Tyrosine Kinase Inhibitors in the Treatment of Metastasised Renal Cell Carcinoma—Future or the Past?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. General Mechanism of TKI Therapeutic Effect
3.2. Characteristics and Trial Evidence for Currently Available TKI
3.2.1. Sunitinib
3.2.2. Sorafenib
3.2.3. Cabozantinib
3.2.4. Axitinib
3.2.5. Tivozanib
3.2.6. Lenvatinib
3.2.7. Pazopanib
3.2.8. Other TKI—Anlotinib and Savolitinib
3.3. Role of TKIs in Adjuvant RCC Therapy
4. Discussion and Conclusions—Present and Future Developments for the Treatment of mRCC Involving TKI Therapy
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ljungberg, B.; Bensalah, K.; Canfield, S.; Dabestani, S.; Hofmann, F.; Hora, M.; Kuczyk, M.A.; Lam, T.; Marconi, L.; Merseburger, A.S.; et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur. Urol. 2015, 67, 913–924. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.R.; Wu, Y.-M.; Lin, S.-F. The protein tyrosine kinase family of the human genome. Oncogene 2000, 19, 5548–5557. [Google Scholar] [CrossRef] [Green Version]
- Natoli, C.; Perrucci, B.; Perrotti, F.; Falchi, L.; Iacobelli, S. Tyrosine kinase inhibitors. Curr. Cancer Drug Targets 2010, 10, 462–483. [Google Scholar] [CrossRef] [PubMed]
- Roskoski, R., Jr. A historical overview of protein kinases and their targeted small molecule inhibitors. Pharmacol. Res. 2015, 100, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Hutson, T.E.; Tomczak, P.; Michaelson, M.D.; Bukowski, R.M.; Oudard, S.; Negrier, S.; Szczylik, C.; Pili, R.; Bjarnason, G.A.; et al. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2009, 27, 3584–3590. [Google Scholar] [CrossRef] [PubMed]
- Nassif, E.; Thibault, C.; Vano, Y.; Fournier, L.; Mauge, L.; Verkarre, V.; Timsit, M.-O.; Mejean, A.; Tartour, E.; Oudard, S. Sunitinib in kidney cancer: 10 years of experience and development. Expert Rev. Anticancer Ther. 2017, 17, 129–142. [Google Scholar] [CrossRef]
- Motzer, R.J.; Escudier, B.; Gannon, A.; Figlin, R.A. Sunitinib: Ten years of successful clinical use and study in advanced renal cell carcinoma. Oncologist 2017, 22, 41–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choueiri, T.K.; Powles, T.; Burotto, M.; Escudier, B.; Bourlon, M.T.; Zurawski, B.; Oyervides Juárez, V.M.; Hsieh, J.J.; Basso, U.; Shah, A.Y.; et al. Nivolumab plus Cabozantinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2021, 384, 829–841. [Google Scholar] [CrossRef]
- Rini, B.I.; Plimack, E.R.; Stus, V.; Gafanov, R.; Hawkins, R.; Nosov, D.; Pouliot, F.; Alekseev, B.; Soulieres, D.; Melichar, B.; et al. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1116–1127. [Google Scholar] [CrossRef]
- Motzer, R.; Porta, C.; Alekseev, B.; Rha, S.Y.; Choueiri, T.K.; Mendez-Vidal, M.J.; Hong, S.H.; Kapoor, A.; Goh, J.C.; Eto, M.; et al. Health-related quality-of-life outcomes in patients with advanced renal cell carcinoma treated with lenvatinib plus pembrolizumab or everolimus versus sunitinib (CLEAR): A randomised, phase 3 study. Lancet Oncol. 2022, 23, 768–780. [Google Scholar] [CrossRef]
- Albiges, L.; Tannir, N.M.; Burotto, M.; McDermott, D.; Plimack, E.R.; Barthelemy, P.; Porta, C.; Powles, T.; Donskov, F.; George, S.; et al. Nivolumab plus ipilimumab versus sunitinib for first-line treatment of advanced renal cell carcinoma: Extended 4-year follow-up of the phase III CheckMate 214 trial. ESMO Open 2020, 5, e001079. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Ravaud, A.; Patard, J.-J.; Pandha, H.S.; George, D.J.; Patel, A.; Chang, Y.-H.; Escudier, B.; Donskov, F.; Magheli, A. Adjuvant sunitinib for high-risk renal cell carcinoma after nephrectomy: Subgroup analyses and updated overall survival results. Eur. Urol. 2018, 73, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Bedke, J.; Albiges, L.; Capitanio, U.; Giles, R.H.; Hora, M.; Lam, T.B.; Ljungberg, B.; Marconi, L.; Klatte, T.; Volpe, A.; et al. The 2021 Updated European Association of Urology Guidelines on Renal Cell Carcinoma: Immune Checkpoint Inhibitor-based Combination Therapies for Treatment-naive Metastatic Clear-cell Renal Cell Carcinoma Are Standard of Care. Eur. Urol. 2021, 80, 393–397. [Google Scholar] [CrossRef]
- Wilhelm, S.M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.; Rong, H.; Chen, C.; Zhang, X.; Vincent, P.; McHugh, M.; et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004, 64, 7099–7109. [Google Scholar] [CrossRef] [Green Version]
