Functional Outcome in Spinal Meningioma Surgery and Use of Intraoperative Neurophysiological Monitoring
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Study Design and Patient Selection
2.2. Data Analysis
2.3. Surgical Technique and Follow-Up
2.4. Intraoperative Neurophysiological Neuromonitoring
2.5. Radiologic Assessment
2.6. Statistics
3. Results
3.1. Patient Characteristics
3.2. Preoperative Symptoms and Functional Impairment
3.3. Radiographic Assessments
3.4. Surgical and Histopathological Data
3.5. Post-Operative Course and Functional Outcome
3.6. Complications, Reoperations and Tumor Recurrence
3.7. Intraoperative Neurophysiological Monitoring and Post-Operative Outcome
3.8. Diagnostic Accuracy
3.9. IOM Versus No-IOM Group
3.10. Influence of IOM on Surgical Strategies
- Case 1: dorsolateral T7 ossified SM. During right hemilaminectomy there was a loss of MEP and a 70% decrement in amplitude of SSEP in the lower limbs. The surgery was stopped for 12 min and blood pressure was increased. SSEP recovered up to 80% of the original amplitude, and there was a further minimal recovery of MEP in the lower limbs. The patient had an increase in motor and sensory deficit after surgery, which had resolved at FU.
- Case 2: lateral T10–11 SM. During laminectomy there was a loss of SSEP, which recovered after pauses of a few minutes. The patient had no motor or sensory deficits.
- Case 3: dorsolateral T2–3 SM. The tumor was attached to the thoracic roots possibly including Th1. Direct nerve stimulation was performed and elicited no responses. The nerve was cut to achieve complete tumor resection. The patient did not present any new post-operative deficit.
Descriptive Case
4. Discussion
4.1. IOM
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kwee, L.E.; Harhangi, B.S.; Ponne, G.A.; Kros, J.M.; Dirven, C.M.F.; Dammers, R. Spinal meningiomas: Treatment outcome and long-term follow-up. Clin. Neurol. Neurosurg. 2020, 198, 106238. [Google Scholar] [CrossRef] [PubMed]
- Hohenberger, C.; Gugg, C.; Schmidt, N.O.; Zeman, F.; Schebesch, K.M. Functional outcome after surgical treatment of spinal meningioma. J. Clin. Neurosci. 2020, 77, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Schwake, M.; Adeli, A.; Sporns, P.; Ewelt, C.; Schmitz, T.; Sicking, J.; Hess, K.; Cacilia Spille, D.; Paulus, W.; Stummer, W.; et al. Spinal meningiomas-Risks and potential of an increasing age at the time of surgery. J. Clin. Neurosci. 2018, 57, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Ando, K.; Matsumoto, T.; Sato, K.; Kato, F.; Kanemura, T.; Yoshihara, H.; Sakai, Y.; Hirasawa, A.; Nakashima, H.; et al. Clinical features and prognostic factors in spinal meningioma surgery from a multicenter study. Sci. Rep. 2021, 11, 11630. [Google Scholar] [CrossRef]
- Sandalcioglu, I.E.; Hunold, A.; Muller, O.; Bassiouni, H.; Stolke, D.; Asgari, S. Spinal meningiomas: Critical review of 131 surgically treated patients. Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 2008, 17, 1035–1041. [Google Scholar] [CrossRef]
