Relationship of FDG PET/CT Textural Features with the Tumor Microenvironment and Recurrence Risks in Patients with Advanced Gastric Cancers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. FDG PET/CT Image Analysis
2.3. Histopathological Analysis
2.4. Statistical Analysis
3. Results
3.1. Patients’ Clinical Characteristics
3.2. Correlation Analysis between Textural Features and Histopathological Findings
3.3. Survival Analysis of RFS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wong, M.C.S.; Huang, J.; Chan, P.S.F.; Choi, P.; Lao, X.Q.; Chan, S.M.; Teoh, A.; Liang, P. Global incidence and mortality of gastric cancer, 1980-2018. JAMA Netw. Open 2021, 4, e2118457. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer, 2021; ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Coccolini, F.; Montori, G.; Ceresoli, M.; Cima, S.; Valli, M.C.; Nita, G.E.; Heyer, A.; Catena, F.; Ansaloni, L. Advanced gastric cancer: What we know and what we still have to learn. World J. Gastroenterol. 2016, 22, 1139–1159. [Google Scholar] [CrossRef] [PubMed]
- Desiderio, J.; Sagnotta, A.; Terrenato, I.; Garofoli, E.; Mosillo, C.; Trastulli, S.; Arteritano, F.; Tozzi, F.; D’Andrea, V.; Fong, Y.; et al. Long-term survival of patients with stage II and III gastric cancer who underwent gastrectomy with inadequate nodal assessment. World J. Gastrointest. Surg. 2021, 13, 1463–1483. [Google Scholar] [CrossRef]
- Jiang, Y.; Yuan, Q.; Lv, W.; Xi, S.; Huang, W.; Sun, Z.; Chen, H.; Zhao, L.; Liu, W.; Hu, Y.; et al. Radiomic signature of 18F fluorodeoxyglucose PET/CT for prediction of gastric cancer survival and chemotherapeutic benefits. Theranostics 2018, 8, 5915–5928. [Google Scholar] [CrossRef]
- Lee, J.W.; Son, M.W.; Chung, I.K.; Cho, Y.S.; Lee, M.S.; Lee, S.M. Significance of CT attenuation and F-18 fluorodeoxyglucose uptake of visceral adipose tissue for predicting survival in gastric cancer patients after curative surgical resection. Gastric. Cancer 2020, 23, 273–284. [Google Scholar] [CrossRef]
- Nakanishi, Y.; Ohara, M.; Domen, H.; Shichinohe, T.; Hirano, S.; Ishizaka, M. Differences in risk factors between patterns of recurrence in patients after curative resection for advanced gastric carcinoma. World J. Surg. Oncol. 2013, 11, 98. [Google Scholar] [CrossRef]
- Baiocchi, G.L.; Molfino, S.; Baronchelli, C.; Giacopuzzi, S.; Marrelli, D.; Morgagni, P.; Bencivenga, M.; Saragoni, L.; Vindigni, C.; Portolani, N.; et al. Recurrence in node-negative advanced gastric cancer: Novel findings from an in-depth pathological analysis of prognostic factors from a multicentric series. World J. Gastroenterol. 2017, 23, 8000–8007. [Google Scholar] [CrossRef]
- Chang, W.J.; Du, Y.; Zhao, X.; Ma, L.Y.; Cao, G.W. Inflammation-related factors predicting prognosis of gastric cancer. World J. Gastroenterol. 2014, 20, 4586–4596. [Google Scholar] [CrossRef]
- Zhang, A.Z.; Yuan, X.; Liang, W.H.; Zhang, H.J.; Li, Y.; Xie, Y.F.; Li, J.F.; Jiang, C.H.; Li, F.P.; Shen, X.H.; et al. Immune infiltration in gastric cancer microenvironment and its clinical significance. Front. Cell Dev. Biol. 2021, 9, 762029. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, S.; Guo, J.; Zhou, L.; You, L.; Zhang, T.; Zhao, Y. Insights into the distinct roles of MMP-11 in tumor biology and future therapeutics (Review). Int. J. Oncol. 2016, 48, 1783–1793. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.; Chua, W.; Ng, W.; Roberts, T.L. Peripheral cytokine levels as a prognostic indicator in gastric cancer: A review of existing literature. Biomedicines 2021, 9, 1916. [Google Scholar] [CrossRef] [PubMed]