- Escudier, B.; Eisen, T.; Stadler, W.M.; Szczylik, C.; Oudard, S.; Siebels, M.; Negrier, S.; Chevreau, C.; Solska, E.; Desai, A.A.; et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 2007, 356, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Escudier, B.; Szczylik, C.; Hutson, T.E.; Demkow, T.; Staehler, M.; Rolland, F.; Negrier, S.; Laferriere, N.; Scheuring, U.J.; Cella, D.; et al. Randomized phase II trial of first-line treatment with sorafenib versus interferon Alfa-2a in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 2009, 27, 1280–1289. [Google Scholar] [CrossRef]
- Beck, J.; Procopio, G.; Bajetta, E.; Keilholz, U.; Negrier, S.; Szczylik, C.; Bokemeyer, C.; Bracarda, S.; Richel, D.J.; Staehler, M.; et al. Final results of the European Advanced Renal Cell Carcinoma Sorafenib (EU-ARCCS) expanded-access study: A large open-label study in diverse community settings. Ann. Oncol. 2011, 22, 1812–1823. [Google Scholar] [CrossRef]
- Stadler, W.M.; Figlin, R.A.; McDermott, D.F.; Dutcher, J.P.; Knox, J.J.; Miller, W.H., Jr.; Hainsworth, J.D.; Henderson, C.A.; George, J.R.; Hajdenberg, J.; et al. Safety and efficacy results of the advanced renal cell carcinoma sorafenib expanded access program in North America. Cancer 2010, 116, 1272–1280. [Google Scholar] [CrossRef]
- Li, Y.; Gao, Z.H.; Qu, X.J. The adverse effects of sorafenib in patients with advanced cancers. Basic Clin. Pharm. Toxicol. 2015, 116, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Tomita, Y.; Naito, S.; Sassa, N.; Takahashi, A.; Kondo, T.; Koie, T.; Obara, W.; Kobayashi, Y.; Teishima, J.; Takahashi, M.; et al. Sunitinib Versus Sorafenib as Initial Targeted Therapy for mCC-RCC With Favorable/Intermediate Risk: Multicenter Randomized Trial CROSS-J-RCC. Clin. Genitourin Cancer 2020, 18, e374–e385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eichelberg, C.; Vervenne, W.L.; De Santis, M.; Fischer von Weikersthal, L.; Goebell, P.J.; Lerchenmuller, C.; Zimmermann, U.; Bos, M.M.; Freier, W.; Schirrmacher-Memmel, S.; et al. SWITCH: A Randomised, Sequential, Open-label Study to Evaluate the Efficacy and Safety of Sorafenib-sunitinib Versus Sunitinib-sorafenib in the Treatment of Metastatic Renal Cell Cancer. Eur. Urol. 2015, 68, 837–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motzer, R.J.; Nosov, D.; Eisen, T.; Bondarenko, I.; Lesovoy, V.; Lipatov, O.; Tomczak, P.; Lyulko, O.; Alyasova, A.; Harza, M.; et al. Tivozanib versus sorafenib as initial targeted therapy for patients with metastatic renal cell carcinoma: Results from a phase III trial. J. Clin. Oncol. 2013, 31, 3791–3799. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Escudier, B.; Tomczak, P.; Hutson, T.E.; Michaelson, M.D.; Negrier, S.; Oudard, S.; Gore, M.E.; Tarazi, J.; Hariharan, S.; et al. Axitinib versus sorafenib as second-line treatment for advanced renal cell carcinoma: Overall survival analysis and updated results from a randomised phase 3 trial. Lancet Oncol. 2013, 14, 552–562. [Google Scholar] [CrossRef]
- Eisen, T.; Frangou, E.; Oza, B.; Ritchie, A.W.S.; Smith, B.; Kaplan, R.; Davis, I.D.; Stockler, M.R.; Albiges, L.; Escudier, B.; et al. Adjuvant Sorafenib for Renal Cell Carcinoma at Intermediate or High Risk of Relapse: Results From the SORCE Randomized Phase III Intergroup Trial. J. Clin. Oncol. 2020, 38, 4064–4075. [Google Scholar] [CrossRef] [PubMed]
- Haas, N.B.; Manola, J.; Dutcher, J.P.; Flaherty, K.T.; Uzzo, R.G.; Atkins, M.B.; DiPaola, R.S.; Choueiri, T.K. Adjuvant Treatment for High-Risk Clear Cell Renal Cancer: Updated Results of a High-Risk Subset of the ASSURE Randomized Trial. JAMA Oncol. 2017, 3, 1249–1252. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Halabi, S.; Sanford, B.L.; Hahn, O.; Michaelson, M.D.; Walsh, M.K.; Feldman, D.R.; Olencki, T.; Picus, J.; Small, E.J. Cabozantinib versus sunitinib as initial targeted therapy for patients with metastatic renal cell carcinoma of poor or intermediate risk: The alliance A031203 CABOSUN trial. J. Clin. Oncol. 2017, 35, 591. [Google Scholar] [CrossRef]
