translational cancer therapeutics. Transl. Oncol. 2021, 14, 100948. [Google Scholar] [CrossRef]
- Coffman, L.G.; Pearson, A.T.; Frisbie, L.G.; Freeman, Z.; Christie, E.; Bowtell, D.D.; Buckanovich, R.J. Ovarian Carcinoma-Associated Mesenchymal Stem Cells Arise from Tissue-Specific Normal Stroma. Stem Cells 2019, 37, 257–269. [Google Scholar] [CrossRef] [Green Version]
- McLean, K.; Gong, Y.; Choi, Y.; Deng, N.; Yang, K.; Bai, S.; Cabrera, L.; Keller, E.; McCauley, L.; Cho, K.R.; et al. Human ovarian carcinoma–associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production. J. Clin. Investig. 2011, 121, 3206–3219. [Google Scholar] [CrossRef] [Green Version]
- Mishra, P.J.; Humeniuk, R.; Medina, D.J.; Alexe, G.; Mesirov, J.P.; Ganesan, S.; Glod, J.W.; Banerjee, D. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res. 2008, 68, 4331–4339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spaeth, E.L.; Dembinski, J.L.; Sasser, A.K.; Watson, K.; Klopp, A.; Hall, B.; Andreeff, M.; Marini, F. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS ONE 2009, 4, e4992. [Google Scholar] [CrossRef] [Green Version]
- Tsai, K.S.; Yang, S.H.; Lei, Y.P.; Tsai, C.C.; Chen, H.W.; Hsu, C.Y.; Chen, L.L.; Wang, H.W.; Miller, S.A.; Chiou, S.H.; et al. Mesenchymal stem cells promote formation of colorectal tumors in mice. Gastroenterology 2011, 141, 1046–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, J.; Ok Lee, S.; Liang, L.; Huang, C.K.; Li, L.; Wen, S.; Chang, C. Infiltrating bone marrow mesenchymal stem cells increase prostate cancer stem cell population and metastatic ability via secreting cytokines to suppress androgen receptor signaling. Oncogene 2014, 33, 2768–2778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossain, A.; Gumin, J.; Gao, F.; Figueroa, J.; Shinojima, N.; Takezaki, T.; Priebe, W.; Villarreal, D.; Kang, S.G.; Joyce, C.; et al. Mesenchymal Stem Cells Isolated From Human Gliomas Increase Proliferation and Maintain Stemness of Glioma Stem Cells Through the IL-6/gp130/STAT3 Pathway. Stem Cells 2015, 33, 2400–2415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, J.; Chen, J. Mesenchymal stem cells in the tumor microenvironment. Biomed. Rep. 2013, 1, 517–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramasamy, R.; Lam, E.W.; Soeiro, I.; Tisato, V.; Bonnet, D.; Dazzi, F. Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: Impact on in vivo tumor growth. Leukemia 2007, 21, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.H.; Chang, M.C.; Tsai, K.S.; Hung, M.C.; Chen, H.L.; Hung, S.C. Mesenchymal stem cells promote growth and angiogenesis of tumors in mice. Oncogene 2013, 32, 4343–4354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, G.; Yang, R.; Banie, L.; Wang, G.; Ning, H.; Li, L.C.; Lue, T.F.; Lin, C.S. Effects of transplantation of adipose tissue-derived stem cells on prostate tumor. Prostate 2010, 70, 1066–1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.K.; Park, S.R.; Jung, B.K.; Jeon, Y.K.; Lee, Y.S.; Kim, M.K.; Kim, Y.G.; Jang, J.Y.; Kim, C.W. Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS ONE 2013, 8, e84256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waghray, M.; Yalamanchili, M.; Dziubinski, M.; Zeinali, M.; Erkkinen, M.; Yang, H.; Schradle, K.A.; Urs, S.; Pasca Di Magliano, M.; Welling, T.H.; et al. GM-CSF Mediates Mesenchymal-Epithelial Cross-talk in Pancreatic Cancer. Cancer Discov. 2016, 6, 886–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berniakovich, I.; Giorgio, M. Low oxygen tension maintains multipotency, whereas normoxia increases differentiation of mouse bone marrow stromal cells. Int. J. Mol. Sci. 2013, 14, 2119–2134. [Google Scholar] [CrossRef] [PubMed]
- Efimenko, A.; Starostina, E.; Kalinina, N.; Stolzing, A. Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning. J. Transl. Med. 2011, 9, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, S.C.; Pochampally, R.R.; Chen, S.C.; Hsu, S.C.; Prockop, D.J. Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem. Cells 2007, 25, 2363–2370. [Google Scholar] [CrossRef] [PubMed]
- Crisostomo, P.R.; Wang, Y.; Markel, T.A.; Wang, M.; Lahm, T.; Meldrum, D.R. Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B- but not JNK-dependent mechanism. Am. J. Physiol. Cell Physiol. 2008, 294, C675–C682. [Google Scholar] [CrossRef]
