Ablative Radiotherapy as a Strategy to Overcome TKI Resistance in EGFR-Mutated NSCLC
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
3. Acquired TKI Resistance
4. The Role of SBRT in Managing Metastatic NSCLC
5. Overcoming TKI Resistance: Preclinical Data
6. SBRT as a Strategy for Overcoming Acquired TKI Resistance in the Setting of Oligoprogressive Disease
Author, Publication | Study Type | No. Patients | Inclusion Criteria | Study Arms or Intervention | Radiation Dose and Fractionation | Sequence of Targeted Therapy and Radiation | Results |
---|---|---|---|---|---|---|---|
Yu et al. [45]; PMID: 23407558 | single institution retrospective | 18 | metastatic EGFR-mutant NSCLC with documented progression on EGFR TKI therapy | radiation therapy, radiofrequency ablation, or surgical treatment of a site of progressive disease | 45–60 Gy in 3–5 fractions | Not reported | median time to progression after local therapy: 10 months median time until subsequent change in systemic therapy: 22 months median OS from local therapy: 41 months |
Weickhardt et al. [46]; PMID: 23154552 | single institution retrospective | 25 | metastatic ALK- or EGFR-mutant NSCLC treated with crizotinib or erlotinib with non-CNS progression and ≤4 sites of extra-CNS progression | local ablative therapy: SBRT, standard radiation therapy, or surgery | Median dose 40 Gy (range = 15–54 Gy) | targeted therapy withheld on days of local therapy and restarted the day following radiation, no change in dose | median PFS after local ablative therapy: 6.2 months |
Santarpia et al. [48]; PMID: 32606174 | single institution retrospective | 36 | advanced EGFR-mutant NSCLC with oligoprogression on first-line TKI therapy | hypofractionationed, high-dose radiation therapy (HD-HRT) | Median dose 30 Gy (range = 12–60 Gy) | Continuous delivery of targeted therapy throughout radiation treatment | median PFS after HD-HRT: 6.3 months median OS after HD-HRT: 38.7 months |
Ongoing Investigations of SBRT for Oligoprogressive EGFR-Mutant NSCLC
7. The Role of SRS in Treating EGFR-Mutated NSCLC with Acquired TKI Resistance
Ongoing Studies of SRS for Brain Metastases in EGFR-Mutant NSCLC
8. Strategies for Combining Targeted Therapy with Ablative Radiotherapy
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Facts and Figures 2021. Am. Cancer Soc. 2021.
- Munfus-Mccray, D.; Harada, S.; Adams, C.; Askin, F.; Clark, D.; Gabrielson, E.; Li, Q.K. EGFR and KRAS mutations in metastatic lung adenocarcinomas. Hum. Pathol. 2011, 42, 1447–1453. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, S.P.; Janjigian, Y.Y.; Ahye, N.; Riely, G.J.; Chaft, J.E.; Sima, C.S.; Shen, R.; Zheng, J.; Dycoco, J.; Kris, M.G.; et al. Distinct clinical course of EGFR-mutant resected lung cancers: Results of testing of 1118 surgical specimens and effects of adjuvant gefitinib and erlotinib. J. Thorac. Oncol. 2012, 7, 1815–1822. [Google Scholar] [CrossRef] [PubMed]