- Mollica, V.; Santoni, M.; Matrana, M.R.; Basso, U.; De Giorgi, U.; Rizzo, A.; Maruzzo, M.; Marchetti, A.; Rosellini, M.; Bleve, S.; et al. Concomitant Proton Pump Inhibitors and Outcome of Patients Treated with Nivolumab Alone or Plus Ipilimumab for Advanced Renal Cell Carcinoma. Target Oncol. 2022, 17, 61–68. [Google Scholar] [CrossRef]
- Rizzo, A.; Mollica, V.; Santoni, M.; Ricci, A.D.; Rosellini, M.; Marchetti, A.; Montironi, R.; Ardizzoni, A.; Massari, F. Impact of Clinicopathological Features on Survival in Patients Treated with First-line Immune Checkpoint Inhibitors Plus Tyrosine Kinase Inhibitors for Renal Cell Carcinoma: A Meta-analysis of Randomized Clinical Trials. Eur. Urol. Focus 2022, 8, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Santoni, M.; Massari, F.; Bracarda, S.; Grande, E.; Matrana, M.R.; Rizzo, M.; De Giorgi, U.; Basso, U.; Aurilio, G.; Incorvaia, L.; et al. Cabozantinib in Patients with Advanced Renal Cell Carcinoma Primary Refractory to First-line Immunocombinations or Tyrosine Kinase Inhibitors. Eur. Urol. Focus 2022. [Google Scholar] [CrossRef]
- Yang, Y.; Psutka, S.P.; Parikh, A.B.; Li, M.; Collier, K.; Miah, A.; Mori, S.V.; Hinkley, M.; Tykodi, S.S.; Hall, E.; et al. Combining immune checkpoint inhibition plus tyrosine kinase inhibition as first and subsequent treatments for metastatic renal cell carcinoma. Cancer Med. 2022. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Escudier, B.; Powles, T.; Tannir, N.M.; Mainwaring, P.N.; Rini, B.I.; Hammers, H.J.; Donskov, F.; Roth, B.J.; Peltola, K. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): Final results from a randomised, open-label, phase 3 trial. Lancet Oncol. 2016, 17, 917–927. [Google Scholar] [CrossRef] [Green Version]
- Patson, B.; Cohen, R.B.; Olszanski, A.J. Pharmacokinetic evaluation of axitinib. Expert Opin. Drug Metab. Toxicol. 2012, 8, 259–270. [Google Scholar] [CrossRef]
- Rini, B.I.; Escudier, B.; Tomczak, P.; Kaprin, A.; Szczylik, C.; Hutson, T.E.; Michaelson, M.D.; Gorbunova, V.A.; Gore, M.E.; Rusakov, I.G.; et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): A randomised phase 3 trial. Lancet 2011, 378, 1931–1939. [Google Scholar] [CrossRef]
- Hutson, T.E.; Lesovoy, V.; Al-Shukri, S.; Stus, V.P.; Lipatov, O.N.; Bair, A.H.; Rosbrook, B.; Chen, C.; Kim, S.; Vogelzang, N.J. Axitinib versus sorafenib as first-line therapy in patients with metastatic renal-cell carcinoma: A randomised open-label phase 3 trial. Lancet Oncol. 2013, 14, 1287–1294. [Google Scholar] [CrossRef]
- Negrier, S.; Rioux-Leclercq, N.; Ferlay, C.; Gross-Goupil, M.; Gravis, G.; Geoffrois, L.; Chevreau, C.; Boyle, H.; Rolland, F.; Blanc, E.; et al. Axitinib in first-line for patients with metastatic papillary renal cell carcinoma: Results of the multicentre, open-label, single-arm, phase II AXIPAP trial. Eur. J. Cancer 2020, 129, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Motzer, R.J.; Rini, B.I.; Haanen, J.; Campbell, M.T.; Venugopal, B.; Kollmannsberger, C.; Gravis-Mescam, G.; Uemura, M.; Lee, J.L.; et al. Updated efficacy results from the JAVELIN Renal 101 trial: First-line avelumab plus axitinib versus sunitinib in patients with advanced renal cell carcinoma. Ann. Oncol. 2020, 31, 1030–1039. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Taguchi, E.; Miura, T.; Yamamoto, A.; Takahashi, K.; Bichat, F.; Guilbaud, N.; Hasegawa, K.; Kubo, K.; Fujiwara, Y.; et al. KRN951, a highly potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, has antitumor activities and affects functional vascular properties. Cancer Res. 2006, 66, 9134–9142. [Google Scholar] [CrossRef] [Green Version]
- Rini, B.I.; Pal, S.K.; Escudier, B.J.; Atkins, M.B.; Hutson, T.E.; Porta, C.; Verzoni, E.; Needle, M.N.; McDermott, D.F. Tivozanib versus sorafenib in patients with advanced renal cell carcinoma (TIVO-3): A phase 3, multicentre, randomised, controlled, open-label study. Lancet Oncol. 2020, 21, 95–104. [Google Scholar] [CrossRef]
- Okamoto, K.; Kodama, K.; Takase, K.; Sugi, N.H.; Yamamoto, Y.; Iwata, M.; Tsuruoka, A. Antitumor activities of the targeted multi-tyrosine kinase inhibitor lenvatinib (E7080) against RET gene fusion-driven tumor models. Cancer Lett. 2013, 340, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Motzer, R.J.; Hutson, T.E.; Glen, H.; Michaelson, M.D.; Molina, A.; Eisen, T.; Jassem, J.; Zolnierek, J.; Maroto, J.P.; Mellado, B.; et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: A randomised, phase 2, open-label, multicentre trial. Lancet Oncol. 2015, 16, 1473–1482. [Google Scholar] [CrossRef] [Green Version]