- Rodini, C.O.; Gonçalves da Silva, P.B.; Assoni, A.F.; Carvalho, V.M.; Okamoto, O.K. Mesenchymal stem cells enhance tumorigenic properties of human glioblastoma through independent cell-cell communication mechanisms. Oncotarget 2018, 9, 24766–24777. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Huang, L.; Li, Y.; Zhang, X.; Gu, J.; Yan, Y.; Xu, X.; Wang, M.; Qian, H.; Xu, W. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett. 2012, 315, 28–37. [Google Scholar] [CrossRef]
- Li, G.C.; Zhang, H.W.; Zhao, Q.C.; Sun, L.I.; Yang, J.J.; Hong, L.; Feng, F.; Cai, L. Mesenchymal stem cells promote tumor angiogenesis via the action of transforming growth factor β1. Oncol. Lett. 2016, 11, 1089–1094. [Google Scholar] [CrossRef] [Green Version]
- Feng, B.; Chen, L. Review of mesenchymal stem cells and tumors: Executioner or coconspirator? Cancer Biother. Radiopharm. 2009, 24, 717–721. [Google Scholar] [CrossRef] [PubMed]
- Du, W.J.; Chi, Y.; Yang, Z.X.; Li, Z.J.; Cui, J.J.; Song, B.Q.; Li, X.; Yang, S.G.; Han, Z.B.; Han, Z.C. Heterogeneity of proangiogenic features in mesenchymal stem cells derived from bone marrow, adipose tissue, umbilical cord, and placenta. Stem Cell Res. Ther. 2016, 7, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Sun, Z.; Han, Q.; Liao, L.; Wang, J.; Bian, C.; Li, J.; Yan, X.; Liu, Y.; Shao, C.; et al. Human mesenchymal stem cells inhibit cancer cell proliferation by secreting DKK-1. Leukemia 2009, 23, 925–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, M.; Zhang, D.; Wu, J.Y.; Xing, K.; Yeo, E.; Li, C.; Zhang, L.; Holland, E.; Yao, L.; Qin, L.; et al. Wnt-mediated endothelial transformation into mesenchymal stem cell-like cells induces chemoresistance in glioblastoma. Sci. Transl. Med. 2020, 12, aay7522. [Google Scholar] [CrossRef] [PubMed]
- Karnoub, A.E.; Dash, A.B.; Vo, A.P.; Sullivan, A.; Brooks, M.W.; Bell, G.W.; Richardson, A.L.; Polyak, K.; Tubo, R.; Weinberg, R.A. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007, 449, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Cruz, C.M.; Shearer, J.J.; Figueiredo Neto, M.; Figueiredo, M.L. The Immunomodulatory Effects of Mesenchymal Stem Cell Polarization within the Tumor Microenvironment Niche. Stem Cells Int. 2017, 2017, 4015039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poggi, A.; Varesano, S.; Zocchi, M.R. How to Hit Mesenchymal Stromal Cells and Make the Tumor Microenvironment Immunostimulant Rather Than Immunosuppressive. Front. Immunol. 2018, 9, 262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torisu, H.; Ono, M.; Kiryu, H.; Furue, M.; Ohmoto, Y.; Nakayama, J.; Nishioka, Y.; Sone, S.; Kuwano, M. Macrophage infiltration correlates with tumor stage and angiogenesis in human malignant melanoma: Possible involvement of TNFalpha and IL-1alpha. Int. J. Cancer 2000, 85, 182–188. [Google Scholar] [CrossRef]
- Cascio, S.; Chandler, C.; Zhang, L.; Sinno, S.; Gao, B.; Onkar, S.; Bruno, T.C.; Vignali, D.A.A.; Mahdi, H.; Osmanbeyoglu, H.U.; et al. Cancer-associated MSC drive tumor immune exclusion and resistance to immunotherapy, which can be overcome by Hedgehog inhibition. Sci. Adv. 2021, 7, eabi5790. [Google Scholar] [CrossRef] [PubMed]
- Otsu, K.; Das, S.; Houser, S.D.; Quadri, S.K.; Bhattacharya, S.; Bhattacharya, J. Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood 2009, 113, 4197–4205. [Google Scholar] [CrossRef] [Green Version]
- Qiao, L.; Xu, Z.; Zhao, T.; Zhao, Z.; Shi, M.; Zhao, R.C.; Ye, L.; Zhang, X. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res. 2008, 18, 500–507. [Google Scholar] [CrossRef] [Green Version]
- Khakoo, A.Y.; Pati, S.; Anderson, S.A.; Reid, W.; Elshal, M.F.; Rovira, I.I.; Nguyen, A.T.; Malide, D.; Combs, C.A.; Hall, G.; et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J. Exp. Med. 2006, 203, 1235–1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, B.; Roh, K.H.; Park, J.R.; Lee, S.R.; Park, S.B.; Jung, J.W.; Kang, S.K.; Lee, Y.S.; Kang, K.S. Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model. Cytotherapy 2009, 11, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.R.; Yuan, Y.; Wang, X.J.; Wei, L.L.; Chen, Y.N.; Cong, C.; Li, S.F.; Long, D.; Tan, W.D.; Mao, Y.Q.; et al. The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biol. Ther. 2008, 7, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Khalil, C.; Moussa, M.; Azar, A.; Tawk, J.; Habbouche, J.; Salameh, R.; Ibrahim, A.; Alaaeddine, N. Anti-proliferative effects of mesenchymal stem cells (MSCs) derived from multiple sources on ovarian cancer cell lines: An in-vitro experimental study. J. Ovarian. Res. 2019, 12, 70. [Google Scholar] [CrossRef]
