Burden of Lung Cancer Attributable to Occupational Carcinogens from 1990 to 2019 and Projections until 2044 in China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Occupational Carcinogens Associated with Lung Cancer
2.3. Disease Burden Metrics
2.4. Uncertainty Estimation Interval
2.5. Statistical Analysis
3. Results
3.1. Trends in the Lung Cancer Burden Attributable to Occupational Carcinogens
3.2. APC Analysis of the Lung Cancer Burden Attributable to Occupational Carcinogens
3.3. Prediction and Decomposition Analysis of Lung Cancer Burden
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Chen, H.-D.; Yu, Y.-W.; Li, N.; Chen, W.-Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin. Med. J. 2021, 134, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-B.; Fan, Y.-G.; Jiang, Y.; Li, P.; Xiao, H.-J.; Chen, W.-Q.; Wei, W.-Q.; Zhou, Q.-H.; Qiao, Y.-L.; Boffetta, P. Attributable causes of lung cancer incidence and mortality in China. Thorac. Cancer 2011, 2, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Cui, X.; Sidorenkov, G.; Groen, H.J.M.; Vliegenthart, R.; Heuvelmans, M.A.; Liu, S.; Oudkerk, M.; de Bock, G.H. Lung cancer occurrence attributable to passive smoking among never smokers in China: A systematic review and meta-analysis. Transl. Lung Cancer Res. 2020, 9, 204–217. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, M.; Ji, M.; Fan, J.; Xie, J.; Wei, X.; Jiang, X.; Xu, J.; Chen, L.; Yin, R.; et al. Air Pollution, Genetic Factors, and the Risk of Lung Cancer: A Prospective Study in the UK Biobank. Am. J. Respir. Crit. Care Med. 2021, 204, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yang, T.; Guo, X.-F.; Li, D. The Associations of Fruit and Vegetable Intake with Lung Cancer Risk in Participants with Different Smoking Status: A Meta-Analysis of Prospective Cohort Studies. Nutrients 2019, 11, 1791. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhai, Z.; Zheng, Y.; Lin, S.; Deng, Y.; Xiang, G.; Yao, J.; Xiang, D.; Wang, S.; Yang, P.; et al. Association of 13 Occupational Carcinogens in Patients with Cancer, Individually and Collectively, 1990–2017. JAMA Netw. Open 2021, 4, e2037530. [Google Scholar] [CrossRef] [PubMed]
- Loomis, D.; Guha, N.; Hall, A.L.; Straif, K. Identifying occupational carcinogens: An update from the IARC Monographs. Occup. Environ. Med. 2018, 75, 593–603. [Google Scholar] [CrossRef]
- Boffetta, P.; Autier, P.; Boniol, M.; Boyle, P.; Hill, C.; Aurengo, A.; Masse, R.; de Thé, G.; Valleron, A.-J.; Monier, R.; et al. An Estimate of Cancers Attributable to Occupational Exposures in France. J. Occup. Environ. Med. 2010, 52, 399–406. [Google Scholar] [CrossRef]
- Purdue, M.P.; Hutchings, S.J.; Rushton, L.; Silverman, D.T. The proportion of cancer attributable to occupational exposures. Ann. Epidemiol. 2015, 25, 188–192. [Google Scholar] [CrossRef]
- Driscoll, T.; Nelson, D.I.; Steenland, K.; Leigh, J.; Concha-Barrientos, M.; Fingerhut, M.; Prüss-Üstün, A. The global burden of disease due to occupational carcinogens. Am. J. Ind. Med. 2005, 48, 419–431. [Google Scholar] [CrossRef]
- Rushton, L.; Hutchings, S.; Fortunato, L.; Young, C.; Evans, G.S.; Brown, T.; Bevan, R.; Slack, R.; Holmes, P.; Bagga, S.; et al. Occupational cancer burden in Great Britain. Br. J. Cancer 2012, 107, S3–S7. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yin, P.; Wang, H.; Zeng, X.; Zhang, X.; Wang, L.; Liu, J.; Liu, Y.; You, J.; Zhao, Z.; et al. The disease burden attributable to 18 occupational risks in China: An analysis for the global burden of disease study 2017. Environ. Health 2020, 19, 21. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, P.S.; Anderson, W.F. Age-Period-Cohort Models in Cancer Surveillance Research: Ready for Prime Time? Cancer Epidemiol. Biomark. Prev. 2011, 20, 1263–1268. [Google Scholar] [CrossRef]
- Holford, T.R. Understanding the effects of age, period, and cohort on incidence and mortality rates. Annu. Rev. Public Health 1991, 12, 425–457. [Google Scholar] [CrossRef]
- GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, H.; Zhu, J.; Chen, W.; Wang, L.; Liu, S.; Li, Y.; Wang, L.; Liu, Y.; Yin, P.; et al. Cause-specific mortality for 240 causes in China during 1990–2013: A systematic subnational analysis for the Global Burden of Disease Study 2013. Lancet 2016, 387, 251–272. [Google Scholar] [CrossRef]
- Kim, H.-J.; Fay, M.P.; Feuer, E.J.; Midthune, D.N. Permutation tests for joinpoint regression with applications to cancer rates. Stat. Med. 2000, 19, 335–351. [Google Scholar] [CrossRef]
- Tzeng, I.-S.; Chen, J.-H. Exploring Hepatocellular Carcinoma Mortality Using Weighted Regression Estimation for the Cohort Effect in Taiwan from 1976 to 2015. Int. J. Environ. Res. Public Health 2022, 19, 5573. [Google Scholar] [CrossRef]
- Rosenberg, P.S.; Check, D.P.; Anderson, W.F. A Web Tool for Age–Period–Cohort Analysis of Cancer Incidence and Mortality Rates. Cancer Epidemiol. Biomark. Prev. 2014, 23, 2296–2302. [Google Scholar] [CrossRef]
- Riebler, A.; Held, L. Projecting the future burden of cancer: Bayesian age-period-cohort analysis with integrated nested Laplace approximations. Biom. J. 2017, 59, 531–549. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Tan, L.; Gao, Y.; Yang, Y.; Schwebel, D.C.; Hu, G. A new method to attribute differences in total deaths between groups to population size, age structure and age-specific mortality rate. PLoS ONE 2019, 14, e0216613. [Google Scholar] [CrossRef]
- Cheng, X.; Yang, Y.; Schwebel, D.C.; Liu, Z.; Li, L.; Cheng, P.; Ning, P.; Hu, G. Population ageing and mortality during 1990–2017: A global decomposition analysis. PLoS Med. 2020, 17, e1003138. [Google Scholar] [CrossRef] [PubMed]
- Janssen, F.; Kunst, A.E. Netherlands Epidemiology and Demography Compression of Morbidity research group. Cohort patterns in mortality trends among the elderly in seven European countries, 1950–99. Int. J. Epidemiol. 2005, 34, 1149–1159. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Schenk, L.; Hansson, S.O. Occupational diseases in the people’s Republic of China between 2000 and 2010. Am. J. Ind. Med. 2013, 56, 1423–1432. [Google Scholar] [CrossRef]
- Sun, X. Steps Forward to Improve Occupational Health—China. China CDC Wkly. 2020, 2, 310–313. [Google Scholar] [CrossRef]
- Sim, M.R.; Boffetta, P. Occupational Cancer: An Emerging Problem in Newly Industrializing Countries. Asia Pac. J. Public Health 2009, 21, 241–243. [Google Scholar] [CrossRef]
- Yang, G.; Wang, Y.; Zeng, Y.; Gao, G.F.; Liang, X.; Zhou, M.; Wan, X.; Yu, S.; Jiang, Y.; Naghavi, M.; et al. Rapid health transition in China, 1990–2010: Findings from the Global Burden of Disease Study 2010. Lancet 2013, 381, 1987–2015. [Google Scholar] [CrossRef]
- Luo, Y.; Su, B.; Zheng, X. Trends and Challenges for Population and Health During Population Aging—China, 2015–2050. China CDC Wkly. 2021, 3, 593–598. [Google Scholar] [CrossRef]
- Knoll, M.; Furkel, J.; Debus, J.; Abdollahi, A.; Karch, A.; Stock, C. An R package for an integrated evaluation of statistical approaches to cancer incidence projection. BMC Med. Res. Methodol. 2020, 20, 257. [Google Scholar] [CrossRef]
- Yu, J.; Yang, X.; He, W.; Ye, W. Burden of pancreatic cancer along with attributable risk factors in Europe between 1990 and 2019, and projections until 2039. Int. J. Cancer 2021, 149, 993–1001. [Google Scholar] [CrossRef] [PubMed]
- GBD 2016 Occupational Carcinogens Collaborators. Global and regional burden of cancer in 2016 arising from occupational exposure to selected carcinogens: A systematic analysis for the Global Burden of Disease Study 2016. Occup. Environ. Med. 2020, 77, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Chen, T.; Chen, J.; Ying, S.; Gao, Z.; He, X.; Miao, C.; Yu, M.; Feng, L.; Xia, H.; et al. Hand-spinning chrysotile exposure and risk of malignant mesothelioma: A case-control study in Southeastern China. Int. J. Cancer 2018, 142, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, H.; Zhang, J.; Yu, C.; Liu, W.; Xu, Y. Distribution of Asbestos Enterprises and Asbestosis Cases—China, 1997–2019. China CDC Wkly. 2020, 2, 305–309. [Google Scholar] [CrossRef]