- Motzer, R.; Alekseev, B.; Rha, S.Y.; Porta, C.; Eto, M.; Powles, T.; Grunwald, V.; Hutson, T.E.; Kopyltsov, E.; Mendez-Vidal, M.J.; et al. Lenvatinib plus Pembrolizumab or Everolimus for Advanced Renal Cell Carcinoma. N. Engl. J. Med. 2021, 384, 1289–1300. [Google Scholar] [CrossRef]
- Hamberg, P.; Verweij, J.; Sleijfer, S. (Pre-)clinical pharmacology and activity of pazopanib, a novel multikinase angiogenesis inhibitor. Oncologist 2010, 15, 539–547. [Google Scholar] [CrossRef] [Green Version]
- Sternberg, C.N.; Davis, I.D.; Mardiak, J.; Szczylik, C.; Lee, E.; Wagstaff, J.; Barrios, C.H.; Salman, P.; Gladkov, O.A.; Kavina, A.; et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: Results of a randomized phase III trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2010, 28, 1061–1068. [Google Scholar] [CrossRef]
- Motzer, R.J.; Hutson, T.E.; Cella, D.; Reeves, J.; Hawkins, R.; Guo, J.; Nathan, P.; Staehler, M.; de Souza, P.; Merchan, J.R.; et al. Pazopanib versus Sunitinib in Metastatic Renal-Cell Carcinoma. N. Engl. J. Med. 2013, 369, 722–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escudier, B.; Porta, C.; Bono, P.; Powles, T.; Eisen, T.; Sternberg, C.N.; Gschwend, J.E.; De Giorgi, U.; Parikh, O.; Hawkins, R.; et al. Randomized, controlled, double-blind, cross-over trial assessing treatment preference for pazopanib versus sunitinib in patients with metastatic renal cell carcinoma: PISCES Study. J. Clin. Oncol. 2014, 32, 1412–1418. [Google Scholar] [CrossRef]
- Hudes, G.; Carducci, M.; Tomczak, P.; Dutcher, J.; Figlin, R.; Kapoor, A.; Staroslawska, E.; Sosman, J.; McDermott, D.; Bodrogi, I.; et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N. Engl. J. Med. 2007, 356, 2271–2281. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Park, I.; Lee, J.L. Pazopanib versus sunitinib for the treatment of metastatic renal cell carcinoma patients with poor-risk features. Cancer Chemother. Pharm. 2016, 78, 325–332. [Google Scholar] [CrossRef]
- Xie, C.; Wan, X.; Quan, H.; Zheng, M.; Fu, L.; Li, Y.; Lou, L. Preclinical characterization of anlotinib, a highly potent and selective vascular endothelial growth factor receptor-2 inhibitor. Cancer Sci. 2018, 109, 1207–1219. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Song, Y.; Shou, J.; Bai, Y.; Li, H.; Xie, X.; Luo, H.; Ren, X.; Liu, J.; Ye, D.; et al. Anlotinib for Patients With Metastatic Renal Cell Carcinoma Previously Treated with One Vascular Endothelial Growth Factor Receptor-Tyrosine Kinase Inhibitor: A Phase 2 Trial. Front. Oncol. 2020, 10, 664. [Google Scholar] [CrossRef]
- Zhou, A.P.; Bai, Y.; Song, Y.; Luo, H.; Ren, X.B.; Wang, X.; Shi, B.; Fu, C.; Cheng, Y.; Liu, J.; et al. Anlotinib Versus Sunitinib as First-Line Treatment for Metastatic Renal Cell Carcinoma: A Randomized Phase II Clinical Trial. Oncologist 2019, 24, e702–e708. [Google Scholar] [CrossRef] [Green Version]
- Jia, H.; Dai, G.; Weng, J.; Zhang, Z.; Wang, Q.; Zhou, F.; Jiao, L.; Cui, Y.; Ren, Y.; Fan, S.; et al. Discovery of (S)-1-(1-(Imidazo[1,2-a]pyridin-6-yl)ethyl)-6-(1-methyl-1H-pyrazol-4-yl)-1H-[1,2,3]triazolo[4,5-b]pyrazine (volitinib) as a highly potent and selective mesenchymal-epithelial transition factor (c-Met) inhibitor in clinical development for treatment of cancer. J. Med. Chem. 2014, 57, 7577–7589. [Google Scholar] [CrossRef]
- Akhtar, M.; Al-Bozom, I.A.; Al Hussain, T. Papillary Renal Cell Carcinoma (PRCC): An Update. Adv. Anat. Pathol. 2019, 26, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Heng, D.Y.C.; Lee, J.L.; Cancel, M.; Verheijen, R.B.; Mellemgaard, A.; Ottesen, L.H.; Frigault, M.M.; L’Hernault, A.; Szijgyarto, Z.; et al. Efficacy of Savolitinib vs Sunitinib in Patients With MET-Driven Papillary Renal Cell Carcinoma: The SAVOIR Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1247–1255. [Google Scholar] [CrossRef] [PubMed]
- Gleeson, J.P.; Motzer, R.J.; Lee, C.H. The current role for adjuvant and neoadjuvant therapy in renal cell cancer. Curr. Opin. Urol. 2019, 29, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Martinez Chanza, N.; Tripathi, A.; Harshman, L.C. Adjuvant Therapy Options in Renal Cell Carcinoma: Where Do We Stand? Curr. Treat. Opt. Oncol. 2019, 20, 44. [Google Scholar] [CrossRef]