- Wu, X.; Tang, Y.; Yue, X.; Chen, P.; Hu, Z.; Shen, Y. Inhibition of cervical cancer cells by co-culturing with mesenchymal stem cells. Int. J. Clin. Exp. Pathol. 2018, 11, 2506–2513. [Google Scholar] [PubMed]
- He, N.; Kong, Y.; Lei, X.; Liu, Y.; Wang, J.; Xu, C.; Wang, Y.; Du, L.; Ji, K.; Wang, Q.; et al. MSCs inhibit tumor progression and enhance radiosensitivity of breast cancer cells by down-regulating Stat3 signaling pathway. Cell Death Dis. 2018, 9, 1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhee, K.J.; Lee, J.I.; Eom, Y.W. Mesenchymal Stem Cell-Mediated Effects of Tumor Support or Suppression. Int. J. Mol. Sci. 2015, 16, 30015–30033. [Google Scholar] [CrossRef] [Green Version]
- Qiao, L.; Xu, Z.L.; Zhao, T.J.; Ye, L.H.; Zhang, X.D. Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett. 2008, 269, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Cousin, B.; Ravet, E.; Poglio, S.; De Toni, F.; Bertuzzi, M.; Lulka, H.; Touil, I.; André, M.; Grolleau, J.L.; Péron, J.M.; et al. Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo. PLoS ONE 2009, 4, e6278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dasari, V.R.; Velpula, K.K.; Kaur, K.; Fassett, D.; Klopfenstein, J.D.; Dinh, D.H.; Gujrati, M.; Rao, J.S. Cord blood stem cell-mediated induction of apoptosis in glioma downregulates X-linked inhibitor of apoptosis protein (XIAP). PLoS ONE 2010, 5, e11813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcayaga-Miranda, F.; González, P.L.; Lopez-Verrilli, A.; Varas-Godoy, M.; Aguila-Díaz, C.; Contreras, L.; Khoury, M. Prostate tumor-induced angiogenesis is blocked by exosomes derived from menstrual stem cells through the inhibition of reactive oxygen species. Oncotarget 2016, 7, 44462–44477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberger, L.; Ezquer, M.; Lillo-Vera, F.; Pedraza, P.L.; Ortúzar, M.I.; González, P.L.; Figueroa-Valdés, A.I.; Cuenca, J.; Ezquer, F.; Khoury, M.; et al. Stem cell exosomes inhibit angiogenesis and tumor growth of oral squamous cell carcinoma. Sci. Rep. 2019, 9, 663. [Google Scholar] [CrossRef]
- Hass, R. Role of MSC in the Tumor Microenvironment. Cancers 2020, 12, 2107. [Google Scholar] [CrossRef] [PubMed]
- Hmadcha, A.; Martin-Montalvo, A.; Gauthier, B.R.; Soria, B.; Capilla-Gonzalez, V. Therapeutic Potential of Mesenchymal Stem Cells for Cancer Therapy. Front. Bioeng. Biotechnol. 2020, 8, 43. [Google Scholar] [CrossRef] [PubMed]
- Buenrostro, D.; Mulcrone, P.L.; Owens, P.; Sterling, J.A. The Bone Microenvironment: A Fertile Soil for Tumor Growth. Curr. Osteoporos. Rep. 2016, 14, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Peddareddigari, V.G.; Wang, D.; Dubois, R.N. The tumor microenvironment in colorectal carcinogenesis. Cancer Microenviron. 2010, 3, 149–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.J.; Tsang, J.Y.; Tse, G.M. Tumor Microenvironment in Breast Cancer-Updates on Therapeutic Implications and Pathologic Assessment. Cancers 2021, 13, 4233. [Google Scholar] [CrossRef]
- Selich, A.; Daudert, J.; Hass, R.; Philipp, F.; von Kaisenberg, C.; Paul, G.; Cornils, K.; Fehse, B.; Rittinghausen, S.; Schambach, A.; et al. Massive Clonal Selection and Transiently Contributing Clones During Expansion of Mesenchymal Stem Cell Cultures Revealed by Lentiviral RGB-Barcode Technology. Stem Cells Transl. Med. 2016, 5, 591–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houthuijzen, J.M.; Daenen, L.G.; Roodhart, J.M.; Voest, E.E. The role of mesenchymal stem cells in anti-cancer drug resistance and tumour progression. Br. J. Cancer 2012, 106, 1901–1906. [Google Scholar] [CrossRef] [PubMed]
- Meads, M.B.; Hazlehurst, L.A.; Dalton, W.S. The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin. Cancer Res. 2008, 14, 2519–2526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Zhang, L.; Wan, D.; Zhou, L.; Zheng, S.; Lin, S.; Qiao, Y. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct. Target. Ther. 2021, 6, 153. [Google Scholar] [CrossRef] [PubMed]
- Valkenburg, K.C.; de Groot, A.E.; Pienta, K.J. Targeting the tumour stroma to improve cancer therapy. Nat. Rev. Clin. Oncol. 2018, 15, 366–381. [Google Scholar] [CrossRef] [PubMed]