- Girard, N.; Sima, C.S.; Jackman, D.M.; Sequist, L.V.; Chen, H.; Yang, J.C.H.; Ji, H.; Waltman, B.; Rosell, R.; Taron, M.; et al. Nomogram to predict the presence of EGFR activating mutation in lung adenocarcinoma. Eur. Respir. J. 2012, 39, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Adderley, H.; Blackhall, F.H.; Lindsay, C.R. KRAS-mutant non-small cell lung cancer: Converging small molecules and immune checkpoint inhibition. EBioMedicine 2019, 41, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Hofman, P. ALK in non-small cell lung cancer (NSCLC) pathobiology, epidemiology, detection from tumor tissue and algorithm diagnosis in a daily practice. Cancers 2017, 9, 107. [Google Scholar] [CrossRef]
- Chan, B.A.; Hughes, B.G.M. Targeted therapy for non-small cell lung cancer: Current standards and the promise of the future. Transl. Lung Cancer Res. 2015, 4, 36–54. [Google Scholar] [CrossRef]
- Bethune, G.; Bethune, D.; Ridgway, N.; Xu, Z. Epidermal growth factor receptor (EGFR) in lung cancer: An overview and update. J. Thorac. Dis. 2010, 2, 48–51. [Google Scholar]
- Singh, B.; Carpenter, G.; Coffey, R.J. EGF receptor ligands: Recent advances. F1000Research 2016, 5. [Google Scholar] [CrossRef]
- Wee, P.; Wang, Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers 2017, 9, 52. [Google Scholar] [CrossRef]
- Sharma, S.V.; Bell, D.W.; Settleman, J.; Haber, D.A. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer 2007, 7, 169–181. [Google Scholar] [CrossRef]
- Truini, A.; Starrett, J.H.; Stewart, T.; Ashtekar, K.; Walther, Z.; Wurtz, A.; Lu, D.; Park, J.H.; DeVeaux, M.; Song, X.; et al. The EGFR exon 19 mutant L747-A750>P exhibits distinct sensitivity to tyrosine kinase inhibitors in lung adenocarcinoma. Clin. Cancer Res. 2019, 25, 6382–6391. [Google Scholar] [CrossRef]
- Kumari, N.; Singh, S.; Haloi, D.; Mishra, S.K.; Krishnani, N.; Nath, A.; Neyaz, Z. Epidermal Growth Factor Receptor Mutation Frequency in Squamous Cell Carcinoma and Its Diagnostic Performance in Cytological Samples: A Molecular and Immunohistochemical Study. World J. Oncol. 2019, 10, 142–150. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Yuan, J.Q.; Wang, K.F.; Fu, X.H.; Han, X.R.; Threapleton, D.; Yang, Z.Y.; Mao, C.; Tang, J.L. The prevalence of EGFR mutation in patients with non-small cell lung cancer: A systematic review and meta-analysis. Oncotarget 2016, 7, 78985–78993. [Google Scholar] [CrossRef]
- Shi, Y.; Au, J.S.K.; Thongprasert, S.; Srinivasan, S.; Tsai, C.M.; Khoa, M.T.; Heeroma, K.; Itoh, Y.; Cornelio, G.; Yang, P.C. A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J. Thorac. Oncol. 2014, 9, 154–162. [Google Scholar] [CrossRef]
- Eberhard, D.A.; Johnson, B.E.; Amler, L.C.; Goddard, A.D.; Heldens, S.L.; Herbst, R.S.; Ince, W.L.; Jänne, P.A.; Januario, T.; Johnson, D.H.; et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J. Clin. Oncol. 2005, 23, 5900–5909. [Google Scholar] [CrossRef]
- Takano, T.; Ohe, Y.; Sakamoto, H.; Tsuta, K.; Matsuno, Y.; Tateishi, U.; Yamamoto, S.; Nokihara, H.; Yamamoto, N.; Sekine, I.; et al. Epidermal growth factor receptor gene mutations and increased copy numbers predict gefitinib sensitivity in patients with recurrent non-small-cell lung cancer. J. Clin. Oncol. 2005, 23, 6829–6837. [Google Scholar] [CrossRef]
- Mitsudomi, T.; Kosaka, T.; Endoh, H.; Horio, Y.; Hida, T.; Mori, S.; Hatooka, S.; Shinoda, M.; Takahashi, T.; Yatabe, Y. Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in patients with non-small-cell lung cancer with postoperative recurrence. J. Clin. Oncol. 2005, 23, 2513–2520. [Google Scholar] [CrossRef]