- Haas, N.B.; Manola, J.; Uzzo, R.G.; Flaherty, K.T.; Wood, C.G.; Kane, C.; Jewett, M.; Dutcher, J.P.; Atkins, M.B.; Pins, M.; et al. Adjuvant sunitinib or sorafenib for high-risk, non-metastatic renal-cell carcinoma (ECOG-ACRIN E2805): A double-blind, placebo-controlled, randomised, phase 3 trial. Lancet 2016, 387, 2008–2016. [Google Scholar] [CrossRef] [Green Version]
- Gross-Goupil, M.; Kwon, T.G.; Eto, M.; Ye, D.; Miyake, H.; Seo, S.I.; Byun, S.S.; Lee, J.L.; Master, V.; Jin, J.; et al. Axitinib versus placebo as an adjuvant treatment of renal cell carcinoma: Results from the phase III, randomized ATLAS trial. Ann. Oncol. 2018, 29, 2371–2378. [Google Scholar] [CrossRef]
- Motzer, R.J.; Haas, N.B.; Donskov, F.; Gross-Goupil, M.; Varlamov, S.; Kopyltsov, E.; Lee, J.L.; Melichar, B.; Rini, B.I.; Choueiri, T.K.; et al. Randomized Phase III Trial of Adjuvant Pazopanib Versus Placebo After Nephrectomy in Patients with Localized or Locally Advanced Renal Cell Carcinoma. J. Clin. Oncol. 2017, 35, 3916–3923. [Google Scholar] [CrossRef]
- Ljungberg, B.; Albiges, L.; Bensalah, K.; Bex, A.; Giles, R.H.; Hora, M.; Kuczyk, M.A.; Lam, T.; Marconi, L.; Powles, T.; et al. EAU-Guidelines on Renal Cell Carcinoma 2021. In Proceedings of the EAU Annual Congress, Milan, Italy, 19–23 March 2021; ISBN 978-94-92671-13-4. [Google Scholar]
- Choueiri, T.K.; Tomczak, P.; Park, S.H.; Venugopal, B.; Ferguson, T.; Chang, Y.H.; Hajek, J.; Symeonides, S.N.; Lee, J.L.; Sarwar, N.; et al. Adjuvant Pembrolizumab after Nephrectomy in Renal-Cell Carcinoma. N. Engl. J. Med. 2021, 385, 683–694. [Google Scholar] [CrossRef]
- Powles, T.; Plimack, E.R.; Soulieres, D.; Waddell, T.; Stus, V.; Gafanov, R.; Nosov, D.; Pouliot, F.; Melichar, B.; Vynnychenko, I.; et al. Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma (KEYNOTE-426): Extended follow-up from a randomised, open-label, phase 3 trial. Lancet Oncol. 2020, 21, 1563–1573. [Google Scholar] [CrossRef]
- Kwilas, A.R.; Donahue, R.N.; Tsang, K.Y.; Hodge, J.W. Immune consequences of tyrosine kinase inhibitors that synergize with cancer immunotherapy. Cancer Cell Microenviron. 2015, 2, e677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choueiri, T.K.; Escudier, B.; Powles, T.; Mainwaring, P.N.; Rini, B.I.; Donskov, F.; Hammers, H.; Hutson, T.E.; Lee, J.L.; Peltola, K.; et al. Cabozantinib versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1814–1823. [Google Scholar] [CrossRef] [PubMed]
- Schmidinger, M.; Bamias, A.; Procopio, G.; Hawkins, R.; Sanchez, A.R.; Vazquez, S.; Srihari, N.; Kalofonos, H.; Bono, P.; Pisal, C.B.; et al. Prospective Observational Study of Pazopanib in Patients with Advanced Renal Cell Carcinoma (PRINCIPAL Study). Oncologist 2019, 24, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Araujo, D.V.; Wells, J.C.; Hansen, A.R.; Dizman, N.; Pal, S.K.; Beuselinck, B.; Donskov, F.; Gan, C.L.; Yan, F.; Tran, B.; et al. Efficacy of immune-checkpoint inhibitors (ICI) in the treatment of older adults with metastatic renal cell carcinoma (mRCC)—An International mRCC Database Consortium (IMDC) analysis. J. Geriatr. Oncol. 2021, 12, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Gore, M.E.; Szczylik, C.; Porta, C.; Bracarda, S.; Bjarnason, G.A.; Oudard, S.; Hariharan, S.; Lee, S.H.; Haanen, J.; Castellano, D.; et al. Safety and efficacy of sunitinib for metastatic renal-cell carcinoma: An expanded-access trial. Lancet Oncol. 2009, 10, 757–763. [Google Scholar] [CrossRef]
First Line | |||||
---|---|---|---|---|---|
Study name | SUTENT | CABOSUN | AXIPAP | COMPARZ | |
Year | 2009 | 2017 | 2020 | 2013 | |
N | 750 | 157 | 44 | 1110 | |
N_groups | 375/375 | 79/78 | (13/30) | 557/553 | |
Recruiting period | Aug 2004–Oct 2005 | Jul 2013–Apr 2015 | Oct 2015–Jan 2018 | Aug 2008–Sep 2011 | |
Phase of study | 3 | 2 | 2 | 3 | |
Intervention | sunitinib | cabozantinib | axitinib (type 1/type 2) | pazopanib | |
Comparator | IFN-a | sunitinib | - | sunitinib | |
Randomisation | 1:1 | 1:1 | - | 1:1 | |
RCC subtype | m ccRCC | adv/m RCC, intermediate or poor risk | papillary RCC (type1/type 2) | m ccRCC | |
Prior therapy | - | - | - | - | |
Follow-up [years] | 1.8 | 2.7 | 3.3 | ||
mPFS_Interv. [months] | 11 | 8.2 | 6.6 (6.7/6.2) | 8.4 | |
mPFS_Comparator [months] | 5 | 5.6 | 9.5 | ||
mPFS_HR | 0.66 | 1.05 | |||