- Findlay, J.M.; Antonowicz, S.; Segaran, A.; El Kafsi, J.; Zhang, A.; Bradley, K.M.; Gillies, R.S.; Maynard, N.D.; Middleton, M.R. Routinely staging gastric cancer with 18F-FDG PET-CT detects additional metastases and predicts early recurrence and death after surgery. Eur. Radiol. 2019, 29, 2490–2498. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Lee, S.M.; Son, M.W.; Lee, M.S. Diagnostic performance of FDG PET/CT for surveillance in asymptomatic gastric cancer patients after curative surgical resection. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Cheng, C.; Li, X.; Wang, T.; Yang, J.; Li, D. Metabolic tumor burden on postsurgical PET/CT predicts survival of patients with gastric cancer. Cancer Imaging 2019, 19, 18. [Google Scholar] [CrossRef]
- Yoo, S.H.; Kang, S.Y.; Yoon, J.; Kim, T.Y.; Cheon, G.J.; Oh, D.Y. Prospective evaluation of metabolic intratumoral heterogeneity in patients with advanced gastric cancer receiving palliative chemotherapy. Sci. Rep. 2021, 11, 296. [Google Scholar] [CrossRef]
- Liu, Q.; Li, J.; Xin, B.; Sun, Y.; Feng, D.; Fulham, M.J.; Wang, X.; Song, S. 18F-FDG PET/CT radiomics for preoperative prediction of lymph node metastases and nodal staging in gastric cancer. Front. Oncol. 2021, 11, 723345. [Google Scholar] [CrossRef]
- Lee, J.W.; Lee, S.M. Radiomics in oncological PET/CT: Clinical applications. Nucl. Med. Mol. Imaging 2018, 52, 170–189. [Google Scholar] [CrossRef]
- Xue, B.; Jiang, J.; Chen, L.; Wu, S.; Zheng, X.; Zheng, X.; Tang, K. Development and validation of a radiomics model based on 18F-FDG PET of primary gastric cancer for predicting peritoneal metastasis. Front. Oncol. 2021, 11, 740111. [Google Scholar] [CrossRef]
- Bos, R.; van Der Hoeven, J.J.; van Der Wall, E.; van Der Groep, P.; van Diest, P.J.; Comans, E.F.; Joshi, U.; Semenza, G.L.; Hoekstra, O.S.; Lammertsma, A.A.; et al. Biologic correlates of 18fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J. Clin. Oncol. 2002, 20, 379–387. [Google Scholar] [CrossRef]
- Parker, C.C.; Lapi, S.E. Positron Emission Tomography Imaging of Macrophages in Cancer. Cancers 2021, 13, 1921. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.; Lee, J.W.; Jang, S.H.; Lee, H.J.; Lee, J.H.; Oh, M.H.; Lee, S.M. Prognostic significance of imaging features of peritumoral adipose tissue in FDG PET/CT of patients with colorectal cancer. Eur. J. Radiol. 2021, 145, 110047. [Google Scholar] [CrossRef] [PubMed]
- Nioche, C.; Orlhac, F.; Boughdad, S.; Reuzé, S.; Goya-Outi, J.; Robert, C.; Pellot-Barakat, C.; Soussan, M.; Frouin, F.; Buvat, I. LIFEx: A freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res. 2018, 78, 4786–4789. [Google Scholar] [CrossRef]