- Cappuzzo, F.; Hirsch, F.R.; Rossi, E.; Bartolini, S.; Ceresoli, G.L.; Bemis, L.; Haney, J.; Witta, S.; Danenberg, K.; Domenichini, I.; et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J. Natl. Cancer Inst. 2005, 97, 643–655. [Google Scholar] [CrossRef]
- Denisenko, T.V.; Budkevich, I.N.; Zhivotovsky, B. Cell death-based treatment of lung adenocarcinoma article. Cell Death Dis. 2018, 9, 117. [Google Scholar] [CrossRef] [PubMed]
- Westover, D.; Zugazagoitia, J.; Cho, B.C.; Lovly, C.M.; Paz-Ares, L. Mechanisms of acquired resistance to first-and second-generation EGFR tyrosine kinase inhibitors. Ann. Oncol. 2018, 29, i10–i19. [Google Scholar] [CrossRef] [PubMed]
- Leonetti, A.; Sharma, S.; Minari, R.; Perego, P.; Giovannetti, E.; Tiseo, M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br. J. Cancer 2019, 121, 725–737. [Google Scholar] [CrossRef] [PubMed]
- Liao, B.C.; Griesing, S.; Yang, J.C.H. Second-line treatment of EGFR T790M-negative non-small cell lung cancer patients. Ther. Adv. Med. Oncol. 2019, 11, 1758835919890286. [Google Scholar] [CrossRef]
- O’Kane, G.M.; Barnes, T.A.; Leighl, N.B. Resistance to epidermal growth actor receptor tyrosine kinase inhibitors, T790M, and clinical trials. Curr. Oncol. 2018, 25, S28–S37. [Google Scholar] [CrossRef]
- Stewart, E.L.; Tan, S.Z.; Liu, G.; Tsao, M.S. Known and putative mechanisms of resistance to EGFR targeted therapies in NSCLC patients with EGFR mutations—A review. Transl. Lung Cancer Res. 2015, 4, 67–81. [Google Scholar] [CrossRef]
- Lee, Y.J.; Han, J.-Y.; Lee, G.K.; Shin, J.; Yun, S.A.; Oh, J.Y.; Lee, S.; Kim, H.T.; Lee, J.S. C-MET overexpression as a resistance biomarker to epidermal growth factor receptor tyrosine kinase inhibitors in EGFR -mutant non-small cell lung cancer. J. Clin. Oncol. 2016, 34, e20660–e20660. [Google Scholar] [CrossRef]
- Zhao, J.; Xia, Y. Targeting HER2 Alterations in Non–Small-Cell Lung Cancer: A Comprehensive Review. JCO Precis. Oncol. 2020, 4, 411–425. [Google Scholar] [CrossRef]
- Luo, M.; Fu, L.W. Redundant kinase activation and resistance of EGFR-tyrosine kinase inhibitors. Am. J. Cancer Res. 2014, 4, 608–628. [Google Scholar]
- Rath, B.; Plangger, A.; Hamilton, G. Non-small cell lung cancer-small cell lung cancer transformation as mechanism of resistance to tyrosine kinase inhibitors in lung cancer. Cancer Drug Resist. 2020, 3, 171–179. [Google Scholar] [CrossRef]
- Shinohara, S.; Ichiki, Y.; Fukuichi, Y.; Honda, Y.; Kanayama, M.; Taira, A.; Nabe, Y.; Kuwata, T.; Takenaka, M.; Oka, S.; et al. Squamous cell carcinoma transformation from adenocarcinoma as an acquired resistance after the EGFR TKI therapy in (EGFRmutated) non-small cell lung cancer. J. Thorac. Dis. 2018, 10, E526–E531. [Google Scholar] [CrossRef] [PubMed]
- Weng, C.H.; Chen, L.Y.; Lin, Y.C.; Shih, J.Y.; Lin, Y.C.; Tseng, R.Y.; Chiu, A.C.; Yeh, Y.H.; Liu, C.; Lin, Y.T.; et al. Epithelial-mesenchymal transition (EMT) beyond EGFR mutations per se is a common mechanism for acquired resistance to EGFR TKI. Oncogene 2019, 38, 455–468. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zeng, M. First-line tyrosine kinase inhibitor with or without aggressive upfront local radiation therapy in patients with EGFRm oligometastatic non-small cell lung cancer: Interim results of a randomized phase III, open-label clinical trial (SINDAS) (NCT02893332). J. Clin. Oncol. 2020, 38, 9508–9508. [Google Scholar] [CrossRef]