- Baro, V.; Moiraghi, A.; Carlucci, V.; Paun, L.; Anglani, M.; Ermani, M.; Saladino, A.; Chioffi, F.; d’Avella, D.; Landi, A.; et al. Spinal Meningiomas: Influence of Cord Compression and Radiological Features on Preoperative Functional Status and Outcome. Cancers 2021, 13, 4183. [Google Scholar] [CrossRef]
- Solero, C.L.; Fornari, M.; Giombini, S.; Lasio, G.; Oliveri, G.; Cimino, C.; Pluchino, F. Spinal meningiomas: Review of 174 operated cases. Neurosurgery 1989, 25, 153–160. [Google Scholar] [CrossRef]
- Engelhard, H.H.; Villano, J.L.; Porter, K.R.; Stewart, A.K.; Barua, M.; Barker, F.G.; Newton, H.B. Clinical presentation, histology, and treatment in 430 patients with primary tumors of the spinal cord, spinal meninges, or cauda equina. J. Neurosurg. Spine 2010, 13, 67–77. [Google Scholar] [CrossRef]
- Frati, A.; Pesce, A.; Toccaceli, G.; Fraschetti, F.; Caruso, R.; Raco, A. Spinal Meningiomas Prognostic Evaluation Score (SPES): Predicting the neurological outcomes in spinal meningioma surgery. Neurosurg. Rev. 2019, 42, 115–125. [Google Scholar] [CrossRef]
- Schaller, B. Spinal meningioma: Relationship between histological subtypes and surgical outcome? J. Neurooncol. 2005, 75, 157–161. [Google Scholar] [CrossRef]
- Levy, W.J., Jr.; Bay, J.; Dohn, D. Spinal cord meningioma. J. Neurosurg. 1982, 57, 804–812. [Google Scholar] [CrossRef] [PubMed]
- Pettersson-Segerlind, J.; Fletcher-Sandersjoo, A.; Tatter, C.; Burstrom, G.; Persson, O.; Forander, P.; Mathiesen, T.; Bartek, J., Jr.; Edstrom, E.; Elmi-Terander, A. Long-Term Follow-Up and Predictors of Functional Outcome after Surgery for Spinal Meningiomas: A Population-Based Cohort Study. Cancers 2021, 13, 3244. [Google Scholar] [CrossRef]
- Abdulaziz, M.; Mallory, G.W.; Bydon, M.; De la Garza Ramos, R.; Ellis, J.A.; Laack, N.N.; Marsh, W.R.; Krauss, W.E.; Jallo, G.; Gokaslan, Z.L.; et al. Outcomes following myxopapillary ependymoma resection: The importance of capsule integrity. Neurosurg. Focus 2015, 39, E8. [Google Scholar] [CrossRef] [PubMed]
- Jamilson Araujo Pereira, B.; Nogueira de Almeida, A.; Silva Paiva, W.; Henrique Pires de Aguiar, P.; Jacobsen Teixeira, M.; Kazue Nagahashi Marie, S. Neuro-oncological features of spinal meningiomas: Systematic review. Neurochirurgie 2020, 66, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Krauss, W.E.; Yolcu, Y.U.; Alvi, M.A.; Moinuddin, F.M.; Goyal, A.; Clarke, M.J.; Marsh, W.R.; Bydon, M. Clinical characteristics and management differences for grade II and III spinal meningiomas. J. Neurooncol. 2021, 153, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Kshettry, V.R.; Hsieh, J.K.; Ostrom, Q.T.; Kruchko, C.; Benzel, E.C.; Barnholtz-Sloan, J.S. Descriptive Epidemiology of Spinal Meningiomas in the United States. Spine 2015, 40, E886–E889. [Google Scholar] [CrossRef]
- Nakamura, M.; Tsuji, O.; Fujiyoshi, K.; Hosogane, N.; Watanabe, K.; Tsuji, T.; Ishii, K.; Toyama, Y.; Chiba, K.; Matsumoto, M. Long-term surgical outcomes of spinal meningiomas. Spine 2012, 37, E617–E623. [Google Scholar] [CrossRef]
- Pettersson-Segerlind, J.; von Vogelsang, A.C.; Fletcher-Sandersjoo, A.; Tatter, C.; Mathiesen, T.; Edstrom, E.; Elmi-Terander, A. Health-Related Quality of Life and Return to Work after Surgery for Spinal Meningioma: A Population-Based Cohort Study. Cancers 2021, 13, 6371. [Google Scholar] [CrossRef]
