Epidemiology and Prevention of Renal Cell Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Epidemiology
2.1. Incidence
2.2. Mortality
3. Risk Factors for RCC
3.1. Age, Gender and Race
3.2. Hereditary Disease
3.2.1. VHL (Von Hippel–Lindau Disease)
3.2.2. MET (Mesenchymal Epithelial Transition Factor Receptor Hereditary Papillary RCC)
3.2.3. FH (Hereditary Leiomyomatosis and RCC)
3.2.4. SDHA/B/C/D (Hereditary Paraganglioma-Pheochromocytoma Syndrome)
3.2.5. TSC 1, 2 (TSC)
3.2.6. FLCN (Birt–Hogg–Dubé Syndrome)
3.2.7. PTEN (PTEN Hamartoma Tumor Syndrome/Cowden Syndrome)
3.2.8. CDC73 (Hyperparathyroidism-Jaw Tumor Syndrome)
Syndrome | Gene | Gene Position | Protein | Histological Subtypes | Other Tumors | Pathways or Mechanism | Reference |
---|---|---|---|---|---|---|---|
VHL disease | VHL | 3p25-26 | pVHL | ccRCC | Hemangioblastoma (CNS) Cysts (kidneyl, pancreas) Pheochromocytoma (adrenal) Neuroendocrine tumor (pancreas) Cystadenoma (epididymis, ovary) | Overactivation of HIF-VEGF pathway | [13,14,15,16] |
BAP1 tumor predisposition syndrome | BAP1 | 3p21 | BRCA-associated protein | ccRCC | Breast cancer Melanoma (uveal, skin) Malignant mesothelioma Basal cell carcinoma Other multiple malignancies | Inactivation of cell cycle regulation and DNA damage repair | [22,23,24,25] |
Hereditary papillary RCC | MET | 7q31 | HGFR | pRCC type1 | NA | Overactivation of MET signalling pathway | [28,29,30] |
Hereditary leiomyomatosis and renal cell carcinoma | FH | 1q43 | Fumarate hydratase | pRCC type 2 | Leiomyoma (skin, uterus) Bladder cancer Breast cancer | Overactivation of HIF-VEGF pathway and EMT activation in tumor cells | [32,33,34,35] |
Hereditary paraganglioma- pheochromocytoma syndrome | SDHA/B/C/D | 5p15, 1p36, 1q21, 11q23 | SDH | SDH-deficient RCC | Paraganglioma Pheochromocytoma GIST | Disruption of the tumor suppressor function of the SDH complex | [37,38,39,40] |
Tuberous sclerosis complex | TSC 1, 2 | 9q34, 16p13 | Hamartin, tuberin | Angiomyolipoma ccRCC | facial angiofibroma Intracardiac rhabdomyoma | Overactivation of mTORC1 signaling pathway | [43,44,45] |
Birt-Hogg-Dubé syndrome | FLCN | 17p11 | Folliculin | Hybrid tmor chRCC ccRCC | Fibrofolliculoma Trichodiscoma | Overactivation of the mTOR pathway | [46,47,48] |
PTEN hamartoma syndrome/Cowden syndrome | PTEN | 10q23 | PTEN | ccRCC pRCC chRCC | Breast cancer Endometrial cancer Thyroid cancer | Overactivation of the mTOR pathway | [49,50] |
Hyperparathyroidism jaw tumour syndrome | CDC73 | 1q31 | parafibromin | Hamartoma Wilms tumor | Parathyroid carcinoma Ossifying fibroma (jaw) | Inactivation of polymerase-related factor complex | [52,53] |
3.3. Drugs and Chemicals
4. Primary Prevention
4.1. Tobacco Smoking
4.2. Alcohol Consumption
4.3. Eating Habits
4.4. Maintaining an Appropriate Body Weight
4.5. Comorbidities
4.5.1. Hypertension
4.5.2. Diabetes
5. Secondary Prevention
5.1. Serum and Urine Biomarkers as a Screening Modality
5.1.1. DNA Methylation
5.1.2. MiRNAs
miRNA | Sample | Significant Expression of miRNA | AUC (95% CI) | Sensitivity (%) | Specificity (%) | Reference |
---|---|---|---|---|---|---|
miR-193a-3p miR-362 miR-572 miR-28-5p miR-378 | Serum | Significantly higher level of miR-193a-3p, miR-362, and miR-572 whereas markedly lower level of miR-28-5p and miR-378 in RCC patients. 5-miRNA panel showed a high level in the stage I RCC compared with HCs. | Panel of 5 miRNAs: 0.801 (0.731–0.871) | 80 | 71 | [106] |
miR-122-5p miR-206 | Serum | High level of miR-122-5p and miR-206 in metastasized and in advanced pT-stage ccRCC. Association of these miRNAs with progression-free and overall survival. | miR-206: 0.733 (0.616–0.849) | 57.1 | 83.8 | [107] |
miR-210 | Serum | Overexpression of serum miR-210 level in RCC patients compared to HCs. | miR-210: 0.77 (0.65–0.89) | 65 | 83 | [108] |
miR-210 miR-155 | Serum | High level of serum miR-210 and miR-155 in ccRCC patients compared to HCs. | miR-210: 0.87 (0.79–0.95) | 82.5 | 80 | [109] |
miR-210 miR-1233 | Serum | High level of serum miR-210 and miR-1233 in ccRCC patients compared to HCs. | miR-210: 0.69 (0.61–0.77) miR-1233: 0.82 (0.75–0.89) | miR-210: 70 miR-1233: 81 | miR-210: 62.2 miR-1233: 76 | [111] |
miR-210-3p | Urine | Upregulation of miR-210-3p in ccRCC tissues and in urine samples. Correlation between urinary levels of miR-210-3p and response to treatment. | NA | NA | NA | [112] |
miR-122 miR-1271 miR-15b | Urine | Significantly higher level of miR-122, miR-1271, and miR-15b in the ccRCC urine specimens compared to HCs. | Combination of 3 miRNAs: 0.96 (0.88–1.04) | 100 | 86 | [117] |
miR-15a | Urine | The expression of miR-15a differentiated RCC from benign renal tumors. | 0.955 | 98.1 | 100 | [118] |
miR-30a-5pme | Urine | Significantly higher miR-30a-5pme level in urine from ccRCC patients compared to HCs. Higher miR-30a-5pme levels independently predicted metastatic dissemination and survival. | 0.684 (0.584–0.784) | 83 | 53 | [119] |
miR-30c-5p | Urine | Low expression of miR-30c-5p in ccRCC patients compared to HCs. | 0.819 (0.739–0.899) | 68.6 | 100 | [120] |
5.1.3. lncRNAs
lncRNA | Sample | Significant Expression of lncRNA | AUC (95%CI) | Sensitivity (%) | Specificity (%) | Reference |
---|---|---|---|---|---|---|
LET PVT1 PANDAR PTENP1 LINC00963 | Serum | A risk model of serum 5-lncRNA signature could distinguish benign renal tumors from ccRCC samples. | Panel of 5 lncRNA: 0.900/0.823 | 79.2/67.6 | 88.9/91.4 | [126] |