- Iyengar, P.; Kavanagh, B.D.; Wardak, Z.; Smith, I.; Ahn, C.; Gerber, D.E.; Dowell, J.; Hughes, R.; Abdulrahman, R.; Camidge, D.R.; et al. Phase II trial of stereotactic body radiation therapy combined with erlotinib for patients with limited but progressive metastatic non-small-cell lung cancer. J. Clin. Oncol. 2014, 32, 3824–3830. [Google Scholar] [CrossRef]
- Hellman, S.; Weichselbaum, R.R. Oligometastases. J. Clin. Oncol. 1995, 13, 8–10. [Google Scholar] [CrossRef]
- Palma, D.A.; Olson, R.; Harrow, S.; Gaede, S.; Louie, A.V.; Haasbeek, C.; Mulroy, L.; Lock, M.; Rodrigues, G.B.; Yaremko, B.P.; et al. Stereotactic Ablative Radiotherapy for the Comprehensive Treatment of Oligometastatic Cancers: Long-Term Results of the SABR-COMET Phase II Randomized Trial. J. Clin. Oncol. 2020, 38, 2830. [Google Scholar] [CrossRef]
- Gomez, D.R.; Tang, C.; Zhang, J.; Blumenschein, G.R.; Hernandez, M.; Jack Lee, J.; Ye, R.; Palma, D.A.; Louie, A.V.; Ross Camidge, D.; et al. Local consolidative therapy vs. Maintenance therapy or observation for patients with oligometastatic non–small-cell lung cancer: Long-term results of a multi-institutional, phase II, randomized study. J. Clin. Oncol. 2019, 37, 1558–1565. [Google Scholar] [CrossRef]
- Iyengar, P.; Wardak, Z.; Gerber, D.E.; Tumati, V.; Ahn, C.; Hughes, R.S.; Dowell, J.E.; Cheedella, N.; Nedzi, L.; Westover, K.D.; et al. Consolidative radiotherapy for limited metastatic non-small-cell lung cancer: A phase 2 randomized clinical trial. JAMA Oncol. 2018, 4, e173501. [Google Scholar] [CrossRef]
- Li, J.; Wu, X.; Wang, Z.; Shen, Z.; Sun, N.; Zhu, X. Ionizing radiation reduces TKI resistance caused by t790m mutation in NSCLC cell lines. Chin. J. Lung Cancer 2015, 18, 475–480. [Google Scholar] [CrossRef]
- Hashida, S.; Yamamoto, H.; Shien, K.; Ohtsuka, T.; Suzawa, K.; Maki, Y.; Furukawa, M.; Soh, J.; Asano, H.; Tsukuda, K.; et al. Hsp90 inhibitor NVP-AUY922 enhances the radiation sensitivity of lung cancer cell lines with Acquired resistance to EGFR-tyrosine kinase inhibitors. Oncol. Rep. 2015, 33, 1499–1504. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, F.; Wang, Y.; Xie, H.; Luo, S.; Meng, L.; Su, B.; Ye, Y.; Wu, K.; Xu, Y.; et al. Eliminating Radiation Resistance of Non-Small Cell Lung Cancer by Dihydroartemisinin Through Abrogating Immunity Escaping and Promoting Radiation Sensitivity by Inhibiting PD-L1 Expression. Front. Oncol. 2020, 10, 595466. [Google Scholar] [CrossRef]
- Lim, Z.F.; Ma, P.C. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J. Hematol. Oncol. 2019, 12, 134. [Google Scholar] [CrossRef]
- Maruyama, R.; Wataya, H.; Seto, T.; Ichinose, Y. Treatment after the Failure of Gefitinib in Patients with Advanced or Recurrent Non-small Cell Lung Cancer. Anticancer Res. 2009, 29, 4217–4221. [Google Scholar]