- Kim, C.H.; Chung, C.K.; Lee, S.H.; Jahng, T.A.; Hyun, S.J.; Kim, K.J.; Yoon, S.H.; Kim, E.S.; Eoh, W.; Kim, H.J.; et al. Long-term recurrence rates after the removal of spinal meningiomas in relation to Simpson grades. Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 2016, 25, 4025–4032. [Google Scholar] [CrossRef]
- King, A.T.; Sharr, M.M.; Gullan, R.W.; Bartlett, J.R. Spinal meningiomas: A 20-year review. Br. J. Neurosurg. 1998, 12, 521–526. [Google Scholar] [CrossRef]
- Beck, J.; Raabe, A.; Schievink, W.I.; Fung, C.; Gralla, J.; Piechowiak, E.; Seidel, K.; Ulrich, C.T. Posterior Approach and Spinal Cord Release for 360 degrees Repair of Dural Defects in Spontaneous Intracranial Hypotension. Neurosurgery 2019, 84, E345–E351. [Google Scholar] [CrossRef] [PubMed]
- Nuwer, M.R.; Schrader, L.M. Spinal cord monitoring. Handb. Clin. Neurol. 2019, 160, 329–344. [Google Scholar] [CrossRef] [PubMed]
- Deletis, V.; Sala, F. Intraoperative neurophysiological monitoring of the spinal cord during spinal cord and spine surgery: A review focus on the corticospinal tracts. Clin. Neurophysiol. 2008, 119, 248–264. [Google Scholar] [CrossRef] [PubMed]
- Kothbauer, K.F.; Deletis, V.; Epstein, F.J. Motor-evoked potential monitoring for intramedullary spinal cord tumor surgery: Correlation of clinical and neurophysiological data in a series of 100 consecutive procedures. Neurosurg. Focus 1998, 4, e1. [Google Scholar] [CrossRef]
- Sala, F.; Palandri, G.; Basso, E.; Lanteri, P.; Deletis, V.; Faccioli, F.; Bricolo, A. Motor evoked potential monitoring improves outcome after surgery for intramedullary spinal cord tumors: A historical control study. Neurosurgery 2006, 58, 1129–1143, discussion 1129–1143. [Google Scholar] [CrossRef]
- Kothbauer, K.F. Intraoperative Neurophysiological Monitoring for Spinal Cord Surgery. Eur. Neurol. Rev. 2008, 3, 56. [Google Scholar] [CrossRef]
- Sala, F.; Bricolo, A.; Faccioli, F.; Lanteri, P.; Gerosa, M. Surgery for intramedullary spinal cord tumors: The role of intraoperative (neurophysiological) monitoring. Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 2007, 16, S130–S139. [Google Scholar] [CrossRef]
- Simpson, D. The recurrence of intracranial meningiomas after surgical treatment. J. Neurol. Neurosurg. Psychiatry 1957, 20, 22–39. [Google Scholar] [CrossRef]
- Compston, A. Aids to the investigation of peripheral nerve injuries. Medical Research Council: Nerve Injuries Research Committee. His Majesty’s Stationery Office: 1942; pp. 48 (iii) and 74 figures and 7 diagrams; with aids to the examination of the peripheral nervous system. By Michael O’Brien for the Guarantors of Brain. Saunders Elsevier: 2010; pp. [8] 64 and 94 Figures. Brain J. Neurol. 2010, 133, 2838–2844. [Google Scholar] [CrossRef]
- Manzano, G.; Green, B.A.; Vanni, S.; Levi, A.D. Contemporary management of adult intramedullary spinal tumors-pathology and neurological outcomes related to surgical resection. Spinal Cord 2008, 46, 540–546. [Google Scholar] [CrossRef]