- Henke, E.; Nandigama, R.; Ergün, S. Extracellular Matrix in the Tumor Microenvironment and Its Impact on Cancer Therapy. Front. Mol. Biosci. 2019, 6, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbert, L.A.; Hemann, M.T. DNA damage-mediated induction of a chemoresistant niche. Cell 2010, 143, 355–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huber, R.M.; Lucas, J.M.; Gomez-Sarosi, L.A.; Coleman, I.; Zhao, S.; Coleman, R.; Nelson, P.S. DNA damage induces GDNF secretion in the tumor microenvironment with paracrine effects promoting prostate cancer treatment resistance. Oncotarget 2015, 6, 2134–2147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez-Sarosi, L.; Sun, Y.; Coleman, I.; Bianchi-Frias, D.; Nelson, P.S. DNA Damage Induces a Secretory Program in the Quiescent TME that Fosters Adverse Cancer Phenotypes. Mol. Cancer Res. 2017, 15, 842–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Campisi, J.; Higano, C.; Beer, T.M.; Porter, P.; Coleman, I.; True, L.; Nelson, P.S. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat. Med. 2012, 18, 1359–1368. [Google Scholar] [CrossRef]
- Ni, Y.; Zhou, X.; Yang, J.; Shi, H.; Li, H.; Zhao, X.; Ma, X. The Role of Tumor-Stroma Interactions in Drug Resistance Within Tumor Microenvironment. Front. Cell Dev. Biol. 2021, 9, 637675. [Google Scholar] [CrossRef]
- Vianello, F.; Villanova, F.; Tisato, V.; Lymperi, S.; Ho, K.K.; Gomes, A.R.; Marin, D.; Bonnet, D.; Apperley, J.; Lam, E.W.; et al. Bone marrow mesenchymal stromal cells non-selectively protect chronic myeloid leukemia cells from imatinib-induced apoptosis via the CXCR4/CXCL12 axis. Haematologica 2010, 95, 1081–1089. [Google Scholar] [CrossRef]
- Scherzed, A.; Hackenberg, S.; Froelich, K.; Kessler, M.; Koehler, C.; Hagen, R.; Radeloff, A.; Friehs, G.; Kleinsasser, N. BMSC enhance the survival of paclitaxel treated squamous cell carcinoma cells in vitro. Cancer Biol. Ther. 2011, 11, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, P.; Isringhausen, S.; Li, H.; Paterson, A.J.; He, J.; Gomariz, Á.; Nagasawa, T.; Nombela-Arrieta, C.; Bhatia, R. Mesenchymal Niche-Specific Expression of Cxcl12 Controls Quiescence of Treatment-Resistant Leukemia Stem Cells. Cell Stem Cell 2020, 26, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, K.; Yin, Y.; Ma, D.; Lu, T.; Wei, D.; Xiong, J.; Zhou, Z.; Zhang, T.; Zhang, S.; Fang, Q.; et al. Shp2 activation in bone marrow microenvironment mediates the drug resistance of B-cell acute lymphoblastic leukemia through enhancing the role of VCAM-1/VLA-4. Int. Immunopharmacol. 2020, 80, 106008. [Google Scholar] [CrossRef] [PubMed]
- Jacamo, R.; Chen, Y.; Wang, Z.; Ma, W.; Zhang, M.; Spaeth, E.L.; Wang, Y.; Battula, V.L.; Mak, P.Y.; Schallmoser, K.; et al. Reciprocal leukemia-stroma VCAM-1/VLA-4-dependent activation of NF-κB mediates chemoresistance. Blood 2014, 123, 2691–2702. [Google Scholar] [CrossRef] [PubMed]
- Peled, A.; Klein, S.; Beider, K.; Burger, J.A.; Abraham, M. Role of CXCL12 and CXCR4 in the pathogenesis of hematological malignancies. Cytokine 2018, 109, 11–16. [Google Scholar] [CrossRef]
- Möhle, R.; Schittenhelm, M.; Failenschmid, C.; Bautz, F.; Kratz-Albers, K.; Serve, H.; Brugger, W.; Kanz, L. Functional response of leukaemic blasts to stromal cell-derived factor-1 correlates with preferential expression of the chemokine receptor CXCR4 in acute myelomonocytic and lymphoblastic leukaemia. Br. J. Haematol. 2000, 110, 563–572. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Liu, S.; Zhang, S.; Wei, X.; Song, Y.; Yin, Q. The CXCR4 Antagonist, AMD3100, Reverses Mesenchymal Stem Cell-Mediated Drug Resistance in Relapsed/Refractory Acute Lymphoblastic Leukemia. Onco Targets Ther. 2020, 13, 6583–6591. [Google Scholar] [CrossRef] [PubMed]
- Pillozzi, S.; Bernini, A.; Spiga, O.; Lelli, B.; Petroni, G.; Bracci, L.; Niccolai, N.; Arcangeli, A. Peptides and small molecules blocking the CXCR4/CXCL12 axis overcome bone marrow-induced chemoresistance in acute leukemias. Oncol. Rep. 2019, 41, 312–324. [Google Scholar] [CrossRef] [Green Version]
- Clevers, H.; Loh, K.M.; Nusse, R. Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 2014, 346, 1248012. [Google Scholar] [CrossRef]