mPFS_p | 0.012 | ||||
mOS_Interv. [months] | 26.4 | 30.3 | 18.9 (not reached/17.4) | 28.4 | |
mOS_Comparator [months] | 21.8 | 21.8 | 29.3 | ||
mOS_HR | 0.821 | 0.80 | 0.91 | ||
mOS_p | 0.051 | >0.05 | 0.28 | ||
Objective response rate | 47% vs. 12% | 20% vs. 8% | 28.6% (7.7%/35.7%) | 33% vs. 29% | |
Adverse Events | AE ≥ Gr. 3 66.7% vs. 68.1% | AE ≥ Gr. 3 54.5% | pazopanib < sunitinib (patient reported treatment side effects, p = 0.03) | ||
First/Second Line | |||||
Study name | VEG105192 | TIVO-1 | SWOG 1500 | ||
Year | 2010 | 2013 | 2021 | ||
N | 435 | 517 | 147 | ||
N_groups | 290/145 | 260/257 | 44 (/29 */28 *)/46 | ||
Recruiting period | Apr 2006–Apr 2007 | Feb 2010–Aug 2010 | Apr 2016–Dec 2019 | ||
Phase of study | 3 | 3 | 2 | ||
Intervention | pazopanib | tivozanib | cabozantinib (/savolitinib */crizotinib *) | ||
Comparator | placebo | sorafenib | sunitinib | ||
Randomisation | 2:1 | 1:1 | 1(:1 *:1 *):1 | ||
RCC subtype | adv/m ccRCC | m ccRCC with prior nephrectomy | papillary RCC (type1/type 2) | ||
Prior therapy | treatment-naive or cytokine therapy | -/one therapy line (excl. TKI or mTOR-I) | -/one therapy line (excl. VEGF-directed or MET-directed therapy)) | ||
Follow-up [years] | 3.8 | 1.6 | |||
mPFS_Interv. [months] | 9.2 | 11.9 | 9.0 (/3.0 */2.8 *) | ||
mPFS_Comparator [months] | 4.2 | 9.1 | 5.6 | ||
mPFS_HR | 0.46 | 0.797 | 0.60 | ||
mPFS_p | <0.001 | 0.042 | 0.02 | ||
mOS_Interv. [months] | 22.9 | 29.3 | 20.0 (/11.7 */19.9 *) | ||
mOS_Comparator [months] | 20.5 (crossover allowed) | 28.8 | 16.4 | ||
mOS_HR | 0.91 | 1.25 | 0.84 | ||
mOS_p | 0.224 | 0.105 | >0.05 | ||
Objective response rate | 30% vs. 3% | 33.1% vs. 23.1% | 23% (/3%/0%) vs. 4% | ||
Adverse Events | AE ≥ Gr. 3 33% vs. 7% | AE ≥ Gr. 3 61% vs. 70% | AE ≥ Gr. 3 74% (39%/37%) vs. 69% | ||
Second Line | Third line | ||||
Study name | TARGET | METEOR | AXIS | (NCT01136733) | TIVO-3 |
Year | 2007 | 2016 | 2013 | 2015 | 2020 |
N | 903 | 658 | 723 | 153 | 350 |
N_groups | 452/451 | 330/328 | 361/362 | 51/52/50 | 175/175 |
Recruiting period | Nov 2003–Mar 2005 | Aug 2013–Nov 2014 | Sep 2008–Jul 2010 | Mar 2012–Jun 2013 | May 2016–Aug 2017 |
Phase of study | 3 | 3 | 3 | 2 | 3 |
Intervention | sorafenib | cabozantinib | axitinib | Lenvatinib + everolimus | tivozanib |
Comparator | placebo | everolimus | sorafenib | lenvatinib/everolimus | sorafenib |
Randomisation | 1:1 | 1:1 | 1:1 | 1:1:1 | 1:1 |
RCC subtype | m cc/ncc RCC post IFN-a | adv/m ccRCC post TKI | m ccRCC | adv/m ccRCC | m ncc/cc RCC |
Prior therapy | IFN-a | TKI | not defined | VEGF-targeted therapy | ≥two therapy lines, ≥one TKI |
Follow-up [years] | 2.0 | 1.5 | 3.0 | 2.0 | 1.6 |
mPFS_Interv. [months] | 5.5 | 7.4 | 8.3 | 14.6 | 5.6 |
mPFS_Comparator [months] | 2.8 | 3.9 | 5.7 | 7.4/5.5 | 3.9 |
mPFS_HR | 0.51 | 0.51 | 0.66 | 0.40/0.61 | 0.73 |
mPFS_p | <0.001 | <0.001 | <0.001 | <0.001/0.12 | 0.016 |
mOS_Interv. [months] | 19.3 | 21.4 | 20.1 | 25.5 | 16.4 |
mOS_Comparator [months] | 15.9 | 16.5 | 19.2 | 18.4/17.5 | 19.7 |
mOS_HR | 0.77 | 0.66 | 0.969 | 0.55/0.74 | 0.99 |
mOS_p | 0.02 | <0.001 | 0.374 | 0.06/0.30 | 0.95 |
Objective response rate | 10% vs. 2% | 17% vs. 3% | 23% vs. 12% | 43% vs. 27%/6% | 18% vs. 8% |
Adverse Events | SAE 34% vs. 24% | AE ≥3 39% vs. 40% | treatment discontinuation due to toxic effects: 4% vs. 8% | AE ≥ Gr. 3 71% vs. 79%/50% | AE 84% vs. 94%, SAE 11% vs. 10% |
Adjuvant | |||||
Study name | S-TRAC | ASSURE | SORCE | PROTECT | ATLAS |
Year | 2016 | 2016 | 2020 | 2017 | 2018 |
N | 615 | 1943 | 1711 | 1538 | 724 |
N_groups | 309/306 | 647/649/647 | 430/642/639 | 571 (p600)/564/198 (p800)/205 | 363/361 |
Recruiting period | Sep 2007–Apr 2011 | Apr 2006–Sep 2010 | Jul 2007–Apr 2013 | Dec 2010–Sep 2013 | May 2012–July 2016 |
Phase of study | 3 | 3 | 3 | 3 | 3 |
Intervention | sunitinib (1 year) | sunitinib/sorafenib (1 year) | sorafenib (1year, +Placebo (2years))/sorafenib (3 years) | pazopanib (1year) | axitinib (1 year–3 years) |
Comparator | placebo (1 year) | placebo (1 year) | placebo (3 years) | placebo (1 year) | placebo (1 year–3 years) |
Randomisation | 1:1 | 1:1:1 | 3:3:2 | 1:1 | 1:1 |
RCC subtype | nm ccRCC high risk (UISS criteria) | nm cc/ncc RCC high risk | nm cc/ncc RCC interm./high risk of recurrence | ccRCC, pT2 (high grade) or ≥ pT3 or pN+ | nm ccRCC ≥ pT2 and/or N+ |