GIHCG | Serum | Serum GIHCG accurately discriminated between RCC patients and HCs, as well as between early stage RCC patients and HCs. Positively correlation of increased GIHCG expression with advanced clinical stage, Fuhrman grade, and poor prognosis. | 0.920 (0.866–0.974) | 87.0 | 84.8 | [127] |
LINC00887 | Serum | Upregulated LINC00887 in tumor tissues and serum of RCC patients compared to HCs. Relationship between high expression of LINC00887 and shorter overall survival. | 0.803 (0.735–0.872) | 67.1 | 89.9 | [128] |
MALAT-1 | Tissue | Elevated MALAT-1 levels significantly correlated with decreased overall survival in RCC patients (hazard ratio, 2.97; 95% CI, 1.68–5.28) | NA | NA | NA | [129] |
5.2. Metabolomics
5.3. Proteomics
5.4. Lipidomics
5.5. Amino Acid Profile Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- World Health Organization (WHO). Global Health Estimates 2020: Deaths by Cause, Age, Sex, by Country and by Region, 2000–2019; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Ljungberg, B.; Bensalah, K.; Canfield, S.; Dabestani, S.; Hofmann, F.; Hora, M.; Kuczyk, M.A.; Lam, T.; Marconi, L.; Merseburger, A.S.; et al. Eau guidelines on renal cell carcinoma: 2014 update. Eur. Urol. 2015, 67, 913–924. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin. 2017, 67, 7–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majidpoor, J.; Mortezaee, K. Interleukin-2 therapy of cancer-clinical perspectives. Int. Immunopharmacol. 2021, 98, 107836. [Google Scholar] [CrossRef] [PubMed]
- McKay, R.R.; Bossé, D.; Choueiri, T.K. Evolving Systemic Treatment Landscape for Patients with Advanced Renal Cell Carcinoma. J. Clin. Oncol. 2018, 36, 3615–3623. [Google Scholar] [CrossRef] [PubMed]
- Padala, S.A.; Barsouk, A.; Thandra, K.C.; Saginala, K.; Mohammed, A.; Vakiti, A.; Rawla, P.; Barsouk, A. Epidemiology of renal cell carcinoma. World J. Oncol. 2020, 11, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Warren, A.Y.; Harrison, D. Who/Isup classification, grading and pathological staging of renal cell carcinoma: Standards and controversies. World J. Urol. 2018, 36, 1913–1926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipworth, L.; Morgans, A.K.; Edwards, T.L.; Barocas, D.A.; Chang, S.S.; Herrell, S.D.; Penson, D.F.; Resnick, M.J.; Smith, J.A.; Clark, P.E. Renal cell cancer histological subtype distribution differs by race and Sex. BJU Int. 2016, 117, 260–265. [Google Scholar] [CrossRef]
- Sims, J.N.; Yedjou, C.G.; Abugri, D.; Payton, M.; Turner, T.; Miele, L.; Tchounwou, P.B. Racial disparities and preventive measures to renal cell carcinoma. Int. J. Environ. Res. Public Health 2018, 15, 1089. [Google Scholar] [CrossRef] [Green Version]
- Maher, E.R. Hereditary renal cell carcinoma syndromes: Diagnosis, surveillance and management. World J. Urol. 2018, 36, 1891–1898. [Google Scholar] [CrossRef] [Green Version]
- Chevrier, S.; Levine, J.H.; Zanotelli, V.R.T.; Silina, K.; Schulz, D.; Bacac, M.; Ries, C.H.; Ailles, L.; Jewett, M.A.S.; Moch, H.; et al. An immune atlas of clear cell renal cell carcinoma. Cell 2017, 169, 736–749.e18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nickerson, M.L.; Jaeger, E.; Shi, Y.; Durocher, J.A.; Mahurkar, S.; Zaridze, D.; Matveev, V.; Janout, V.; Kollarova, H.; Bencko, V.; et al. Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clin. Cancer Res. 2008, 14, 4726–4734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Creighton, C.J.; Hernandez-Herrera, A.; Jacobsen, A.; Levine, D.A.; Mankoo, P.; Schultz, N.; Du, Y.; Zhang, Y.; Larsson, E.; Sheridan, R.; et al. Cancer Genome Atlas Research Network. Integrated analyses of microRNAs demonstrate their widespread influence on gene expression in high-grade serous ovarian carcinoma. PLoS ONE 2012, 7, e34546. [Google Scholar]
- Krieg, M.; Haas, R.; Brauch, H.; Acker, T.; Flamme, I.; Plate, K.H. Up-regulation of hypoxia-inducible factors HIF-1alpha and Hif-2alpha under normoxic conditions in renal carcinoma cells by Von Hippel-Lindau tumor suppressor gene loss of function. Oncogene 2000, 19, 5435–5443. [Google Scholar] [CrossRef] [Green Version]
- Chittiboina, P.; Lonser, R.R. Von Hippel-Lindau disease. Handb. Clin. Neurol. 2015, 132, 139–156. [Google Scholar]
- Nielsen, S.M.; Rhodes, L.; Blanco, I.; Chung, W.K.; Eng, C.; Maher, E.R.; Richard, S.; Giles, R.H. Von Hippel-Lindau disease: Genetics and role of genetic counseling in a multiple neoplasia syndrome. J. Clin. Oncol. 2016, 34, 2172–2181. [Google Scholar] [CrossRef]
- Neumann, H.P.; Bender, B.U.; Berger, D.P.; Laubenberger, J.; Schultze-Seemann, W.; Wetterauer, U.; Ferstl, F.J.; Herbst, E.W.; Schwarzkopf, G.; Hes, F.J.; et al. Prevalence, morphology and biology of renal cell carcinoma in von Hippel-Lindau disease compared to sporadic renal cell carcinoma. J. Urol. 1998, 160, 1248–1254. [Google Scholar] [CrossRef]
- Walther, M.M.; Reiter, R.; Keiser, H.R.; Choyke, P.L.; Venzon, D.; Hurley, K.; Gnarra, J.R.; Reynolds, J.C.; Glenn, G.M.; Zbar, B.; et al. Clinical and genetic characterization of pheochromocytoma in von Hippel-Lindau families: Comparison with sporadic pheochromocytoma gives insight into natural history of pheochromocytoma. J. Urol. 1999, 162, 659–664. [Google Scholar] [CrossRef]
- Duffey, B.G.; Choyke, P.L.; Glenn, G.; Grubb, R.L.; Venzon, D.; Linehan, W.M.; Walther, M.M. The relationship between renal tumor size and metastases in patients with von Hippel-Lindau disease. J. Urol. 2004, 172, 63–65. [Google Scholar] [CrossRef]