- Yang, Y.; Mallampati, S.; Sun, B.; Zhang, J.; Kim, S.B.; Lee, J.S.; Gong, Y.; Cai, Z.; Sun, X. Wnt pathway contributes to the protection by bone marrow stromal cells of acute lymphoblastic leukemia cells and is a potential therapeutic target. Cancer Lett. 2013, 333, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Liu, X.; Qiu, Y.; Shi, Y.; Cai, J.; Wang, B.; Wei, X.; Ke, Q.; Sui, X.; Wang, Y.; et al. Cell adhesion-mediated mitochondria transfer contributes to mesenchymal stem cell-induced chemoresistance on T cell acute lymphoblastic leukemia cells. J. Hematol. Oncol. 2018, 11, 11. [Google Scholar] [CrossRef]
- Gynn, L.E.; Anderson, E.; Robinson, G.; Wexler, S.A.; Upstill-Goddard, G.; Cox, C.; May, J.E. Primary mesenchymal stromal cells in co-culture with leukaemic HL-60 cells are sensitised to cytarabine-induced genotoxicity, whilst leukaemic cells are protected. Mutagenesis 2021, 36, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Bochtler, T.; Wuchter, P.; Manta, L.; He, H.; Eckstein, V.; Ho, A.D.; Lutz, C. Mesenchymal stromal cells contribute to quiescence of therapy-resistant leukemic cells in acute myeloid leukemia. Eur. J. Haematol. 2017, 99, 392–398. [Google Scholar] [CrossRef]
- Ruscetti, F.W.; Akel, S.; Bartelmez, S.H. Autocrine transforming growth factor-beta regulation of hematopoiesis: Many outcomes that depend on the context. Oncogene 2005, 24, 5751–5763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fortunel, N.O.; Hatzfeld, A.; Hatzfeld, J.A. Transforming growth factor-beta: Pleiotropic role in the regulation of hematopoiesis. Blood 2000, 96, 2022–2036. [Google Scholar] [CrossRef] [PubMed]
- Schelker, R.C.; Iberl, S.; Müller, G.; Hart, C.; Herr, W.; Grassinger, J. TGF-β1 and CXCL12 modulate proliferation and chemotherapy sensitivity of acute myeloid leukemia cells co-cultured with multipotent mesenchymal stromal cells. Hematology 2018, 23, 337–345. [Google Scholar] [CrossRef] [Green Version]
- Yuan, B.; El Dana, F.; Ly, S.; Yan, Y.; Ruvolo, V.; Shpall, E.J.; Konopleva, M.; Andreeff, M.; Battula, V.L. Bone marrow stromal cells induce an ALDH+ stem cell-like phenotype and enhance therapy resistance in AML through a TGF-β-p38-ALDH2 pathway. PLoS ONE 2020, 15, e0242809. [Google Scholar] [CrossRef] [PubMed]
- Dong-Feng, Z.; Ting, L.; Yong, Z.; Cheng, C.; Xi, Z.; Pei-Yan, K. The TPO/c-MPL pathway in the bone marrow may protect leukemia cells from chemotherapy in AML Patients. Pathol. Oncol. Res. 2014, 20, 309–317. [Google Scholar] [CrossRef]
- Xia, B.; Tian, C.; Guo, S.; Zhang, L.; Zhao, D.; Qu, F.; Zhao, W.; Wang, Y.; Wu, X.; Da, W.; et al. c-Myc plays part in drug resistance mediated by bone marrow stromal cells in acute myeloid leukemia. Leuk. Res. 2015, 39, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Zheng, G.; Zhuang, H.; Li, X.; Hu, D.; Zhu, L.; Wang, T.; You, M.J.; Zhang, Y. MicroRNA-494 Activation Suppresses Bone Marrow Stromal Cell-Mediated Drug Resistance in Acute Myeloid Leukemia Cells. J. Cell Physiol. 2017, 232, 1387–1395. [Google Scholar] [CrossRef] [PubMed]
- O’ Reilly, E.; Dhami, S.P.S.; Baev, D.V.; Ortutay, C.; Halpin-McCormick, A.; Morrell, R.; Santocanale, C.; Samali, A.; Quinn, J.; O’Dwyer, M.E.; et al. Repression of Mcl-1 expression by the CDC7/CDK9 inhibitor PHA-767491 overcomes bone marrow stroma-mediated drug resistance in AML. Sci. Rep. 2018, 8, 15752. [Google Scholar] [CrossRef] [PubMed]
- Konopleva, M.; Konoplev, S.; Hu, W.; Zaritskey, A.Y.; Afanasiev, B.V.; Andreeff, M. Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins. Leukemia 2002, 16, 1713–1724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolomsky, A.; Vogler, M.; Köse, M.C.; Heckman, C.A.; Ehx, G.; Ludwig, H.; Caers, J. MCL-1 inhibitors, fast-lane development of a new class of anti-cancer agents. J. Hematol. Oncol. 2020, 13, 173. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, M.; Rosenberg, D.W. Multifaceted roles of PGE2 in inflammation and cancer. Semin. Immunopathol. 2013, 35, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Carter, B.Z.; Mak, P.Y.; Wang, X.; Tao, W.; Ruvolo, V.; Mak, D.; Mu, H.; Burks, J.K.; Andreeff, M. An ARC-Regulated IL1β/Cox-2/PGE2/β-Catenin/ARC Circuit Controls Leukemia-Microenvironment Interactions and Confers Drug Resistance in AML. Cancer Res. 2019, 79, 1165–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, B.Z.; Mak, P.Y.; Chen, Y.; Mak, D.H.; Mu, H.; Jacamo, R.; Ruvolo, V.; Arold, S.T.; Ladbury, J.E.; Burks, J.K.; et al. Anti-apoptotic ARC protein confers chemoresistance by controlling leukemia-microenvironment interactions through a NFκB/IL1β signaling network. Oncotarget 2016, 7, 20054–20067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nwabo Kamdje, A.H.; Bassi, G.; Pacelli, L.; Malpeli, G.; Amati, E.; Nichele, I.; Pizzolo, G.; Krampera, M. Role of stromal cell-mediated Notch signaling in CLL resistance to chemotherapy. Blood Cancer J. 2012, 2, e73. [Google Scholar] [CrossRef]