- Frankel, H.L.; Hancock, D.O.; Hyslop, G.; Melzak, J.; Michaelis, L.S.; Ungar, G.H.; Vernon, J.D.; Walsh, J.J. The value of postural reduction in the initial management of closed injuries of the spine with paraplegia and tetraplegia. I. Paraplegia 1969, 7, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Thakur, J.; Ulrich, C.T.; Schar, R.T.; Seidel, K.; Raabe, A.; Jesse, C.M. The surgical challenge of ossified ventrolateral spinal meningiomas: Tricks and pearls for managing large ossified meningiomas of the thoracic spine. J. Neurosurg. Spine 2021, 35, 516–526. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, D.B.; Al Zayed, Z.; Al Saddigi, A. Four-limb muscle motor evoked potential and optimized somatosensory evoked potential monitoring with decussation assessment: Results in 206 thoracolumbar spine surgeries. Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 2007, 16, S171–S187. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, D.B.; Dong, C.; Quatrale, R.; Sala, F.; Skinner, S.; Soto, F.; Szelenyi, A. Recommendations of the International Society of Intraoperative Neurophysiology for intraoperative somatosensory evoked potentials. Clin. Neurophysiol. 2019, 130, 161–179. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, D.B.; Skinner, S.; Shils, J.; Yingling, C.; American Society of Neurophysiological Monitoring. Intraoperative motor evoked potential monitoring-a position statement by the American Society of Neurophysiological Monitoring. Clin. Neurophysiol. 2013, 124, 2291–2316. [Google Scholar] [CrossRef]
- Jesse, C.M.; Schermann, H.; Goldberg, J.; Gallus, M.; Hani, L.; Raabe, A.; Schar, R.T. Risk Factors for Postoperative Cerebrospinal Fluid Leakage After Intradural Spine Surgery. World Neurosurg. 2022, 164, e1190–e1199. [Google Scholar] [CrossRef]
- Jenkinson, M.D.; Simpson, C.; Nicholas, R.S.; Miles, J.; Findlay, G.F.; Pigott, T.J. Outcome predictors and complications in the management of intradural spinal tumours. Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 2006, 15, 203–210. [Google Scholar] [CrossRef]
- Koechlin, N.O.; Burkhardt, J.K.; Scherer, M.; Krayenbuhl, N.; Sarnthein, J.; Bernays, R.L.; Bozinov, O. Cerebrospinal fluid leaks after planned intradural spine surgery: A single-center analysis of 91 cases. J. Neurol. Surg. Cent. Eur. Neurosurg. 2013, 74, 216–221. [Google Scholar] [CrossRef]
- Hoover, J.M.; Clarke, M.J.; Wetjen, N.M.; Mandrekar, J.; Puffer, R.C.; Krauss, W.E. Complications necessitating a return to the operating room following intradural spine surgery. World Neurosurg. 2012, 78, 344–347. [Google Scholar] [CrossRef]
- Bostrom, A.; Burgel, U.; Reinacher, P.; Krings, T.; Rohde, V.; Gilsbach, J.M.; Hans, F.J. A less invasive surgical concept for the resection of spinal meningiomas. Acta Neurochir. 2008, 150, 551–556. [Google Scholar] [CrossRef]
- Riad, H.; Knafo, S.; Segnarbieux, F.; Lonjon, N. Spinal meningiomas: Surgical outcome and literature review. Neurochirurgie 2013, 59, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.H.; Chung, C.K.; Jahng, T.A. Surgical outcome of spinal canal meningiomas. J. Korean Neurosurg. Soc. 2007, 42, 300–304. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Menezes, A.H.; Shimizu, K.; Woodroffe, R.W.; Helland, L.C.; Hitchon, P.W.; Howard, M.A. Differences and characteristics of symptoms by tumor location, size, and degree of spinal cord compression: A retrospective study on 53 surgically treated, symptomatic spinal meningiomas. J. Neurosurg. Spine 2020, 32, 1–10. [Google Scholar] [CrossRef]