Prior therapy | - | - | - | - | - |
Follow-up [years] | 5.4 | 5.8 | 6.5 | 3.5 (p600)/4.0 (p800) | NA |
mDFS_Interv. [years] | 6.8 | 5.8/6.1 | 6.98/6.81 | not reached | |
mDFS_Comparator [years] | 5.6 | 6.6 | 6.82 | 4.5 | |
mDFS_HR | 0.76 | 1.02/0.97 | 0.94/1.01 | 0.8 (all)/0.69 (p800)/0.94 (p600) | 0.87 |
mDFS_p | 0.03 | 0.804/0.718 | 0.988 | 0.013/0.020 (p800)/0.51 (p600) | 0.3211 |
mOS_Interv. [months] | not reached | not reached | not reached | not reached | not reached |
mOS_Comparator [months] | not reached | not reached | not reached | not reached | not reached |
mOS_HR | 1.01 | 1.17/0.98 | 0.92/1.06 | 0.82 (all)/0.89 (p800)/0.79 (p600) | 1.03 |
mOS_p | 0.94 | 0.176/0.858 | 0.15/0.65/0.16 | 0.92 | |
Adverse Events | AE ≥ 3 63.4% vs. 21.7% | AE ≥ 3 63%/72%/25% | AE ≥ 3 58.6%/63.9%/29.2% | AE ≥ 3 60% (P600)/66% (P800)/21% | AE ≥ 3 61% vs. 30% |
NCT Number | Name | Phase | Setting | Patient Group | Intervention | Comparator | Primary Endpoint | Estimated Enrollment | Estimated Study Completion | Status |
---|---|---|---|---|---|---|---|---|---|---|
NCT04995016 | 2 | neoadjuvant | M0 ccRCC | pembrolizumab + axitinib | - | pathologic response | 18 | 2023 | Not yet recruiting | |
NCT04118855 | 2 | M0 ccRCC | toripalimab + axitinib | - | ORR | 30 | 2026 | Not yet recruiting | ||
NCT04022343 | 2 | M0 ccRCC | cabozantinib | - | ORR | 19 | 2023 | Active, not recruiting | ||
NCT03341845 | 2 | ir/hr RCC | axitinib + avelumab | - | PRR | 40 | 2025 | Recruiting | ||
NCT04393350 | 2 | M0 RCC | lenvatinib + pembrolizumab | - | ORR | 17 | 2024 | Recruiting | ||
NCT04370509 | 2 | M0/M1 RCC | pembrolizumab/pembrolizumab + axitinib | - | TIIC | 84 | 2025 | Recruiting | ||
NCT05172440 | 2 | M0 ccRCC | axitinib + tislelizumab | - | ORR | 20 | 2024 | Active, not recruiting | ||
NCT00715442 | 2 | M1 RCC before CN | sunitinib | - | PFS | 50 | 2022 | Active, not recruiting | ||
NCT05124431 | 2 | inoperable/metastatic | nccRCC FL | anlotinib + everolimus | - | ORR | 30 | 2024 | Not yet recruiting | |
NCT04958473 | 2 | recurrent/M1 RCC | sintilimab + axitinib | - | ORR | 40 | 2025 | Not yet recruiting | ||
NCT05176288 | 2 | M1 ccRCC | axitinib + avelumab + palbociclib | - | ORR | 25 | 2023 | Not yet recruiting | ||
NCT04704219 | KEYNOTE-B61 | 2 | M1 nccRCC | pembrolizumab + lenvatinib | - | ORR | 152 | 2025 | Active, not recruiting | |
NCT04267120 | LENKYN | 2 | LA/M1 nccRCC | pembrolizumab + lenvatinib | - | ORR | 34 | 2027 | Recruiting | |
NCT03967522 | CABRAMET | 2 | M1 RCC with BN | cabozantinib | - | intracranial PFS | 77 | 2024 | Recruiting | |
NCT03562507 | 2 | M1 RCC | ESK981 + nivolumab | - | ORR | 28 | 2023 | Active, not recruiting | ||
NCT01217931 | START | 2 | M1 RCC | sequential pazopanib/bevacizumab/everolimus (6 arms) | - | PFS | 180 | 2023 | Active, not recruiting | |
NCT05411081 | PAPMET2 | 2 | M1 PRCC | atezolizumab + cabozantinib | cabozantinib | PFS | 180 | 2027 | Not yet recruiting | |
NCT05048212 | 2 | M1 RCC with BN FL | nivolumab + ipilimumab + cabozantinib | - | intracranial PFS | 40 | 2024 | Not yet recruiting | ||
NCT05256472 | 2 | M1 ccRCC FL | AK104 + axitinib | - | ORR | 40 | 2024 | Not yet recruiting | ||
NCT02819596 | CALYPSO | 2 | M1 RCC | savolitinib + durvalumab/savolitinib/durvalumab/durvalumab + tremelimumab | - | ORR | 181 | 2022 | Active, not recruiting | |
NCT05220267 | 2 | LA/M1 nccRCC | anlotinib + sintilimab | - | PFS | 43 | 2024 | Not yet recruiting | ||
NCT04904302 | 2 | M1 ccRCC | sitravatinib + nivolumab | - | ORR, DCR | 88 | 2023 | Recruiting | ||
NCT05012371 | 2 | M1 RCC after IO | lenvatinib + everolimus | cabozantinib | PFS | 90 | 2023 | Recruiting | ||
NCT01130519 | 2 | M1 PRCC/HLRCC | bevacizumab + erlotinib | - | ORR | 83 | 2023 | Active, not recruiting | ||
NCT05096390 | 2 | LA/M1 PRCC FL | axitinib + pembrolizumab | axitinib | ORR | 72 | 2025 | Not yet recruiting | ||
NCT03595124 | 2 | M1 translocation RCC | axitinib + nivolumab | nivolumab | PFS | 40 | 2031 | Recruiting | ||
NCT03092856 | 2 | M1 RCC | PF-04518600 + axitinib | placebo + axitinib | PFS | 104 | 2023 | Recruiting | ||
NCT03635892 | 2 | M1 nccRCC | nivolumab + cabozantinib | - | ORR | 97 | 5th July | Recruiting | ||
NCT04071223 | RadiCaL | 2 | RCC with bone metastasis | radium 223 + cabozantinib | cabozantinib | SSEFS | 210 | 2024 | Recruiting | |