- Maisonobe, J.A.; Garcia, C.A.; Necib, H.; Vanderlinden, B.; Hendlisz, A.; Flamen, P.; Buvat, I. Comparison of PET metabolic indices for the early assessment of tumour response in metastatic colorectal cancer patients treated by polychemotherapy. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.J.; Lee, J.W.; Lee, J.H.; Jo, I.Y.; Lee, S.M. Different prognostic values of dual-time-point FDG PET/CT imaging features according to treatment modality in patients with non-small cell lung cancer. Tomography 2022, 8, 1066–1078. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Lee, S.M.; Lee, M.S.; Shin, H.C. Role of ¹⁸F-FDG PET/CT in the prediction of gastric cancer recurrence after curative surgical resection. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 1425–1434. [Google Scholar] [CrossRef] [PubMed]
- Ajani, J.A.; In, H.; Sano, T.; Gaspar, L.E.; Erasmus, J.J.; Tang, L.H.; Washington, M.K.; Gerdes, H.; Wittekind, C.W.; Mansfield, P.F.; et al. Stomach. In AJCC Cancer Staging Manual, 8th ed.; Amin, M.B., Edge, S.B., Greene, F.L., Byrd, D.R., Brookland, R.K., Washington, M.K., Gershenwald, J.E., Compton, C.C., Hess, K.R., Sullivan, D.C., et al., Eds.; Springer: New York, NY, USA, 2017; pp. 203–220. [Google Scholar]
- Kim, H.W.; Won, K.S.; Song, B.I.; Kang, Y.N. Correlation of primary tumor FDG uptake with histopathologic features of advanced gastric cancer. Nucl. Med. Mol. Imaging 2015, 49, 135–142. [Google Scholar] [CrossRef]
- Chon, H.J.; Kim, C.; Cho, A.; Kim, Y.M.; Jang, S.J.; Kim, B.O.; Park, C.H.; Hyung, W.J.; Ahn, J.B.; Noh, S.H.; et al. The clinical implications of FDG-PET/CT differ according to histology in advanced gastric cancer. Gastric. Cancer 2019, 22, 113–122. [Google Scholar] [CrossRef]
- Zhang, L.F.; Li, J.L.; Wang, Y.H.; Tai, X.H.; Liu, L.; Zhang, X.X.; An, Y.W.; Li, H.L. The correlation between 18F-fluorodeoxyglucose-positron emission tomography/computed tomography semiquantitative parameters and the clinical features and pathological biological indexes of gastric cancer. Cancer Biother. Radiopharm. 2021; ahead of print. [Google Scholar] [CrossRef]
- Iyer, P.; Moslim, M.; Farma, J.M.; Denlinger, C.S. Diffuse gastric cancer: Histologic, molecular, and genetic basis of disease. Transl. Gastroenterol. Hepatol. 2020, 5, 52. [Google Scholar] [CrossRef]
- Wang, Y.; Liao, X.; Xiao, F.; Zhang, H.; Li, J.; Liao, M. Magnetic resonance imaging texture analysis in differentiating benign and malignant breast lesions of breast imaging reporting and data system 4: A preliminary study. J. Comput. Assist. Tomogr. 2020, 44, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Kim, S.Y.; Han, S.W.; Lee, J.E.; Hong, S.H.; Lee, S.M.; Jo, I.Y. Clinical significance of peritumoral adipose tissue PET/CT imaging features for predicting axillary lymph node metastasis in patients with breast cancer. J. Pers. Med. 2021, 11, 1029. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.Q.; Yu, W.J.; Shao, X.L.; Li, X.F.; Niu, R.; Zhang, F.F.; Shi, Y.M.; Wang, Y.T. Radiomics model based on preoperative 18F-fluorodeoxyglucose PET predicts N2-3b lymph node metastasis in gastric cancer patients. Nucl. Med. Commun. 2022, 43, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Rahn, S.; Krüger, S.; Röcken, C.; Helm, O.; Sebens, S. Response to: ‘Patterns of PD-L1 expression and CD8 T cell infiltration in gastric adenocarcinomas and associated immune stroma’. Gut 2019, 68, 179–180. [Google Scholar] [CrossRef]
- Zoico, E.; Rizzatti, V.; Darra, E.; Budui, S.L.; Franceschetti, G.; Vinante, F.; Pedrazzani, C.; Guglielmi, A.; De Manzoni, G.; Mazzali, G.; et al. Morphological and functional changes in the peritumoral adipose tissue of colorectal cancer patients. Obesity 2017, 25 (Suppl. S2), S87–S94. [Google Scholar] [CrossRef]