- Maiti, T.K.; Bir, S.C.; Patra, D.P.; Kalakoti, P.; Guthikonda, B.; Nanda, A. Spinal meningiomas: Clinicoradiological factors predicting recurrence and functional outcome. Neurosurg. Focus 2016, 41, E6. [Google Scholar] [CrossRef] [PubMed]
- Ney, J.P.; van der Goes, D.N. Evidence-based guideline update: Intraoperative spinal monitoring with somatosensory and transcranial electrical motor evoked potentials: Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology and the American Clinical Neurophysiology Society. Neurology 2012, 79, 292, author replies 292–294. [Google Scholar] [CrossRef]
- Nuwer, M.R.; Emerson, R.G.; Galloway, G.; Legatt, A.D.; Lopez, J.; Minahan, R.; Yamada, T.; Goodin, D.S.; Armon, C.; Chaudhry, V.; et al. Evidence-based guideline update: Intraoperative spinal monitoring with somatosensory and transcranial electrical motor evoked potentials*. J. Clin. Neurophysiol. 2012, 29, 101–108. [Google Scholar] [CrossRef] [PubMed]
- McGirt, M.J.; Chaichana, K.L.; Atiba, A.; Attenello, F.; Woodworth, G.F.; Jallo, G.I. Neurological outcome after resection of intramedullary spinal cord tumors in children. Child’s Nerv. Syst. ChNS Off. J. Int. Soc. Pediatric Neurosurg. 2008, 24, 93–97. [Google Scholar] [CrossRef]
- Woodworth, G.F.; Chaichana, K.L.; McGirt, M.J.; Sciubba, D.M.; Jallo, G.I.; Gokaslan, Z.; Wolinsky, J.P.; Witham, T.F. Predictors of ambulatory function after surgical resection of intramedullary spinal cord tumors. Neurosurgery 2007, 61, 99–105, discussion 105–106. [Google Scholar] [CrossRef]
- Sutter, M.; Eggspuehler, A.; Jeszenszky, D.; Kleinstueck, F.; Fekete, T.F.; Haschtmann, D.; Porchet, F.; Dvorak, J. The impact and value of uni- and multimodal intraoperative neurophysiological monitoring (IONM) on neurological complications during spine surgery: A prospective study of 2728 patients. Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 2019, 28, 599–610. [Google Scholar] [CrossRef]
- Holdefer, R.N.; Skinner, S.A. Motor evoked potential recovery with surgeon interventions and neurologic outcomes: A meta-analysis and structural causal model for spine deformity surgeries. Clin. Neurophysiol. 2020, 131, 1556–1566. [Google Scholar] [CrossRef]
- Hadley, M.N.; Shank, C.D.; Rozzelle, C.J.; Walters, B.C. Guidelines for the Use of Electrophysiological Monitoring for Surgery of the Human Spinal Column and Spinal Cord. Neurosurgery 2017, 81, 713–732. [Google Scholar] [CrossRef] [PubMed]
No. of Patients | 86 (100%) |
---|---|
Sex | |
Male | 11 (12.8%) |
Female | 75 (87.2%) |
Age, mean (±SD), years | 65.7 (±14.2) |
BMI, mean (±SD), kg/m2 | 26 (±4.6) |
ASA | |
I | 8 (9.3%) |
II | 47 (54.7%) |
III | 29 (33.7%) |
IV | 2 (2.3%) |
Current smoker | 12 (14%) |
Neurofibromatosis type 2 | 3 (3.5%) |
Follow-up, mean (±SD), months | 29.8 (±33.2) |
Modified McCormick Scale | Preoperative | One Year Post-Operative |
---|---|---|
I | 16 (18.6%) | 51 (59.3%) |