- Joly, D.; Méjean, A.; Corréas, J.M.; Timsit, M.O.; Verkarre, V.; Deveaux, S.; Landais, P.; Grünfeld, J.P.; Richard, S. Progress in nephron sparing therapy for renal cell carcinoma and von Hippel-Lindau disease. J. Urol. 2011, 185, 2056–2060. [Google Scholar] [CrossRef]
- Rai, K.; Pilarski, R.; Cebulla, C.M.; Abdel-Rahman, M.H. Comprehensive review of Bap1 tumor predisposition syndrome with report of two new cases. Clin. Genet. 2016, 89, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Farley, M.N.; Schmidt, L.S.; Mester, J.L.; Pena-Llopis, S.; Pavia-Jimenez, A.; Christie, A.; Vocke, C.D.; Ricketts, C.J.; Peterson, J.; Middelton, L.; et al. A novel germline mutation in Bap1 predisposes to familial clear-cell renal cell carcinoma. Mol. Cancer Res. 2013, 11, 1061–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popova, T.; Hebert, L.; Jacquemin, V.; Gad, S.; Caux-Moncoutier, V.C.; Dubois-d’Enghien, B.; Richaudeau, X.; Renaudin, J.; Sellers, A.; Nicolas, X.; et al. Germline Bap1 mutations predispose to renal cell carcinomas. Am. J. Hum. Genet. 2013, 92, 974–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlo, M.I.; Mukherjee, S.; Mandelker, D.; Vijai, J.; Kemel, Y.; Zhang, L.; Knezevic, A.; Patil, S.; Ceyhan-Birsoy, O.; Huang, K.C.; et al. Prevalence of germline mutations in cancer susceptibility genes in patients with advanced renal cell carcinoma. JAMA Oncol. 2018, 4, 1228–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shuch, B.; Zhang, J. Genetic predisposition to renal cell carcinoma: Implications for counseling, testing, screening, and management. J. Clin. Oncol. 2018, 36, 3560–3566. [Google Scholar] [CrossRef]
- Voss, M.H.; Reising, A.; Cheng, Y.; Patel, P.; Marker, M.; Kuo, F.; Chan, T.A.; Choueiri, T.K.; Hsieh, J.J.; Hakimi, A.A.; et al. Genomically annotated risk model for advanced renal-cell carcinoma: A retrospective cohort study. Lancet Oncol. 2018, 19, 1688–1698. [Google Scholar] [CrossRef]
- Courthod, G.; Tucci, M.; Di Maio, M.; Scagliotti, G.V. Papillary renal cell carcinoma: A review of the current therapeutic landscape. Crit. Rev. Oncol. Hematol. 2015, 96, 100–112. [Google Scholar] [CrossRef]
- Pignot, G.; Elie, C.; Conquy, S.; Vieillefond, A.; Flam, T.; Zerbib, M.; Debré, B.; Amsellem-Ouazana, D. Survival analysis of 130 patients with papillary renal cell carcinoma: Prognostic utility of Type 1 and Type 2 subclassification. Urology 2007, 69, 230–235. [Google Scholar] [CrossRef]
- Ooi, A.; Wong, J.C.; Petillo, D.; Roossien, D.; Perrier-Trudova, V.; Whitten, D.; Min, B.W.; Tan, M.H.; Zhang, Z.; Yang, X.J.; et al. An antioxidant response phenotype shared between hereditary and sporadic Type 2 papillary renal cell carcinoma. Cancer Cell 2011, 20, 511–523. [Google Scholar] [CrossRef] [Green Version]
- Sulkowski, P.L.; Sundaram, R.K.; Oeck, S.; Corso, C.D.; Liu, Y.; Noorbakhsh, S.; Niger, M.; Boeke, M.; Ueno, D.; Kalathil, A.N.; et al. Krebs-cycle-deficient hereditary cancer syndromes are defined by defects in homologous-recombination DNA repair. Nat. Genet. 2018, 50, 1086–1092. [Google Scholar] [CrossRef]
- Ooi, A. Advances in hereditary leiomyomatosis and renal cell carcinoma (Hlrcc) research. Semin. Cancer Biol. 2020, 61, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Gardie, B.; Remenieras, A.; Kattygnarath, D.; Bombled, J.; Lefèvre, S.; Perrier-Trudova, V.; Rustin, P.; Barrois, M.; Slama, A.; Avril, M.F.; et al. French National Cancer Institute “Inherited predisposition to kidney cancer” network. Novel Fh mutations in families with hereditary leiomyomatosis and renal cell Cancer (Hlrcc) and patients with isolated Type 2 papillary renal cell carcinoma. J. Med. Genet. 2011, 48, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Sudarshan, S.; Sourbier, C.; Kong, H.S.; Block, K.; Valera Romero, V.A.V.; Yang, Y.; Galindo, C.; Mollapour, M.; Scroggins, B.; Goode, N.; et al. Fumarate hydratase Deficiency in Renal Cancer Induces Glycolytic Addiction and Hypoxia-Inducible transcription factor 1alpha Stabilization by glucose-Dependent Generation of reactive oxygen species. Mol. Cell Biol. 2009, 29, 4080–4090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sciacovelli, M.; Gonçalves, E.; Johnson, T.I.; Zecchini, V.R.; da Costa, A.S.; Gaude, E.; Drubbel, A.V.; Theobald, S.J.; Abbo, S.R.; Tran, M.G.; et al. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature 2016, 537, 544–547. [Google Scholar] [CrossRef]
- Menko, F.H.; Maher, E.R.; Schmidt, L.S.; Middelton, L.A.; Aittomäki, K.; Tomlinson, I.; Richard, S.; Linehan, W.M. Hereditary leiomyomatosis and renal cell Cancer (Hlrcc): Renal cancer risk, surveillance and treatment. Fam. Cancer 2014, 13, 637–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bholah, R. Timothy Edward Bunchman. Review of pedatric pheochromocytoma and paraganglopma. Front. Pediatr. 2017, 13, 155. [Google Scholar] [CrossRef] [Green Version]
- Bardella, C.; Pollard, P.J.; Tomlinson, I. Sdh mutations in Cancer. Biochim. Biophys Acta 2011, 1807, 1432–1443. [Google Scholar] [CrossRef] [Green Version]
- Moch, H.; Cubilla, A.L.; Humphrey, P.A.; Reuter, V.E.; Ulbright, T.M. The 2016 who classification of tumours of the urinary system and male Genital Organs-Part A: Renal, penile, and testicular tumours. Eur. Urol. 2016, 70, 93–105. [Google Scholar] [CrossRef]