- Piao, H.; Fu, L.; Wang, Y.; Liu, Y.; Wang, Y.; Meng, X.; Yang, D.; Xiao, X.; Zhang, J. A positive feedback loop between gastric cancer cells and tumor-associated macrophage induces malignancy progression. J. Exp. Clin. Cancer Res. 2022, 41, 174. [Google Scholar] [CrossRef]
- Wei, M.; Shen, D.; Mulmi Shrestha, S.; Liu, J.; Zhang, J.; Yin, Y. The progress of T cell immunity related to prognosis in gastric cancer. BioMed Res. Int. 2018, 2018, 3201940. [Google Scholar] [CrossRef]
- Thompson, E.D.; Zahurak, M.; Murphy, A.; Cornish, T.; Cuka, N.; Abdelfatah, E.; Yang, S.; Duncan, M.; Ahuja, N.; Taube, J.M.; et al. Patterns of PD-L1 expression and CD8 T cell infiltration in gastric adenocarcinomas and associated immune stroma. Gut 2017, 66, 794–801. [Google Scholar] [CrossRef]
- Su, C.; Wang, W.; Wang, C. IGF-1-induced MMP-11 expression promotes the proliferation and invasion of gastric cancer cells through the JAK1/STAT3 signaling pathway. Oncol. Lett. 2018, 15, 7000–7006. [Google Scholar] [CrossRef]
- Chen, R.; Chen, Y.; Huang, G.; Liu, J. Relationship between PD-L1 expression and (18)F-FDG uptake in gastric cancer. Aging 2019, 11, 12270–12277. [Google Scholar] [CrossRef]
- Fox, C.J.; Hamm Rman, P.S.; Thompson, C.B. Fuel feeds function: Energy metabolism and the T-cell response. Nat. Rev. Immunol. 2005, 5, 844–852. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Jo, K.; Cho, A.; Noh, S.H.; Lee, J.D.; Yun, M. Relationship between 18F-FDG uptake on PET and recurrence patterns after curative surgical resection in patients with advanced gastric cancer. J. Nucl. Med. 2015, 56, 1494–1500. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Yang, G.F.; Chen, F.F.; Peng, C.W. Evaluating the prognostic significance of tumor-infiltrating lymphocytes in solid tumor: Practice of a standardized method from the International Immuno-Oncology Biomarkers Working Group. Cancer Manag. Res. 2019, 11, 6815–6827. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Park, S.H.; Ahn, H.; Lee, S.M.; Jang, S.J. Predicting survival in patients with pancreatic cancer by integrating bone marrow FDG uptake and radiomic features of primary tumor in PET/CT. Cancers 2021, 13, 3563. [Google Scholar] [CrossRef] [PubMed]
- Bailly, C.; Bodet-Milin, C.; Couespel, S.; Necib, H.; Kraeber-Bodéré, F.; Ansquer, C.; Carlier, T. Revisiting the robustness of PET-based textural features in the context of multi-centric trials. PLoS ONE 2016, 11, e0159984. [Google Scholar] [CrossRef] [PubMed]
- Matheoud, R.; Al-Maymani, N.; Oldani, A.; Sacchetti, G.M.; Brambilla, M.; Carriero, A. The role of activity, scan duration and patient’s body mass index in the optimization of FDG imaging protocols on a TOF-PET/CT scanner. EJNMMI Phys. 2021, 8, 35. [Google Scholar] [CrossRef]
Variables | Number of Patients (%) | |
---|---|---|
Age (years) | Median 59 (range, 34–80) | |
Sex | Men | 35 (62.5%) |
Women | 21 (37.5%) | |
Body mass index (kg/m2) | Median 22.6 (range, 16.4–31.5) | |
Tumor location | Upper | 4 (7.1%) |
Middle | 23 (41.1%) | |
Lower | 29 (51.8%) | |
Histopathological classification | Papillary/tubular adenocarcinoma | 34 (60.7%) |
Poorly-differentiated adenocarcinoma | 14 (25.0%) | |