- Severin, F.; Frezzato, F.; Visentin, A.; Martini, V.; Trimarco, V.; Carraro, S.; Tibaldi, E.; Brunati, A.M.; Piazza, F.; Semenzato, G.; et al. In Chronic Lymphocytic Leukemia the JAK2/STAT3 Pathway Is Constitutively Activated and Its Inhibition Leads to CLL Cell Death Unaffected by the Protective Bone Marrow Microenvironment. Cancers 2019, 11, 1939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurtova, A.V.; Balakrishnan, K.; Chen, R.; Ding, W.; Schnabl, S.; Quiroga, M.P.; Sivina, M.; Wierda, W.G.; Estrov, Z.; Keating, M.J.; et al. Diverse marrow stromal cells protect CLL cells from spontaneous and drug-induced apoptosis: Development of a reliable and reproducible system to assess stromal cell adhesion-mediated drug resistance. Blood 2009, 114, 4441–4450. [Google Scholar] [CrossRef]
- Yang, H.; Zheng, Y.; Zhang, Y.; Cao, Z.; Jiang, Y. Mesenchymal stem cells derived from multiple myeloma patients protect against chemotherapy through autophagy-dependent activation of NF-κB signaling. Leuk. Res. 2017, 60, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Baud, V.; Karin, M. Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat. Rev. Drug Discov. 2009, 8, 33–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manni, S.; Carrino, M.; Semenzato, G.; Piazza, F. Old and Young Actors Playing Novel Roles in the Drama of Multiple Myeloma Bone Marrow Microenvironment Dependent Drug Resistance. Int. J. Mol. Sci. 2018, 19, 1512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, B.Z.; Xiang, W.; Zhang, Q.; Wang, H.F.; Zhou, Y.J.; Tian, H.; Abdelmaksou, A.; Xue, J.; Sun, M.X.; Yi, D.Y.; et al. CD90 glioma—Associated mesenchymal stromal/stem cells promote temozolomide resistance by activating FOXS1-mediated epithelial-mesenchymal transition in glioma cells. Stem Cell Res. Ther. 2021, 12, 394. [Google Scholar] [CrossRef]
- Zhang, Q.; Yi, D.Y.; Xue, B.Z.; Wen, W.W.; Lu, Y.P.; Abdelmaksou, A.; Sun, M.X.; Yuan, D.T.; Zhao, H.Y.; Xiong, N.X.; et al. CD90 determined two subpopulations of glioma-associated mesenchymal stem cells with different roles in tumour progression. Cell Death Dis. 2018, 9, 1101. [Google Scholar] [CrossRef]
- Vieira de Castro, J.; Gomes, E.D.; Granja, S.; Anjo, S.I.; Baltazar, F.; Manadas, B.; Salgado, A.J.; Costa, B.M. Impact of mesenchymal stem cells’ secretome on glioblastoma pathophysiology. J. Transl. Med. 2017, 15, 200. [Google Scholar] [CrossRef]
- Lifshitz, V.; Priceman, S.J.; Li, W.; Cherryholmes, G.; Lee, H.; Makovski-Silverstein, A.; Borriello, L.; DeClerck, Y.A.; Yu, H. Sphingosine-1-Phosphate Receptor-1 Promotes Environment-Mediated and Acquired Chemoresistance. Mol. Cancer Ther. 2017, 16, 2516–2527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maceyka, M.; Harikumar, K.B.; Milstien, S.; Spiegel, S. Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol. 2012, 22, 50–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spiegel, S.; Milstien, S. The outs and the ins of sphingosine-1-phosphate in immunity. Nat. Rev. Immunol. 2011, 11, 403–415. [Google Scholar] [CrossRef]
- Zhang, H.; Bajraszewski, N.; Wu, E.; Wang, H.; Moseman, A.P.; Dabora, S.L.; Griffin, J.D.; Kwiatkowski, D.J. PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J. Clin. Investig. 2007, 117, 730–738. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Cui, R.; Clement, C.G.; Nawgiri, R.; Powell, D.W.; Pinchuk, I.V.; Watts, T.L. Activation PDGFR-α/AKT Mediated Signaling Pathways in Oral Squamous Cell Carcinoma by Mesenchymal Stem/Stromal Cells Promotes Anti-apoptosis and Decreased Sensitivity to Cisplatin. Front. Oncol. 2020, 10, 552. [Google Scholar] [CrossRef]