- Gill, A.J.; Hes, O.; Papathomas, T.; Šedivcová, M.; Tan, P.H.; Agaimy, A.; Andresen, P.A.; Kedziora, A.; Clarkson, A.; Toon, C.W.; et al. Succinate dehydrogenase (Sdh)-deficient renal carcinoma: A morphologically distinct entity: A clinicopathologic series of 36 tumors from 27 patients. Am. J. Surg. Pathol. 2014, 38, 1588–1602. [Google Scholar] [CrossRef] [Green Version]
- Andrews, K.A.; Ascher, D.B.; Pires, D.E.V.; Barnes, D.R.; Vialard, L.; Casey, R.T.; Bradshaw, N.; Adlard, J.; Aylwin, S.; Brennan, P.; et al. Tumour risks and genotype-phenotype correlations associated with germline variants in succinate dehydrogenase subunit genes Sdhb, sdhc and Sdhd. J. Med. Genet. 2018, 55, 384–394. [Google Scholar] [CrossRef] [Green Version]
- Cimadamore, A.; Cheng, L.; Scarpelli, M.; Massari, F.; Mollica, V.; Santoni, M.; Lopez-Beltran, A.; Montironi, R.; Moch, H. Towards a new who classification of renal cell tumor: What the clinician needs to know—A narrative review. Transl. Androl. Urol. 2021, 10, 1506–1520. [Google Scholar] [CrossRef] [PubMed]
- Henske, E.P.; Cornejo, K.M.; Wu, C.L. Renal cell carcinoma in tuberous sclerosis complex. Genes 2021, 12, 895. [Google Scholar] [CrossRef]
- Carlo, M.I.; Hakimi, A.A.; Stewart, G.D.; Bratslavsky, G.; Brugarolas, J.; Chen, Y.B.; Linehan, W.M.; Maher, E.R.; Merino, M.J.; Offit, K.; et al. Familial kidney Cancer: Implications of new syndromes and molecular insights. Eur. Urol. 2019, 76, 754–764. [Google Scholar] [CrossRef]
- Franz, D.N.; Belousova, E.; Sparagana, S.; Bebin, E.M.; Frost, M.; Kuperman, R.; Witt, O.; Kohrman, M.H.; Flamini, J.R.; Wu, J.Y.; et al. Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (Exist-1): A multicentre, randomised, placebo-controlled Phase 3 trial. Lancet 2013, 381, 125–132. [Google Scholar] [CrossRef]
- Schmidt, L.S.; Linehan, W.M. Molecular Genetics and clinical features of Birt-Hogg-Dubé syndrome. Nat. Rev. Urol. 2015, 12, 558–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavlovich, C.P.; Walther, M.M.; Eyler, R.A.; Hewitt, S.M.; Zbar, B.; Linehan, W.M.; Merino, M.J. Renal tumors in the Birt-Hogg-Dubé syndrome. Am. J. Surg. Pathol. 2002, 26, 1542–1552. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, L.; Metwalli, A.R.; Middelton, L.A.; Marston Linehan, W. Diagnosis and management of Bhd-associated kidney Cancer. Fam. Cancer 2013, 12, 397–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dragoo, D.D.; Taher, A.; Wong, V.K.; Elsaiey, A.; Consul, N.; Mahmoud, H.S.; Mujtaba, B.; Stanietzky, N.; Elsayes, K.M. Pten hamartoma tumor syndrome/Cowden syndrome: Genomics, oncogenesis, and imaging review for associated lesions and malignancy. Cancers 2021, 13, 3120. [Google Scholar] [CrossRef]
- Gammon, A.; Jasperson, K.; Champine, M. Genetic basis of Cowden syndrome and its implications for clinical practice and risk management. Appl. Clin. Genet. 2016, 9, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.H.; Mester, J.L.; Ngeow, J.; Rybicki, L.A.; Orloff, M.S.; Eng, C. Lifetime cancer risks in individuals with germline Pten mutations. Clin. Cancer Res. 2012, 18, 400–407. [Google Scholar] [CrossRef] [Green Version]
- du Preez, H.; Adams, A.; Richards, P.; Whitley, S. Hyperparathyroidism jaw tumour syndrome: A pictoral review. Insights Imaging 2016, 7, 793–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Tuin, K.; Tops, C.M.J.; Adank, M.A.; Cobben, J.M.; Hamdy, N.A.T.; Jongmans, M.C.; Menko, F.H.; van Nesselrooij, B.P.M.; Netea-Maier, R.T.; Oosterwijk, J.C.; et al. Cdc73-related disorders: Clinical manifestations and case detection in primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 2017, 102, 4534–4540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vocke, C.D.; Ricketts, C.J.; Ball, M.W.; Schmidt, L.S.; Metwalli, A.R.; Middelton, L.A.; Killian, J.K.; Khan, J.; Meltzer, P.S.; Simonds, W.F.; et al. Cdc73 germline mutation in a family with mixed epithelial and stromal tumors. Urology 2019, 124, 91–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choueiri, T.K.; Je, Y.; Cho, E. Analgesic use and the risk of kidney Cancer: A meta-analysis of epidemiologic studies. Int. J. Cancer 2014, 134, 384–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, L.E.; Boffetta, P.; Karami, S.; Brennan, P.; Stewart, P.S.; Hung, R.; Zaridze, D.; Matveev, V.; Janout, V.; Kollarova, H.; et al. Occupational trichloroethylene exposure and renal carcinoma risk: Evidence of genetic susceptibility by reductive metabolism gene variants. Cancer Res. 2010, 70, 6527–6536. [Google Scholar] [CrossRef] [Green Version]
- Macleod, L.C.; Hotaling, J.M.; Wright, J.L.; Davenport, M.T.; Gore, J.L.; Harper, J.; White, E. Risk factors for renal cell carcinoma in the vital study. J. Urol. 2013, 190, 1657–1661. [Google Scholar] [CrossRef] [Green Version]
- Häggström, C.; Rapp, K.; Stocks, T.; Manjer, J.; Bjørge, T.; Ulmer, H.; Engeland, A.; Almqvist, M.; Concin, H.; Selmer, R.; et al. Metabolic factors associated with risk of renal cell carcinoma. PLoS ONE 2013, 8, e57475. [Google Scholar] [CrossRef]
- Capitanio, U.; Bensalah, K.; Bex, A.; Boorjian, S.A.; Bray, F.; Coleman, J.; Gore, J.L.; Sun, M.; Wood, C.; Russo, P. Epidemiology of renal cell carcinoma. Eur. Urol. 2019, 75, 74–84. [Google Scholar] [CrossRef]
- Hunt, J.D.; van der Hel, O.L.; McMillan, G.P.; Boffetta, P.; Brennan, P. Renal cell carcinoma in relation to cigarette smoking: Meta-analysis of 24 studies. Int. J. Cancer 2005, 114, 101–108. [Google Scholar] [CrossRef]