Signet ring cell carcinoma | 8 (14.3%) | |
Lauren classification | Intestinal | 21 (37.5%) |
Non-intestinal | 35 (62.5%) | |
pT stage | T2 stage | 14 (25.0%) |
T3 stage | 21 (37.5%) | |
T4 stage | 21 (37.5%) | |
pN stage | N0 stage | 18 (32.1%) |
N1–N3 stage | 38 (67.9%) | |
TNM stage | Stage I | 8 (14.3%) |
Stage II | 16 (28.6%) | |
Stage III | 32 (57.1%) | |
CD4 cell infiltration | Grade 0 | 14 (25.0%) |
Grade 1 | 18 (32.1%) | |
Grade 2 | 15 (26.8%) | |
Grade 3 | 9 (16.1%) | |
CD8 cell infiltration | Grade 0 | 10 (17.9%) |
Grade 1 | 11 (19.6%) | |
Grade 2 | 19 (33.9%) | |
Grade 3 | 16 (28.6%) | |
CD163 cell infiltration | Grade 0 | 16 (28.6%) |
Grade 1 | 17 (30.4%) | |
Grade 2 | 12 (21.4%) | |
Grade 3 | 11 (19.6%) | |
MMP-11 expression | Grade 0 | 17 (30.4%) |
Grade 1 | 20 (35.7%) | |
Grade 2 | 12 (21.4%) | |
Grade 3 | 7 (12.5%) | |
IL-6 expression | Grade 0 | 19 (33.9%) |
Grade 1 | 18 (32.1%) | |
Grade 2 | 14 (25.0%) | |
Grade 3 | 5 (8.9%) | |
Adjuvant chemotherapy | No | 17 (30.4%) |
Yes | 39 (69.6%) | |
Follow-up duration (months) | Median 41.0 (range, 0.6–102.0) | |
Event | Yes (recurrence and/or death) | 25 (44.6%) |
No | 31 (55.4%) |
Textural Features | Histopathological Classification * | Lauren Classification † | pT Stage * | pN Stage † | CD4 Cell Infiltration * | CD8 Cell Infiltration * | CD163 Cell Infiltration * | MMP-11 Expression * | IL-6 Expression * |
---|---|---|---|---|---|---|---|---|---|
Conventional parameters | |||||||||
Maximum SUV | 0.032 | 0.168 | 0.624 | 0.014 | 0.088 | 0.010 | 0.062 | 0.221 | 0.644 |
MTV | 0.908 | 0.826 | 0.002 | 0.017 | 0.585 | 0.109 | 0.933 | 0.932 | 0.919 |
TLG | 0.602 | 0.703 | 0.024 | 0.017 | 0.432 | 0.021 | 0.668 | 0.977 | 0.788 |
First-order textural features | |||||||||
SUV histogram kurtosis | 0.322 | 0.077 | 0.202 | 0.079 | 0.328 | 0.682 | 0.008 | 0.375 | 0.542 |
SUV histogram skewness | 0.081 | 0.032 | 0.665 | 0.136 | 0.595 | 0.408 | 0.007 | 0.507 | 0.525 |
SUV histogram energy | 0.167 | 0.087 | 0.407 | 0.038 | 0.253 | 0.026 | 0.098 | 0.171 | 0.381 |
SUV histogram entropy | 0.047 | 0.122 | 0.593 | 0.024 | 0.313 | 0.019 | 0.062 | 0.193 | 0.571 |
Second-order textural features | |||||||||
GLCM contrast | 0.323 | 0.092 | 0.843 | 0.035 | 0.372 | 0.077 | 0.249 | 0.022 | 0.229 |
GLCM correlation | 0.036 | 0.582 | 0.061 | 0.016 | 0.186 | 0.012 | 0.090 | 0.854 | 0.351 |
GLCM dissimilarity | 0.084 | 0.015 | 0.881 | 0.092 | 0.691 | 0.069 | 0.480 | 0.069 | 0.528 |
GLCM energy | 0.061 | 0.016 | 0.594 | 0.018 | 0.333 | 0.022 | 0.136 | 0.135 | 0.405 |
GLCM entropy | 0.224 | 0.122 | 0.673 | 0.012 | 0.268 | 0.036 | 0.048 | 0.120 | 0.322 |
GLCM homogeneity | 0.076 | 0.080 | 0.825 | 0.044 | 0.323 | 0.051 | 0.062 | 0.067 | 0.521 |
Variables | p-Values * | Hazard Ratio (95% Confidence Interval) | |
---|---|---|---|
Age (≤65 years vs. >65 years) | 0.796 | 1.11 (0.50–2.45) | |
Sex (women vs. men) | 0.275 | 1.73 (0.65–4.60) | |
Histopathological classification (papillary/tubular adenocarcinoma vs.) | Poorly-differentiated adenocarcinoma | 0.464 | 1.39 (0.58–3.31) |
Signet ring cell carcinoma | 0.933 | 0.95 (0.27–3.30) | |
Lauren classification (intestinal vs. non-intestinal) | 0.751 | 0.97 (0.44–2.17) | |
pT stage (T2 stage vs.) | T3 stage | 0.083 | 6.29 (0.79–50.30) |
T4 stage | 0.005 | 18.69 (2.46–141.80) | |