NCT03634540 | 2 | M1 ccRCC | belzutifan + cabozantinib | - | ORR | 118 | 2025 | Recruiting | ||
NCT04413123 | 2 | M1 nccRCC | nivolumab + ipilimumab, then nivolumab + cabozantinib | - | ORR | 60 | 2024 | Recruiting | ||
NCT03685448 | UNICAB | 2 | M1 nccRCC after IO | cabozantinib | - | ORR | 48 | 2024 | Recruiting | |
NCT04987203 | 3 | M1 RCC after IO | tivozanib + nivolumab | tivozanib | PFS | 326 | 2025 | Recruiting | ||
NCT04394975 | 3 | M1 RCC | toripalimab + axitinib | sunitinib | PFS | 380 | 2023 | Recruiting | ||
NCT03592472 | RENAVIV | 3 | LA/M1 RCC | pazopanib + abexinostat | pazopanib + placebo | PFS | 413 | 2022 | Recruiting | |
NCT03937219 | COSMIC-313 | 3 | ir/hr RCC/M1 RCC | cabozantinib + nivolumab + ipilimumab | placebo + nivolumab + ipilimumab | PFS | 840 | 2025 | Active, not recruiting | |
NCT04523272 | 3 | M1 RCC | TQB2450 + anlotinib | sunitinib | PFS | 418 | 2023 | Recruiting | ||
NCT05043090 | SAMETA | 3 | LA/M1 PRCC | savolitinib + durvalumab/durvalumab | sunitinib | PFS | 220 | 2025 | Recruiting | |
NCT04586231 | MK-6482-011 | 3 | M1 ccRCC after IO | belzutifan + lenvatinib | cabozantinib | PFS, OS | 708 | 2024 | Recruiting | |
NCT04338269 | CONTACT-03 | 3 | LA/M1 RCC after IO | atezolizumab + cabozantinib | cabozantinib | PFS, OS | 523 | 2024 | Active, not recruiting | |
NCT03793166 | PDIGREE | 3 | M1 RCC FL | nivolumab + ipilimumab, then nivolumab + cabozantinib | nivolumab + ipilimumab, then nivolumab | OS | 1046 | 2022 | Recruiting | |
NCT04736706 | MK-6482-012 | 3 | M1 ccRCC FL | pembrolizumab + belzutifan + lenvatinib/pembrolizumab/quavonlimab + lenvatinib | pembrolizumab + lenvatinib | PFS, OS | 1431 | 2026 | Recruiting |
Mono-Therapy | Combined-Therapy | Target | Further Indications | |
---|---|---|---|---|
Sunitinib | 60 mg once daily; dose reduction/increase by 12.5 mg possible (min. 12.5 mg; max 75 mg): | - | c-Kit, VEGFR1-3, PDGFR-α, PDGFR-β, FLT3, CSF-1R, RET | Gastrointestinal stromal tumours, Pancreatic neuroendocrine tumours, |
Sorafenib | 400mg twice daily; reduction to 200mg twice daily or 200/day | - | VEGFR2, FLT3, PDGFR, FGFR1 | Hepatocellular carcinoma, differentiated thyroid carcinoma |
Axitinib | 5 mg twice daily; dose reduction: 2 × 3 mg and 2 × 2 mg; dose increase: 2 × 7mg and 2 × 10 mg | 5 mg twice daily; dose reduction:2 × 3 mg and 2 × 2 mg; dose increase: 2 × 7 mg and 2 × 10 mg in combination with Pembrolizumab or Avelumab | VEGFR1-3 | - |
Tivozanib | 1340 mg once daily; Dose reduction: 890 mg | - | VEGFR1-3, PDGFR-α/β, c-Kit, Tie2, ephb2 | - |
Cabozantinib | 60 mg once daily; dose reduction 40 mg/20 mg | 40 mg once daily in combination with Nivolumab | ET, MET, VEGFR-1-3, KIT, TRKB, FLT-3, AXL, TIE-2 | Hepatocellular carcinoma, differentiated thyroid carcinoma |
Pazopanib | 800 mg once daily; reduced dosage by 200 mg until 200mg once daily possible | - | VEGFR1-3, P PDGFR-α/β, FGFR1/3, c-kit | soft-tissue sarcoma |
Lenvatinib | - | 20mg once daily in combination with Pembrolizumab; 18mg once daily in combination with Everolimus | VEGFR, PDGFRa, KIT; RET, FGFR | Hepatocellular carcinoma, differentiated thyroid carcinoma, Endometrial Cancer |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michaelis, J.; Grabbert, M.; Sigle, A.; Yilmaz, M.; Schlager, D.; Gratzke, C.; Miernik, A.; Schoeb, D.S. Tyrosine Kinase Inhibitors in the Treatment of Metastasised Renal Cell Carcinoma—Future or the Past? Cancers 2022, 14, 3777. https://doi.org/10.3390/cancers14153777
Michaelis J, Grabbert M, Sigle A, Yilmaz M, Schlager D, Gratzke C, Miernik A, Schoeb DS. Tyrosine Kinase Inhibitors in the Treatment of Metastasised Renal Cell Carcinoma—Future or the Past? Cancers. 2022; 14(15):3777. https://doi.org/10.3390/cancers14153777
Chicago/Turabian StyleMichaelis, Jakob, Markus Grabbert, August Sigle, Mehmet Yilmaz, Daniel Schlager, Christian Gratzke, Arkadiusz Miernik, and Dominik Stefan Schoeb. 2022. "Tyrosine Kinase Inhibitors in the Treatment of Metastasised Renal Cell Carcinoma—Future or the Past?" Cancers 14, no. 15: 3777. https://doi.org/10.3390/cancers14153777
APA StyleMichaelis, J., Grabbert, M., Sigle, A., Yilmaz, M., Schlager, D., Gratzke, C., Miernik, A., & Schoeb, D. S. (2022). Tyrosine Kinase Inhibitors in the Treatment of Metastasised Renal Cell Carcinoma—Future or the Past? Cancers, 14(15), 3777. https://doi.org/10.3390/cancers14153777