- Cumberbatch, M.G.; Rota, M.; Catto, J.W.; La Vecchia, C. The role of tobacco smoke in bladder and kidney carcinogenesis: A comparison of exposures and meta-analysis of incidence and mortality risks. Eur. Urol. 2016, 70, 458–466. [Google Scholar] [CrossRef] [Green Version]
- Minami, T.; Inoue, M.; Sawada, N.; Yamaji, T.; Iwasaki, M.; Tsugane, S. Alcohol consumption, tobacco smoking, and subsequent risk of renal cell carcinoma: The Jphc study. Cancer Sci. 2021, 112, 5068–5077. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, M.B.; Brennan, P.; Brenner, D.R.; Overvad, K.; Olsen, A.; Tjønneland, A.; Boutron-Ruault, M.C.; Clavel-Chapelon, F.; Fagherazzi, G.; Katzke, V.; et al. Alcohol consumption and the risk of renal cancers in the European prospective investigation into Cancer and nutrition (epic). Int. J. Cancer 2015, 137, 1953–1966. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Zhu, Y.; Zheng, X.; Xie, L. Does beer, wine or liquor consumption correlate with the risk of renal cell carcinoma? A dose-response meta-analysis of prospective cohort studies. Oncotarget 2015, 6, 13347–13358. [Google Scholar]
- Daniel, C.R.; Cross, A.J.; Graubard, B.I.; Park, Y.; Ward, M.H.; Rothman, N.; Hollenbeck, A.R.; Chow, W.H.; Sinha, R. Large prospective investigation of meat intake, related mutagens, and risk of renal cell carcinoma. Am. J. Clin. Nutr. 2012, 95, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Rohrmann, S.; Linseisen, J.; Overvad, K.; Lund Würtz, A.M.; Roswall, N.; Tjonneland, A.; Boutron-Ruault, M.C.; Racine, A.; Bastide, N.; Palli, D.; et al. Meat and fish consumption and the risk of renal cell carcinoma in the European prospective investigation into Cancer and nutrition. Int. J. Cancer 2015, 136, E423–E431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Zhao, L. Cruciferous vegetables intake is associated with lower risk of renal cell carcinoma: Evidence from a meta-analysis of observational studies. PLoS ONE 2013, 8, e75732. [Google Scholar] [CrossRef]
- Liu, B.; Mao, Q.; Wang, X.; Zhou, F.; Luo, J.; Wang, C.; Lin, Y.; Zheng, X.; Xie, L. Cruciferous vegetables consumption and risk of renal cell carcinoma: A meta-analysis. Nutr. Cancer 2013, 65, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Weikert, S.; Boeing, H.; Pischon, T.; Olsen, A.; Tjonneland, A.; Overvad, K.; Becker, N.; Linseisen, J.; Lahmann, P.H.; Arvaniti, A.; et al. Fruits and vegetables and renal cell carcinoma: Findings from the European prospective investigation into Cancer and nutrition (epic). Int. J. Cancer 2006, 118, 3133–3139. [Google Scholar] [CrossRef] [Green Version]
- Deckers, I.A.; van den Brandt, P.A.; van Engeland, M.; Soetekouw, P.M.; Baldewijns, M.M.; Goldbohm, R.A.; Schouten, L.J. Long-term dietary sodium, potassium and fluid intake; exploring potential novel risk factors for renal cell Cancer in the Netherlands cohort study on diet and Cancer. Br. J. Cancer 2014, 110, 797–801. [Google Scholar] [CrossRef] [Green Version]
- Poole, R.; Kennedy, O.J.; Roderick, P.; Fallowfield, J.A.; Hayes, P.C.; Parkes, J. Coffee consumption and health: Umbrella review of meta-analyses of multiple health outcomes. BMJ 2017, 359, j5024. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Wang, S.; Zhu, C.; Huang, H.; Wu, L.; Wan, X.; Yang, X.; Zhang, H.; Miao, R.; He, L.; et al. Coffee and cancer risk: A meta-analysis of prospective observational studies. Sci. Rep. 2016, 6, 33711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, F.; Li, X.; Jiang, X. Coffee consumption and risk of the metabolic syndrome: A meta-analysis. Diabetes Metab. 2016, 42, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Wang, C.; Xu, J.; Wang, S. Cafestol and kahweol: A review on their bioactivities and pharmacological properties. Int. J. Mol. Sci. 2019, 20, 4238. [Google Scholar] [CrossRef] [Green Version]
- Makino, T.; Izumi, K.; Hiratsuka, K.; Kano, H.; Shimada, T.; Nakano, T.; Kadomoto, S.; Naito, R.; Iwamoto, H.; Yaegashi, H.; et al. Anti-proliferative and anti-migratory properties of coffee diterpenes kahweol acetate and cafestol in human renal cancer cells. Sci. Rep. 2021, 11, 675. [Google Scholar] [CrossRef] [PubMed]
- Moeenfard, M.; Cortez, A.; Machado, V.; Costa, R.; Luís, C.; Coelho, P.; Soares, R.; Alves, A.; Borges, N.; Santos, A. Anti-angiogenic properties of cafestol and kahweol palmitate diterpene esters. J. Cell Biochem. 2016, 117, 2748–2756. [Google Scholar] [CrossRef] [Green Version]
- Leiba, A.; Kark, J.D.; Afek, A.; Derazne, E.; Barchana, M.; Tzur, D.; Vivante, A.; Shamiss, A. Adolescent obesity and paternal country of origin predict renal cell carcinoma: A cohort study of 1.1 million 16 to 19-year-old males. J. Urol. 2013, 189, 25–29. [Google Scholar] [CrossRef]
- Sawada, N.; Inoue, M.; Sasazuki, S.; Iwasaki, M.; Yamaji, T.; Shimazu, T.; Tsugane, S.; Jphc Study Group. Body mass index and subsequent risk of kidney Cancer: A prospective cohort study in Japan. Ann. Epidemiol. 2010, 20, 466–472. [Google Scholar] [CrossRef]
- Hidayat, K.; Du, X.; Zou, S.Y.; Shi, B.M. Blood pressure and kidney cancer risk: Meta-analysis of prospective studies. J. Hypertens 2017, 35, 1333–1344. [Google Scholar] [CrossRef]
- Sharifi, N.; Farrar, W.L. Perturbations in hypoxia detection: A shared link between hereditary and sporadic tumor formation? Med. Hypotheses 2006, 66, 732–735. [Google Scholar] [CrossRef]
- Gago-Dominguez, M.; Castelao, J.E. Lipid peroxidation and renal cell carcinoma: Further supportive evidence and new mechanistic insights. Free Radic. Biol. Med. 2006, 40, 721–733. [Google Scholar] [CrossRef]