- Liu, C.; Billet, S.; Choudhury, D.; Cheng, R.; Haldar, S.; Fernandez, A.; Biondi, S.; Liu, Z.; Zhou, H.; Bhowmick, N.A. Bone marrow mesenchymal stem cells interact with head and neck squamous cell carcinoma cells to promote cancer progression and drug resistance. Neoplasia 2021, 23, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.; Akbar, A.; Ng, N.N.; Concepcion, W.; Thakor, A.S. Mesenchymal stem cells confer chemoresistance in breast cancer via a CD9 dependent mechanism. Oncotarget 2019, 10, 3435–3450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, W.L.; Tsai, C.F.; Chen, D.R. Peri-foci adipose-derived stem cells promote chemoresistance in breast cancer. Stem Cell Res. Ther. 2017, 8, 177. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Liu, Q.; Tan, A.; Duan, L.; Jia, Y.; Nong, L.; Tang, J.; Zhou, W.; Xie, W.; Lu, Y.; et al. Mesenchymal Stem Cell-Secreted Exosome Promotes Chemoresistance in Breast Cancer via Enhancing miR-21-5p-Mediated. Mol. Ther. Oncolytics 2020, 19, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Yang, Y.; Liu, Y.; Hao, Y.; Zhang, Y.; Hu, Y.; Jiang, L.; Gong, Y.; Wu, K. Upregulation of PAG1/Cbp contributes to adipose-derived mesenchymal stem cells promoted tumor progression and chemoresistance in breast cancer. Biochem. Biophys. Res. Commun. 2017, 494, 719–727. [Google Scholar] [CrossRef]
- Romoli, M.; Mazzocchetti, P.; D’Alonzo, R.; Siliquini, S.; Rinaldi, V.E.; Verrotti, A.; Calabresi, P.; Costa, C. Valproic Acid and Epilepsy: From Molecular Mechanisms to Clinical Evidences. Curr. Neuropharmacol. 2019, 17, 926–946. [Google Scholar] [CrossRef] [PubMed]
- Barneh, F.; Salimi, M.; Goshadrou, F.; Ashtiani, M.; Mirzaie, M.; Zali, H.; Jafari, M. Valproic acid inhibits the protective effects of stromal cells against chemotherapy in breast cancer: Insights from proteomics and systems biology. J. Cell Biochem. 2018, 119, 9270–9283. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhang, L.; Sai, B.; Wang, L.; Zhang, X.; Zheng, L.; Tang, J.; Li, G.; Xiang, J. BMSC-derived leptin and IGFBP2 promote erlotinib resistance in lung adenocarcinoma cells through IGF-1R activation in hypoxic environment. Cancer Biol. Ther. 2020, 21, 61–71. [Google Scholar] [CrossRef]
- Sun, L.; Huang, C.; Zhu, M.; Guo, S.; Gao, Q.; Wang, Q.; Chen, B.; Li, R.; Zhao, Y.; Wang, M.; et al. Gastric cancer mesenchymal stem cells regulate PD-L1-CTCF enhancing cancer stem cell-like properties and tumorigenesis. Theranostics 2020, 10, 11950–11962. [Google Scholar] [CrossRef]
- Vrankar, M.; Zwitter, M.; Kern, I.; Stanic, K. PD-L1 expression can be regarded as prognostic factor for survival of non-small cell lung cancer patients after chemoradiotherapy. Neoplasma 2018, 65, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Liu, B.; Chen, Z.; Li, G.; Zhang, Z. MSC-induced lncRNA HCP5 drove fatty acid oxidation through miR-3619-5p/AMPK/PGC1α/CEBPB axis to promote stemness and chemo-resistance of gastric cancer. Cell Death Dis. 2020, 11, 233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, W.; Liang, B.; Wang, C.; Li, S.; Zhao, Y.; Huang, Q.; Liu, Z.; Yao, Z.; Wu, Q.; Liao, W.; et al. MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer. Oncogene 2019, 38, 4637–4654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, R.; Zhang, B.; Zhang, X.; Xue, J.; Yuan, X.; Yan, Y.; Wang, M.; Zhu, W.; Qian, H.; Xu, W. Exosomes derived from human mesenchymal stem cells confer drug resistance in gastric cancer. Cell Cycle 2015, 14, 2473–2483. [Google Scholar] [CrossRef] [Green Version]
- Ji, N.; Yu, J.W.; Ni, X.C.; Wu, J.G.; Wang, S.L.; Jiang, B.J. Bone marrow-derived mesenchymal stem cells increase drug resistance in CD133-expressing gastric cancer cells by regulating the PI3K/AKT pathway. Tumour. Biol. 2016, 37, 14637–14651. [Google Scholar] [CrossRef]
- Timaner, M.; Letko-Khait, N.; Kotsofruk, R.; Benguigui, M.; Beyar-Katz, O.; Rachman-Tzemah, C.; Raviv, Z.; Bronshtein, T.; Machluf, M.; Shaked, Y. Therapy-Educated Mesenchymal Stem Cells Enrich for Tumor-Initiating Cells. Cancer Res. 2018, 78, 1253–1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Yang, F.H.; Zhang, W.T.; Guo, Y.D.; Ye, L.; Yao, X.D. Mesenchymal stem cells desensitize castration-resistant prostate cancer to docetaxel chemotherapy via inducing TGF-β1-mediated cell autophagy. Cell Biosci. 2021, 11, 7. [Google Scholar] [CrossRef] [PubMed]
- Maj, M.; Bajek, A.; Nalejska, E.; Porowinska, D.; Kloskowski, T.; Gackowska, L.; Drewa, T. Influence of Mesenchymal Stem Cells Conditioned Media on Proliferation of Urinary Tract Cancer Cell Lines and Their Sensitivity to Ciprofloxacin. J. Cell Biochem. 2017, 118, 1361–1368. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Guo, Y.; Huang, Z.; Cai, J.; Wang, Z. Adipose-derived mesenchymal stem cells attenuate cisplatin-induced apoptosis in epithelial ovarian cancer cells. Mol. Med. Rep. 2017, 16, 9587–9592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coffman, L.G.; Choi, Y.J.; McLean, K.; Allen, B.L.; di Magliano, M.P.; Buckanovich, R.J. Human carcinoma-associated mesenchymal stem cells promote ovarian cancer chemotherapy resistance via a BMP4/HH signaling loop. Oncotarget 2016, 7, 6916–6932. [Google Scholar] [CrossRef] [Green Version]