- Nishie, K.; Kawaguchi, T.; Tamiya, A.; Mimori, T.; Takeuchi, N.; Matsuda, Y.; Omachi, N.; Asami, K.; Okishio, K.; Atagi, S.; et al. Epidermal growth factor receptor tyrosine kinase inhibitors beyond progressive disease: A retrospective analysis for Japanese patients with activating EGFR mutations. J. Thorac. Oncol. 2012, 7, 1722–1727. [Google Scholar] [CrossRef]
- Yu, H.A.; Sima, C.S.; Huang, J.; Solomon, S.B.; Rimner, A.; Paik, P.; Pietanza, M.C.; Azzoli, C.G.; Rizvi, N.A.; Krug, L.M.; et al. Local therapy with continued EGFR tyrosine kinase inhibitor therapy as a treatment strategy in EGFR-mutant advanced lung cancers that have developed acquired resistance to EGFR tyrosine kinase inhibitors. J. Thorac. Oncol. 2013, 8, 346–351. [Google Scholar] [CrossRef]
- Weickhardt, A.J.; Scheier, B.; Burke, J.M.; Gan, G.; Lu, X.; Bunn, P.A.; Aisner, D.L.; Gaspar, L.E.; Kavanagh, B.D.; Doebele, R.C.; et al. Local ablative therapy of oligoprogressive disease prolongs disease control by tyrosine kinase inhibitors in oncogene-addicted non-small-cell lung cancer. J. Thorac. Oncol. 2012, 7, 1807–1814. [Google Scholar] [CrossRef]
- Salama, J.K.; Hasselle, M.D.; Chmura, S.J.; Malik, R.; Mehta, N.; Yenice, K.M.; Villaflor, V.M.; Stadler, W.M.; Hoffman, P.C.; Cohen, E.E.W.; et al. Stereotactic body radiotherapy for multisite extracranial oligometastases: Final report of a dose escalation trial in patients with 1 to 5 sites of metastatic disease. Cancer 2012, 118, 2962–2970. [Google Scholar] [CrossRef]
- Santarpia, M.; Altavilla, G.; Borsellino, N.; Girlando, A.; Mancuso, G.; Pergolizzi, S.; Piazza, D.; Pontoriero, A.; Valerio, M.R.; Gebbia, V. High-dose Radiotherapy for Oligo-progressive NSCLC Receiving EGFR Tyrosine Kinase Inhibitors: Real World Data. In Vivo 2020, 34, 2009. [Google Scholar] [CrossRef]
- Brower, J.V.; Robins, H.I. Erlotinib for the treatment of brain metastases in non-small cell lung cancer. Expert Opin. Pharmacother. 2016, 17, 1013–1021. [Google Scholar] [CrossRef]
- Shin, D.Y.; Kim, C.H.; Park, S.; Baek, H.; Yang, S.H. EGFR mutation and brain metastasis in pulmonary adenocarcinomas. J. Thorac. Oncol. 2014, 9, 195–199. [Google Scholar] [CrossRef]
- Peters, S.; Bexelius, C.; Munk, V.; Leighl, N. The impact of brain metastasis on quality of life, resource utilization and survival in patients with non-small-cell lung cancer. Cancer Treat. Rev. 2016, 45, 139–162. [Google Scholar] [CrossRef] [PubMed]
- Liam, C.-K. Central nervous system activity of first-line osimertinib in epidermal growth factor receptor-mutant advanced non-small cell lung cancer. Ann. Transl. Med. 2019, 7, 61–61. [Google Scholar] [CrossRef] [PubMed]
- Magnuson, W.J.; Lester-Coll, N.H.; Wu, A.J.; Yang, T.J.; Lockney, N.A.; Gerber, N.K.; Beal, K.; Amini, A.; Patil, T.; Kavanagh, B.D.; et al. Management of brain metastases in tyrosine kinase inhibitor-Naïve epidermal growth factor receptor-mutant non-small-cell lung cancer: A retrospective multi-institutional analysis. J. Clin. Oncol. 2017, 35, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.R.; Chakraborty, S.; Boockvar, J.A. Effect of whole brain radiation therapy on cognitive function. Neurosurgery 2017, 80, N7–N8. [Google Scholar] [CrossRef]
- Cheng, H.; Chen, H.; Lv, Y.; Chen, Z.; Li, C.S.R. Prospective memory impairment following whole brain radiotherapy in patients with metastatic brain cancer. Cancer Med. 2018, 7, 5315–5321. [Google Scholar] [CrossRef]