II | 38 (44.2%) | 22 (25.6%) |
III | 24 (27.9%) | 12 (14%) |
IV | 7 (8.1%) | 1 (1.2%) |
V | 1 (1.2%) | 0 (0%) |
Reoperations | 13 (15.1%) |
Recurrent meningioma | 1 (1.2%) |
CSFL | 4 (4.7%) |
Arachnoiditis | 3 (3.5%) |
Post-operative epidural hematoma | 5 (5.8%) * |
Other complications | 4 (4.7%) |
New post-operative deficit directly after surgery | 2 (2.3%) |
delayed C5 palsy | 1 (1.2%) |
Pneumonia | 1 (1.2%) |
IOM | No-IOM | ||
---|---|---|---|
Number of patients | 51 | 35 | |
Age (years, mean ± SD) | 66.1 ± 14 | 65.8 ± 13.4 | p = 0.914 |
Sex | p = 1.000 | ||
Women | 44 | 31 | |
Men | 7 | 4 | |
Location | p = 0.147 | ||
Dorsolateral | 28 | 13 | |
Lateral | 15 | 10 | |
Ventrolateral | 8 | 11 | |
NA | 0 | 1 ** | |
Level | p = 0.841 | ||
Cervical | 8 | 7 | |
Junction | 3 | 1 | |
Thoracic | 40 | 27 | |
Modified McCormick preoperative | p = 0.874 | ||
I | 10 | 6 | |
II | 22 | 16 | |
III | 15 | 9 | |
IV | 3 | 4 | |
V | 1 | 0 | |
Tumor-canal ratio *** (TCR) (%, mean ± SD) | 66.2 (±19.7) (n = 50) | 61.8 (±20.5) (n = 33) | p = 0.328 |
Deficit before surgery | p = 0.502 * | ||
None | 10 | 9 | |
Sensory | 12 | 8 | |
Motor | 5 | 5 | |
Both | 24 | 13 |
IOM | No-IOM | ||
---|---|---|---|
Simpson grade | p = 0.482 | ||
I | 0 | 1 | |
II | 34 | 26 | |
III | 13 | 7 | |
IV | 4 | 1 | |
Modified McCormick post-operative | p = 0.918 | ||
I | 29 | 22 | |
II | 13 | 9 | |
III | 8 | 4 | |
IV | 1 | 0 | |
V | 0 | 0 | |
Deficit directly after surgery | p = 0.210 * | ||
None | 10 | 11 | |
Sensory | 14 | 7 | |
Motor | 6 | 4 | |
Both | 21 | 13 | |
Deficit at follow-up | p = 0.232 * | ||
None | 30 | 25 | |
Sensory | 8 | 5 | |
Motor | 6 | 3 | |
Both | 7 | 2 | |
Neurological improvement at follow-up | p = 0.463 * | ||
None | 23 | 13 | |
Sensory | 12 | 7 | |
Motor | 7 | 7 | |
Both | 9 | 8 | |
Neurological worsening directly after surgery | p = 0.300 * | ||
None | 50 | 32 | |
Sensory | 0 | 0 | |
Motor | 0 | 1 | |
Both | 1 | 2 | |
Neurological worsening at follow-up | p = 0.163 * | ||
None | 51 | 33 | |
Motor | 0 | 2 | |
Sensory | 0 | 0 | |
Both | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jesse, C.M.; Alvarez Abut, P.; Wermelinger, J.; Raabe, A.; Schär, R.T.; Seidel, K. Functional Outcome in Spinal Meningioma Surgery and Use of Intraoperative Neurophysiological Monitoring. Cancers 2022, 14, 3989. https://doi.org/10.3390/cancers14163989
Jesse CM, Alvarez Abut P, Wermelinger J, Raabe A, Schär RT, Seidel K. Functional Outcome in Spinal Meningioma Surgery and Use of Intraoperative Neurophysiological Monitoring. Cancers. 2022; 14(16):3989. https://doi.org/10.3390/cancers14163989
Chicago/Turabian StyleJesse, Christopher Marvin, Pablo Alvarez Abut, Jonathan Wermelinger, Andreas Raabe, Ralph T. Schär, and Kathleen Seidel. 2022. "Functional Outcome in Spinal Meningioma Surgery and Use of Intraoperative Neurophysiological Monitoring" Cancers 14, no. 16: 3989. https://doi.org/10.3390/cancers14163989
APA StyleJesse, C. M., Alvarez Abut, P., Wermelinger, J., Raabe, A., Schär, R. T., & Seidel, K. (2022). Functional Outcome in Spinal Meningioma Surgery and Use of Intraoperative Neurophysiological Monitoring. Cancers, 14(16), 3989. https://doi.org/10.3390/cancers14163989