- Liao, X.; Siu, M.K.; Au, C.W.; Wong, E.S.; Chan, H.Y.; Ip, P.P.; Ngan, H.Y.; Cheung, A.N. Aberrant activation of hedgehog signaling pathway in ovarian cancers: Effect on prognosis, cell invasion and differentiation. Carcinogenesis 2009, 30, 131–140. [Google Scholar] [CrossRef] [PubMed]
- McCann, C.K.; Growdon, W.B.; Kulkarni-Datar, K.; Curley, M.D.; Friel, A.M.; Proctor, J.L.; Sheikh, H.; Deyneko, I.; Ferguson, J.A.; Vathipadiekal, V.; et al. Inhibition of Hedgehog signaling antagonizes serous ovarian cancer growth in a primary xenograft model. PLoS ONE 2011, 6, e28077. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Jing, Y.; Xia, Y.; Zhang, S.; Hou, J.; Meng, Y.; Yu, F.; Liu, X.; Wu, M.; Zhang, P.; et al. Mesenchymal stem cells contribute to the chemoresistance of hepatocellular carcinoma cells in inflammatory environment by inducing autophagy. Cell Biosci. 2014, 4, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, B.; Zhu, J.; Liu, S.; Wang, L.; Fan, Q.; Hao, Y.; Fan, C.; Tang, T.T. Mesenchymal stem cells promote osteosarcoma cell survival and drug resistance through activation of STAT3. Oncotarget 2016, 7, 48296–48308. [Google Scholar] [CrossRef] [Green Version]
- Frolova, O.; Samudio, I.; Benito, J.M.; Jacamo, R.; Kornblau, S.M.; Markovic, A.; Schober, W.; Lu, H.; Qiu, Y.H.; Buglio, D.; et al. Regulation of HIF-1α signaling and chemoresistance in acute lymphocytic leukemia under hypoxic conditions of the bone marrow microenvironment. Cancer Biol. Ther. 2012, 13, 858–870. [Google Scholar] [CrossRef]
- Roodhart, J.M.; Daenen, L.G.; Stigter, E.C.; Prins, H.J.; Gerrits, J.; Houthuijzen, J.M.; Gerritsen, M.G.; Schipper, H.S.; Backer, M.J.; van Amersfoort, M.; et al. Mesenchymal stem cells induce resistance to chemotherapy through the release of platinum-induced fatty acids. Cancer Cell 2011, 20, 370–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajetto, A.; Pattarozzi, A.; Corsaro, A.; Barbieri, F.; Daga, A.; Bosio, A.; Gatti, M.; Pisaturo, V.; Sirito, R.; Florio, T. Different Effects of Human Umbilical Cord Mesenchymal Stem Cells on Glioblastoma Stem Cells by Direct Cell Interaction or Via Released Soluble Factors. Front. Cell Neurosci. 2017, 11, 312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krueger, T.E.G.; Thorek, D.L.J.; Denmeade, S.R.; Isaacs, J.T.; Brennen, W.N. Concise Review: Mesenchymal Stem Cell-Based Drug Delivery: The Good, the Bad, the Ugly, and the Promise. Stem Cells Transl. Med. 2018, 7, 651–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babajani, A.; Soltani, P.; Jamshidi, E.; Farjoo, M.H.; Niknejad, H. Recent Advances on Drug-Loaded Mesenchymal Stem Cells With Anti-neoplastic Agents for Targeted Treatment of Cancer. Front. Bioeng. Biotechnol. 2020, 8, 748. [Google Scholar] [CrossRef]
- Takayama, Y.; Kusamori, K.; Nishikawa, M. Mesenchymal stem/stromal cells as next-generation drug delivery vehicles for cancer therapeutics. Expert Opin. Drug Deliv. 2021, 18, 1627–1642. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramuta, T.Ž.; Kreft, M.E. Mesenchymal Stem/Stromal Cells May Decrease Success of Cancer Treatment by Inducing Resistance to Chemotherapy in Cancer Cells. Cancers 2022, 14, 3761. https://doi.org/10.3390/cancers14153761
Ramuta TŽ, Kreft ME. Mesenchymal Stem/Stromal Cells May Decrease Success of Cancer Treatment by Inducing Resistance to Chemotherapy in Cancer Cells. Cancers. 2022; 14(15):3761. https://doi.org/10.3390/cancers14153761
Chicago/Turabian StyleRamuta, Taja Železnik, and Mateja Erdani Kreft. 2022. "Mesenchymal Stem/Stromal Cells May Decrease Success of Cancer Treatment by Inducing Resistance to Chemotherapy in Cancer Cells" Cancers 14, no. 15: 3761. https://doi.org/10.3390/cancers14153761
APA StyleRamuta, T. Ž., & Kreft, M. E. (2022). Mesenchymal Stem/Stromal Cells May Decrease Success of Cancer Treatment by Inducing Resistance to Chemotherapy in Cancer Cells. Cancers, 14(15), 3761. https://doi.org/10.3390/cancers14153761