- Goss, G.; Tsai, C.M.; Shepherd, F.A.; Ahn, M.J.; Bazhenova, L.; Crinò, L.; de Marinis, F.; Felip, E.; Morabito, A.; Hodge, R.; et al. CNS response to osimertinib in patients with T790M-positive advanced NSCLC: Pooled data from two phase II trials. Ann. Oncol. 2018, 29, 687–693. [Google Scholar] [CrossRef]
- Reungwetwattana, T.; Nakagawa, K.; Cho, B.C.; Cobo, M.; Cho, E.K.; Bertolini, A.; Bohnet, S.; Zhou, C.; Lee, K.H.; Nogami, N.; et al. CNS response to osimertinib versus standard epidermal growth factor receptor tyrosine kinase inhibitors in patients with untreated EGFR-mutated advanced non-small-cell lung cancer. J. Clin. Oncol. 2018, 36, 3290–3297. [Google Scholar] [CrossRef]
- Xing, P.; Mu, Y.; Hao, X.; Wang, Y.; Li, J. Data from real world to evaluate the efficacy of osimertinib in non-small cell lung cancer patients with central nervous system metastasis. Clin. Transl. Oncol. 2019, 21, 1424–1431. [Google Scholar] [CrossRef]
- Wu, Y.L.; Ahn, M.J.; Garassino, M.C.; Han, J.Y.; Katakami, N.; Kim, H.R.; Hodge, R.; Kaur, P.; Brown, A.P.; Ghiorghiu, D.; et al. CNS efficacy of osimertinib in patients with T790M-positive advanced non–small-cell lung cancer: Data from a randomized Phase III trial (Aura3). J. Clin. Oncol. 2018, 36, 2702–2709. [Google Scholar] [CrossRef]
- Study of Osimertinib + SRS vs Osimertinib Alone for Brain Metastases in EGFR Positive Patients with NSCLC. Available online: ClinicalTrials.gov (accessed on 11 April 2022).
- Wakuda, K.; Yamaguchi, H.; Kenmotsu, H.; Fukuda, M.; Takeshita, M.; Suetsugu, T.; Kirita, K.; Ebi, N.; Hataji, O.; Miura, S.; et al. A phase II study of Osimertinib for patients with radiotherapy-naïve CNS metastasis of non-small cell lung cancer: Treatment rationale and protocol design of the OCEAN study (LOGIK 1603/WJOG 9116L). BMC Cancer 2020, 20, 370. [Google Scholar] [CrossRef]
- Chinnaiyan, P.; Huang, S.; Vallabhaneni, G.; Armstrong, E.; Varambally, S.; Tomlins, S.A.; Chinnaiyan, A.M.; Harari, P.M. Mechanisms of enhanced radiation response following epidermal growth factor receptor signaling inhibition by erlotinib (Tarceva). Cancer Res. 2005, 65, 3328–3335. [Google Scholar] [CrossRef]
- Schmidt-Ullrich, R.K.; Mikkelsen, R.B.; Dent, P.; Todd, D.G.; Valerie, K.; Kavanagh, B.D.; Contessa, J.N.; Rorrer, W.K.; Chen, P.B. Radiation-induced proliferation of the human A431 squamous carcinoma cells is dependent on EGFR tyrosine phosphorylation. Oncogene 1997, 15, 1191–1197. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, Y.; Xu, Z.; Yang, Q.; Zhu, G.; Liao, X.-Y.; Chen, X.; Zhu, B.O.; Duan, Y.; Sun, J. Concurrent EGFR-TKI and Thoracic Radiotherapy as First-Line Treatment for Stage IV Non-Small Cell Lung Cancer Harboring EGFR Active Mutations. Oncologist 2019, 24, 1031-e612. [Google Scholar] [CrossRef]
- Jia, W.; Guo, H.; Jing, W.; Jing, X.; Li, J.; Wang, M.; Yu, J.; Zhu, H. An especially high rate of radiation pneumonitis observed in patients treated with thoracic radiotherapy and simultaneous osimertinib. Radiother. Oncol. 2020, 152, 96–100. [Google Scholar] [CrossRef]