- Steenland, K.; Ward, E. Silica: A lung carcinogen. CA Cancer J. Clin. 2014, 64, 63–69. [Google Scholar] [CrossRef]
- Chen, W.; Liu, Y.; Wang, H.; Hnizdo, E.; Sun, Y.; Su, L.; Zhang, X.; Weng, S.; Bochmann, F.; Hearl, F.J.; et al. Long-Term Exposure to Silica Dust and Risk of Total and Cause-Specific Mortality in Chinese Workers: A Cohort Study. PLoS Med. 2012, 9, e1001206. [Google Scholar] [CrossRef]
- Li, H.; Guo, J.; Liang, H.; Zhang, T.; Zhang, J.; Wei, L.; Shi, D.; Zhang, J.; Wang, Z. The Burden of Trachea, Bronchus, and Lung Cancer Attributable to Occupational Exposure from 1990 to 2019. Front. Public Health 2022, 10, 928937. [Google Scholar] [CrossRef]
- GBD 2016 Occupational Risk Factors Collaborators. Global and regional burden of disease and injury in 2016 arising from occupational exposures: A systematic analysis for the Global Burden of Disease Study 2016. Occup. Environ. Med. 2020, 77, 133–141. [Google Scholar] [CrossRef]
- GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- He, S.; Li, H.; Cao, M.; Sun, D.; Lei, L.; Li, N.; Peng, J.; Chen, W. Trends and risk factors of lung cancer in China. Chin. J. Cancer Res. 2020, 32, 683–694. [Google Scholar] [CrossRef]
- Kauppinen, T.; Toikkanen, J.; Pedersen, D.; Young, R.; Ahrens, W.; Boffetta, P.; Hansen, J.; Kromhout, H.; Blasco, J.M.; Mirabelli, D.; et al. Occupational exposure to carcinogens in the European Union. Occup. Environ. Med. 2000, 57, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yano, E.; Qiu, H.; Yu, I.; Courtice, M.N.; Tse, L.A.; Lin, S.; Wang, M. A 37-year observation of mortality in Chinese chrysotile asbestos workers. Thorax 2012, 67, 106–110. [Google Scholar] [CrossRef] [PubMed]
Metric | Measure | Year | Percentage Change (UI) | |
---|---|---|---|---|
1990 | 1999 | |||
SEV | All ages (%) | 1.01 (0.81–1.45) | 1.17 (0.94–1.68) | 0.16 (0.09–0.25) |
Age-standardized (%) | 0.99 (0.81–1.42) | 1.14 (0.92–1.67) | 0.14 (0.07–0.23) | |
Death | Numbers (n) | 20,572 (14,227–27,751) | 62,861 (43,949–84,923) | 2.06 (1.36–3.05) |
PAF (all ages, %) | 8.03 (5.59–10.74) | 8.30 (6.24–10.68) | 3.35 (−8.55–19.97) | |
Age-standardized PAF (%) | 7.72 (5.55–10.12) | 8.12 (6.14–10.48) | 3.20 (−7.69–20.79) | |
Mortality (All ages, 1/105) | 1.74 (1.20–2.34) | 4.42 (3.09–5.97) | 1.54 (0.96–2.37) | |
ASMR (1/105) | 2.41 (1.69–3.25) | 3.14 (2.20–4.24) | 0.31 (0.01–0.71) | |
DALYs | Numbers (n) | 586,721 (395,416–807,333) | 1,509,864 (1,035,408–2,075,488) | 1.57 (0.99–2.41) |
PAF (all ages, %) | 8.43 (5.77–11.45) | 8.81 (6.43–11.57) | 4.49 (−5.73–17.85) | |
Age-standardized PAF (%) | 8.29 (5.73–11.13) | 8.61 (6.32–11.26) | 3.94 (−6.77–17.30) | |
All-age rate (1/105) | 49.57 (33.41–68.21) | 106.15 (72.80–145.92) | 1.14 (0.65–1.84) | |
ASDR (1/105) | 63.03 (33.41–85.88) | 71.65 (49.31–98.05) | 0.14 (−0.12–0.50) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Jiang, Y.; Li, X.; Li, X.; Li, Y.; Wu, H.; Pan, H.; Wang, Y.; Meng, Z.; Zhou, Q.; et al. Burden of Lung Cancer Attributable to Occupational Carcinogens from 1990 to 2019 and Projections until 2044 in China. Cancers 2022, 14, 3883. https://doi.org/10.3390/cancers14163883
Fan Y, Jiang Y, Li X, Li X, Li Y, Wu H, Pan H, Wang Y, Meng Z, Zhou Q, et al. Burden of Lung Cancer Attributable to Occupational Carcinogens from 1990 to 2019 and Projections until 2044 in China. Cancers. 2022; 14(16):3883. https://doi.org/10.3390/cancers14163883
Chicago/Turabian StyleFan, Yaguang, Yong Jiang, Xin Li, Xuebing Li, Yang Li, Heng Wu, Hongli Pan, Ying Wang, Zhaowei Meng, Qinghua Zhou, and et al. 2022. "Burden of Lung Cancer Attributable to Occupational Carcinogens from 1990 to 2019 and Projections until 2044 in China" Cancers 14, no. 16: 3883. https://doi.org/10.3390/cancers14163883
APA StyleFan, Y., Jiang, Y., Li, X., Li, X., Li, Y., Wu, H., Pan, H., Wang, Y., Meng, Z., Zhou, Q., & Qiao, Y. (2022). Burden of Lung Cancer Attributable to Occupational Carcinogens from 1990 to 2019 and Projections until 2044 in China. Cancers, 14(16), 3883. https://doi.org/10.3390/cancers14163883