- Ishikane, S.; Takahashi-Yanaga, F. The role of angiotensin II in cancer metastasis: Potential of renin-angiotensin system blockade as a treatment for cancer metastasis. Biochem. Pharmacol. 2018, 151, 96–103. [Google Scholar] [CrossRef]
- Makino, T.; Izumi, K.; Iwamoto, H.; Kadomoto, S.; Naito, R.; Yaegashi, H.; Shigehara, K.; Kadono, Y.; Mizokami, A. The impact of hypertension on the clinicopathological outcome and progression of renal cell carcinoma. Anticancer Res. 2020, 40, 4087–4093. [Google Scholar] [CrossRef] [PubMed]
- Miyajima, A.; Yazawa, S.; Kosaka, T.; Tanaka, N.; Shirotake, S.; Mizuno, R.; Kikuchi, E.; Oya, M. Prognostic impact of renin-angiotensin system blockade on renal cell carcinoma after surgery. Ann. Surg. Oncol. 2015, 22, 3751–3759. [Google Scholar] [CrossRef] [PubMed]
- McKay, R.R.; Rodriguez, G.E.; Lin, X.; Kaymakcalan, M.D.; Hamnvik, O.P.; Sabbisetti, V.S.; Bhatt, R.S.; Simantov, R.; Choueiri, T.K. Angiotensin system inhibitors and survival outcomes in patients with metastatic renal cell carcinoma. Clin. Cancer Res. 2015, 21, 2471–2479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearson-Stuttard, J.; Zhou, B.; Kontis, V.; Bentham, J.; Gunter, M.J.; Ezzati, M. Worldwide burden of cancer attributable to diabetes and high body-mass index: A comparative risk assessment. Lancet Diabetes Endocrinol. 2018, 6, e6–e15. [Google Scholar] [CrossRef]
- Hendriks, S.H.; Schrijnders, D.; van Hateren, K.J.; Groenier, K.H.; Siesling, S.; Maas, A.H.E.M.; Landman, G.W.D.; Bilo, H.J.G.; Kleefstra, N. Association between body mass index and obesity-related cancer risk in men and women with Type 2 diabetes in primary care in the Netherlands: A cohort study (Zodiac-56). BMJ Open 2018, 8, e018859. [Google Scholar] [CrossRef] [PubMed]
- Joh, H.K.; Willett, W.C.; Cho, E. Type 2 diabetes and the risk of renal cell Cancer in women. Diabetes Care 2011, 34, 1552–1556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrissey, J.J.; London, A.N.; Luo, J.; Kharasch, E.D. Urinary biomarkers for the early diagnosis of kidney Cancer. Mayo Clin. Proc. 2010, 85, 413–421. [Google Scholar] [CrossRef] [Green Version]
- Morrissey, J.J.; Kharasch, E.D. The specificity of urinary aquaporin 1 and perilipin 2 to screen for renal cell carcinoma. J. Urol. 2013, 189, 1913–1920. [Google Scholar] [CrossRef] [Green Version]
- Morrissey, J.J.; Mobley, J.; Figenshau, R.S.; Vetter, J.; Bhayani, S.; Kharasch, E.D. Urine aquaporin 1 and perilipin 2 differentiate renal carcinomas from other imaged renal masses and bladder and prostate Cancer. Mayo Clin. Proc. 2015, 90, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Han, W.K.; Alinani, A.; Wu, C.L.; Michaelson, D.; Loda, M.; McGovern, F.J.; Thadhani, R.; Bonventre, J.V. Human kidney injury Molecule-1 is a tissue and urinary tumor Marker of renal cell carcinoma. J. Am. Soc. Nephrol. 2005, 16, 1126–1134. [Google Scholar] [CrossRef] [PubMed]
- Morrissey, J.J.; London, A.N.; Lambert, M.C.; Kharasch, E.D. Sensitivity and specificity of urinary neutrophil gelatinase-associated lipocalin and kidney injury Molecule-1 for the diagnosis of renal cell carcinoma. Am. J. Nephrol. 2011, 34, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Su Kim, D.; Choi, Y.D.; Moon, M.; Kang, S.; Lim, J.B.; Kim, K.M.; Park, K.M.; Cho, N.H. Composite three-Marker assay for early detection of kidney Cancer. Cancer Epidemiol. Biomark. Prev. 2013, 22, 390–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Zhuang, J.; Wang, P.P.; Jiang, J.; Lin, C.; Zeng, P.; Liang, Y.; Zhang, X.; Dai, Y.; Diao, H. DNA methylation-based classification and identification of renal cell carcinoma prognosis-subgroups. Cancer Cell Int. 2019, 19, 185. [Google Scholar] [CrossRef] [PubMed]
- Dessie, E.Y.; Tsai, J.J.P.; Chang, J.G.; Ng, K.L. A novel Mirna-based classification model of risks and stages for clear cell renal cell carcinoma patients. BMC Bioinform. 2021, 22 (Suppl. 10), 270. [Google Scholar] [CrossRef]
- Sun, Z.; Jing, C.; Xiao, C.; Li, T. Long non-coding rna profile study identifies an immune-related lncrna prognostic signature for kidney renal clear cell carcinoma. Front. Oncol. 2020, 10, 1430. [Google Scholar] [CrossRef]
- Kubiliute, R.; Jarmalaite, S. Epigenetic biomarkers of renal cell carcinoma for liquid biopsy tests. Int. J. Mol. Sci. 2021, 22, 8846. [Google Scholar] [CrossRef]
- Minardi, D.; Lucarini, G.; Filosa, A.; Milanese, G.; Zizzi, A.; Primio, R.D.; Montironi, R.; Muzzonigro, G. Prognostic role of global DNA-methylation and histone acetylation in Pt1a clear cell renal carcinoma in partial nephrectomy specimens. J. Cell Mol. Med. 2009, 13, 2115–2121. [Google Scholar] [CrossRef]
- Arai, E.; Kanai, Y. Genetic and epigenetic alterations During renal carcinogenesis. Int. J. Clin. Exp. Pathol. 2010, 4, 58–73. [Google Scholar]
- Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 2013, 499, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Nuzzo, P.V.; Berchuck, J.E.; Korthauer, K.; Spisak, S.; Nassar, A.H.; Abou Alaiwi, S.; Chakravarthy, A.; Shen, S.Y.; Bakouny, Z.; Boccardo, F.; et al. Detection of renal cell carcinoma using plasma and urine cell-free DNA Methylomes. Nat. Med. 2020, 26, 1041–1043. [Google Scholar] [CrossRef] [PubMed]