pN stage (N0 stage vs. N1–3 stage) | 0.005 | 8.11 (1.91–34.56) | |
TNM stage (stage I–II vs. stage III) | <0.001 | 6.68 (2.28–19.63) | |
Adjuvant treatment (Yes vs. No) | 0.071 | 2.79 (0.92–8.12) | |
Conventional parameter | Maximum SUV (≤7.53 vs. >7.53) | 0.019 | 2.59 (1.17–5.70) |
MTV (≤19.44 cm3 vs. >19.44 cm3) | 0.002 | 3.68 (1.65–8.23) | |
TLG (≤56.23 g vs. >56.23 g) | 0.002 | 3.77 (1.66–8.55) | |
First-order textural feature | SUV histogram kurtosis (≤3.56 vs. >3.56) | 0.117 | 1.50 (0.51–3.89) |
SUV histogram skewness (≤1.07 vs. >1.07) | 0.117 | 1.90 (0.85–4.25) | |
SUV histogram energy (≤0.12 vs. >0.12) | 0.007 | 0.33 (0.15–0.74) | |
SUV histogram entropy (≤3.04 vs. >3.04) | 0.006 | 3.10 (1.39–6.93) | |
Second-order textural feature | GLCM contrast (≤6.41 vs. >6.41) | <0.001 | 3.86 (1.73–8.59) |
GLCM correlation (≤0.44 vs. >0.44) | 0.178 | 1.83 (0.76–4.39) | |
GLCM dissimilarity (≤1.95 vs. >1.95) | 0.009 | 2.89 (1.30–6.41) | |
GLCM energy (≤0.02 vs. >0.02) | 0.034 | 0.42 (0.19–0.94) | |
GLCM entropy (≤5.95 vs. >5.95) | 0.007 | 3.08 (1.37–6.94) | |
GLCM homogeneity (≤0.45 vs. >0.45) | 0.036 | 0.43 (0.20–0.95) |
Variables | p-Value * | Hazard Ratio (95% Confidence Interval) | |
---|---|---|---|
Convention parameter | Maximum SUV (≤7.53 vs. >7.53) | 0.029 | 2.99 (1.12–7.99) |
MTV (≤19.44 cm3 vs. >19.44 cm3) | 0.072 | 2.20 (0.91–5.50) | |
TLG (≤56.23 g vs. >56.23 g) | 0.078 | 2.36 (0.91–6.14) | |
First-order textural feature | SUV histogram energy (≤0.12 vs. >0.12) | 0.086 | 0.49 (0.22–1.11) |
SUV histogram entropy (≤3.04 vs. >3.04) | 0.033 | 3.04 (1.09–8.45) | |
Second-order textural feature | GLCM contrast (≤6.41 vs. >6.41) | 0.006 | 3.88 (1.47–10.22) |
GLCM dissimilarity (≤1.95 vs. >1.95) | 0.007 | 4.14 (1.49–11.53) | |
GLCM energy (≤0.02 vs. >0.02) | 0.167 | 0.50 (0.19–1.33) | |
GLCM entropy (≤5.95 vs. >5.95) | 0.020 | 3.19 (1.20–8.47) | |
GLCM homogeneity (≤0.45 vs. >0.45) | 0.046 | 0.37 (0.14–0.98) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, H.; Song, G.J.; Jang, S.-H.; Lee, H.J.; Lee, M.-S.; Lee, J.-H.; Oh, M.-H.; Jeong, G.C.; Lee, S.M.; Lee, J.W. Relationship of FDG PET/CT Textural Features with the Tumor Microenvironment and Recurrence Risks in Patients with Advanced Gastric Cancers. Cancers 2022, 14, 3936. https://doi.org/10.3390/cancers14163936
Ahn H, Song GJ, Jang S-H, Lee HJ, Lee M-S, Lee J-H, Oh M-H, Jeong GC, Lee SM, Lee JW. Relationship of FDG PET/CT Textural Features with the Tumor Microenvironment and Recurrence Risks in Patients with Advanced Gastric Cancers. Cancers. 2022; 14(16):3936. https://doi.org/10.3390/cancers14163936
Chicago/Turabian StyleAhn, Hyein, Geum Jong Song, Si-Hyong Jang, Hyun Ju Lee, Moon-Soo Lee, Ji-Hye Lee, Mee-Hye Oh, Geum Cheol Jeong, Sang Mi Lee, and Jeong Won Lee. 2022. "Relationship of FDG PET/CT Textural Features with the Tumor Microenvironment and Recurrence Risks in Patients with Advanced Gastric Cancers" Cancers 14, no. 16: 3936. https://doi.org/10.3390/cancers14163936
APA StyleAhn, H., Song, G. J., Jang, S. -H., Lee, H. J., Lee, M. -S., Lee, J. -H., Oh, M. -H., Jeong, G. C., Lee, S. M., & Lee, J. W. (2022). Relationship of FDG PET/CT Textural Features with the Tumor Microenvironment and Recurrence Risks in Patients with Advanced Gastric Cancers. Cancers, 14(16), 3936. https://doi.org/10.3390/cancers14163936