- Chen, H.; Wu, A.; Tao, H.; Yang, D.; Luo, Y.; Li, S.; Yang, Z.; Chen, M. Concurrent versus sequential whole brain radiotherapy and TKI in EGFR-mutated NSCLC patients with brain metastasis: A single institution retrospective analysis. Medicine 2018, 97, e13014. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Y.; Tang, W.; Liu, L. Efficacy and Safety of Radiotherapy Plus EGFR-TKIs in NSCLC Patients with Brain Metastases: A Meta-Analysis of Published Data. Transl. Oncol. 2018, 11, 1119–1127. [Google Scholar] [CrossRef]
NCT | Study Type | Inclusion Criteria | Study Arm(s) | Primary Endpoint |
---|---|---|---|---|
NCT03256981 | phase II randomized multicenter study | advanced NSCLC with actionable mutation receiving targeted TKI therapy; ≤3 extracranial sites of progressive disease | arm 1: SBRT to oligoprogressive disease while continuing on TKI therapy arm 2: continued TKI therapy alone | PFS from time of randomization |
NCT02759835 | non-randomized, parallel assignment, open label trial | advanced lung adenocarcinoma with EGFR_sensitizing mutation with progressive disease after treatment with osimertinib who are eligible for local ablative therapy | local ablative therapy followed by osimertinib | PFS after treatment with local ablative therapy |
NCT03410043 | phase II randomized | NSCLC harboring EGFR T790M mutation that was acquired following progression on erlotinib, gefitinib, or afatinib | arm 1: osimertinib for 6–12 weeks then surgery or radiation therapy with continuation of osimertinib arm 2: osimertinib alone | PFS from start date of osimertinib |
NCT04517526 | multicenter, prospective, phase II | stage IV EGFR-mutant NSCLC with tumor progression following treatment with Osimertinib | pemetrexed + cisplatin/carboplatin + bevacizumab + duvalumab followed by bevacizumab and/or durvalumab maintenance therapy until progression; followed by stereotactic radiotherapy to oligoprogressive sites | PFS from start of study treatment |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novak, J.; Salgia, R.; West, H.; Villalona-Calero, M.A.; Sampath, S.; Williams, T.; Villaflor, V.; Massarelli, E.; Pathak, R.; Koczywas, M.; et al. Ablative Radiotherapy as a Strategy to Overcome TKI Resistance in EGFR-Mutated NSCLC. Cancers 2022, 14, 3983. https://doi.org/10.3390/cancers14163983
Novak J, Salgia R, West H, Villalona-Calero MA, Sampath S, Williams T, Villaflor V, Massarelli E, Pathak R, Koczywas M, et al. Ablative Radiotherapy as a Strategy to Overcome TKI Resistance in EGFR-Mutated NSCLC. Cancers. 2022; 14(16):3983. https://doi.org/10.3390/cancers14163983
Chicago/Turabian StyleNovak, Jennifer, Ravi Salgia, Howard West, Miguel A Villalona-Calero, Sagus Sampath, Terence Williams, Victoria Villaflor, Erminia Massarelli, Ranjan Pathak, Marianna Koczywas, and et al. 2022. "Ablative Radiotherapy as a Strategy to Overcome TKI Resistance in EGFR-Mutated NSCLC" Cancers 14, no. 16: 3983. https://doi.org/10.3390/cancers14163983
APA StyleNovak, J., Salgia, R., West, H., Villalona-Calero, M. A., Sampath, S., Williams, T., Villaflor, V., Massarelli, E., Pathak, R., Koczywas, M., Chau, B., & Amini, A. (2022). Ablative Radiotherapy as a Strategy to Overcome TKI Resistance in EGFR-Mutated NSCLC. Cancers, 14(16), 3983. https://doi.org/10.3390/cancers14163983