- Tito, C.; De Falco, E.; Rosa, P.; Iaiza, A.; Fazi, F.; Petrozza, V.; Calogero, A. Circulating microRNAs from the molecular mechanisms to clinical biomarkers: A focus on the clear cell renal cell carcinoma. Genes 2021, 12, 1154. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Li, M.; Ma, X.; Nan, F.; Zhang, L.; Yan, Z.; Li, H.; Zhang, G.; Han, Y.; Xie, L.; et al. Systematic analysis of microRNA biomarkers for diagnosis, prognosis, and therapy in patients with clear cell renal cell carcinoma. Front. Oncol. 2020, 10, 543817. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhao, H.; Lu, Y.; Li, H.; Yan, G. MicroRNAs as potential diagnostic biomarkers in renal cell carcinoma. Tumour Biol. 2014, 35, 11041–11050. [Google Scholar] [CrossRef]
- Wang, C.; Hu, J.; Lu, M.; Gu, H.; Zhou, X.; Chen, X.; Zen, K.; Zhang, C.Y.; Zhang, T.; Ge, J.; et al. A panel of five serum mirnas as a potential diagnostic tool for early-stage renal cell carcinoma. Sci. Rep. 2015, 5, 7610. [Google Scholar] [CrossRef]
- Heinemann, F.G.; Tolkach, Y.; Deng, M.; Schmidt, D.; Perner, S.; Kristiansen, G.; Müller, S.C.; Ellinger, J. Serum Mir-122-5p and Mir-206 expression: Non-invasive prognostic biomarkers for renal cell carcinoma. Clin. Epigenet. 2018, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Iwamoto, H.; Kanda, Y.; Sejima, T.; Osaki, M.; Okada, F.; Takenaka, A. Serum Mir-210 as a potential biomarker of early clear cell renal cell carcinoma. Int. J. Oncol. 2014, 44, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, T.; Chen, C.; Wu, Z.; Bai, P.; Li, S.; Chen, B.; Liu, R.; Zhang, K.; Li, W.; et al. Serum exosomal Mir-210 as a potential biomarker for clear cell renal cell carcinoma. J. Cell Biochem. 2018, 120, 1492–1502. [Google Scholar] [CrossRef]
- Dias, F.; Teixeira, A.L.; Ferreira, M.; Adem, B.; Bastos, N.; Vieira, J.; Fernandes, M.; Sequeira, M.I.; Maurício, J.; Lobo, F.; et al. Plasmatic Mir-210, Mir-221 and Mir-1233 profile: Potential liquid biopsies candidates for renal cell carcinoma. Oncotarget 2017, 8, 103315–103326. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Ni, M.; Su, Y.; Wang, H.; Zhu, S.; Zhao, A.; Li, G. MicroRNAs in serum exosomes as potential biomarkers in clear-cell renal cell carcinoma. Eur. Urol. Focus 2018, 4, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Fasanaro, P.; Greco, S.; Lorenzi, M.; Pescatori, M.; Brioschi, M.; Kulshreshtha, R.; Banfi, C.; Stubbs, A.; Calin, G.A.; Ivan, M.; et al. An integrated approach for experimental target identification of hypoxia-induced Mir-210. J. Biol. Chem. 2009, 284, 35134–35143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.; Xie, F.; Geng, L.; Shen, W.; Sui, C.; Yang, J. Potential role of Microrna-210 as biomarker in human cancers detection: A meta-analysis. BioMed Res. Int. 2015, 2015, 303987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrozza, V.; Pastore, A.L.; Palleschi, G.; Tito, C.; Porta, N.; Ricci, S.; Marigliano, C.; Costantini, M.; Simone, G.; Di Carlo, A.; et al. Secreted Mir-210-3p as non-invasive biomarker in clear cell renal cell carcinoma. Oncotarget 2017, 8, 69551–69558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrozza, V.; Carbone, A.; Bellissimo, T.; Porta, N.; Palleschi, G.; Pastore, A.L.; Di Carlo, A.; Della Rocca, C.; Fazi, F. Oncogenic microRNAs characterization in clear cell renal cell carcinoma. Int. J. Mol. Sci. 2015, 16, 29219–29225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrozza, V.; Costantini, M.; Tito, C.; Giammusso, L.M.; Sorrentino, V.; Cacciotti, J.; Porta, N.; Iaiza, A.; Pastore, A.L.; Di Carlo, A.; et al. Emerging role of secreted Mir-210-3p as potential biomarker for clear cell renal cell carcinoma metastasis. Cancer Biomark 2020, 27, 181–188. [Google Scholar] [CrossRef]
- Cochetti, G.; Cari, L.; Nocentini, G.; Maulà, V.; Suvieri, C.; Cagnani, R.; Rossi De Vermandois, J.A.; Mearini, E. Detection of urinary mirnas for diagnosis of clear cell renal cell carcinoma. Sci. Rep. 2020, 10, 21290. [Google Scholar] [CrossRef]
- Mytsyk, Y.; Dosenko, V.; Borys, Y.; Kucher, A.; Gazdikova, K.; Busselberg, D.; Caprnda, M.; Kruzliak, P.; Farooqi, A.A.; Lubov, M. Microrna-15a expression measured in urine samples as a potential biomarker of renal cell carcinoma. Int. Urol. Nephrol. 2018, 50, 851–859. [Google Scholar] [CrossRef]
- Outeiro-Pinho, G.; Barros-Silva, D.; Aznar, E.; Sousa, A.I.; Vieira-Coimbra, M.; Oliveira, J.; Gonçalves, C.S.; Costa, B.M.; Junker, K.; Henrique, R.; et al. Microrna-30a-5p(Me): A novel diagnostic and prognostic biomarker for clear cell renal cell carcinoma in tissue and urine samples. J. Exp. Clin. Cancer Res. 2020, 39, 98. [Google Scholar] [CrossRef]
- Song, S.; Long, M.; Yu, G.; Cheng, Y.; Yang, Q.; Liu, J.; Wang, Y.; Sheng, J.; Wang, L.; Wang, Z.; et al. Urinary exosome Mir-30c-5p as a biomarker of clear cell renal cell carcinoma that inhibits progression by targeting Hspa5. J. Cell Mol. Med. 2019, 23, 6755–6765. [Google Scholar] [CrossRef]
- Bhan, A.; Soleimani, M.; Mandal, S.S. Long noncoding rna and Cancer: A new paradigm. Cancer Res. 2017, 77, 3965–3981. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Hao, Y.; Yu, W.; Yang, X.; Luo, X.; Zhao, J.; Li, J.; Hu, X.; Li, L. Long non-coding rna emergence During renal cell carcinoma tumorigenesis. Cell Physiol. Biochem. 2018, 47, 735–746. [Google Scholar] [CrossRef]
- Martens-Uzunova, E.S.; Böttcher, R.; Croce, C.M.; Jenster, G.; Visakorpi, T.; Calin, G.A. Long noncoding rna in prostate, bladder, and kidney Cancer. Eur. Urol. 2014, 65, 1140–1151. [Google Scholar] [CrossRef]
- Blondeau, J.J.; Deng, M.; Syring, I.; Schrödter, S.; Schmidt, D.; Perner, S.; Müller, S.C.; Ellinger, J. Identification of novel Long non-coding rnas in clear cell renal cell carcinoma. Clin. Epigenet. 2015, 7, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seles, M.; Hutterer, G.C.; Kiesslich, T.; Pummer, K.; Berindan-Neagoe, I.; Perakis, S.; Schwarzenbacher, D.; Stotz, M.; Gerger, A.; Pichler, M. Current insights into Long non-coding rnas in renal cell carcinoma. Int. J. Mol. Sci. 2016, 17, 573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Wang, Y.Q.; Weng, W.W.; Zhang, Q.Y.; Yang, X.Q.; Gan, H.L.; Yang, Y.S.; Zhang, P.P.; Sun, M.H.; Xu, M.D.; et al. A serum-circulating long noncoding rna signature can discriminate between patients with clear cell renal cell carcinoma and healthy controls. Oncogenesis 2016, 5, e192. [Google Scholar] [CrossRef] [Green Version]
- He, Z.H.; Qin, X.H.; Zhang, X.L.; Yi, J.W.; Han, J.Y. Long noncoding rna Gihcg is a potential diagnostic and prognostic biomarker and therapeutic target for renal cell carcinoma. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 46–54. [Google Scholar]
- Xie, J.; Zhong, Y.; Chen, R.; Li, G.; Luo, Y.; Yang, J.; Sun, Z.; Liu, Y.; Liu, P.; Wang, N.; et al. Serum Long non-coding rna Linc00887 as a potential biomarker for diagnosis of renal cell carcinoma. FEBS Open Bio 2020, 10, 1802–1809. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Y.; Gu, L.; Li, X.; Gao, Y.; Lyu, X.; Chen, L.; Luo, G.; Wang, L.; Xie, Y.; et al. Lncrnas act as prognostic and diagnostic biomarkers in renal cell carcinoma: A systematic review and meta-analysis. Oncotarget 2016, 7, 74325–74336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Xu, A.M.; Zhang, J.Y.; He, X.M.; Pan, Y.S.; Cheng, G.; Qin, C.; Hua, L.X.; Wang, Z.J. Prognostic significance of Long non-coding rna Malat-1 in various human carcinomas: A meta-analysis. Genet. Mol. Res. 2016, 15, 10–4238. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Kawasaki, Y.; Maekawa, M.; Takasaki, S.; Saigusa, D.; Ota, H.; Shimada, S.; Yamashita, S.; Mitsuzuka, K.; Yamaguchi, H.; et al. Value of global metabolomics in association with diagnosis and clinicopathological factors of renal cell carcinoma. Int. J. Cancer 2019, 145, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Aronov, P.; Zakharkin, S.O.; Anderson, D.; Perroud, B.; Thompson, I.M.; Weiss, R.H. Urine metabolomics analysis for kidney cancer detection and biomarker discovery. Mol. Cell Proteom. 2009, 8, 558–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganti, S.; Weiss, R.H. Urine metabolomics for kidney cancer detection and biomarker discovery. Urol. Oncol. 2011, 29, 551–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oto, J.; Fernández-Pardo, Á.; Roca, M.; Plana, E.; Solmoirago, M.J.; Sánchez-González, J.V.; Vera-Donoso, C.D.; Martínez-Sarmiento, M.; España, F.; Navarro, S.; et al. Urine metabolomic analysis in clear cell and papillary renal cell carcinoma: A pilot study. J. Proteom. 2020, 218, 103723. [Google Scholar] [CrossRef]
- Sato, T.; Kawasaki, Y.; Maekawa, M.; Takasaki, S.; Shimada, S.; Morozumi, K.; Sato, M.; Kawamorita, N.; Yamashita, S.; Mitsuzuka, K.; et al. Accurate quantification of urinary metabolites for predictive models manifest clinicopathology of renal cell carcinoma. Cancer Sci. 2020, 111, 2570–2578. [Google Scholar] [CrossRef] [PubMed]
- Guida, F.; Tan, V.Y.; Corbin, L.J.; Smith-Byrne, K.; Alcala, K.; Langenberg, C.; Stewart, I.D.; Butterworth, A.S.; Surendran, P.; Achaintre, D.; et al. The blood metabolome of incident kidney Cancer: A case-control study nested within the Metkid consortium. PLoS Med. 2021, 18, e1003786. [Google Scholar] [CrossRef]
- Santorelli, L.; Stella, M.; Chinello, C.; Capitoli, G.; Piga, I.; Smith, A.; Grasso, A.; Grasso, M.; Bovo, G.; Magni, F. Does the urinary proteome reflect Ccrcc stage and grade progression? Diagnostics 2021, 11, 2369. [Google Scholar] [CrossRef]
- Albelda, S.M. Role of integrins and other cell adhesion molecules in tumor progression and metastasis. Lab. Investig. 1993, 68, 4–17. [Google Scholar]
- Hegele, A.; Heidenreich, A.; Kropf, J.; von Knobloch, R.; Varga, Z.; Hofmann, R.; Olbert, P. Plasma levels of cellular fibronectin in patients with localized and metastatic renal cell carcinoma. Tumour Biol. 2004, 25, 111–116. [Google Scholar] [CrossRef]
- Yokomizo, A.; Takakura, M.; Kanai, Y.; Sakuma, T.; Matsubara, J.; Honda, K.; Naito, S.; Yamada, T.; Ono, M. Use of quantitative shotgun proteomics to identify fibronectin 1 as a potential plasma biomarker for clear cell carcinoma of the kidney. Cancer Biomark 2012, 10, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Waalkes, S.; Atschekzei, F.; Kramer, M.W.; Hennenlotter, J.; Vetter, G.; Becker, J.U.; Stenzl, A.; Merseburger, A.S.; Schrader, A.J.; Kuczyk, M.A.; et al. Fibronectin 1 mrna expression correlates with advanced disease in renal Cancer. BMC Cancer 2010, 10, 503. [Google Scholar] [CrossRef] [Green Version]
- Atrih, A.; Mudaliar, M.A.; Zakikhani, P.; Lamont, D.J.; Huang, J.T.; Bray, S.E.; Barton, G.; Fleming, S.; Nabi, G. Quantitative proteomics in resected renal cancer tissue for biomarker discovery and profiling. Br. J. Cancer 2014, 110, 1622–1633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senturk, A.; Sahin, A.T.; Armutlu, A.; Kiremit, M.C.; Acar, O.; Erdem, S.; Bagbudar, S.; Esen, T.; Tuncbag, N.; Ozlu, N. Quantitative proteomics identifies secreted diagnostic biomarkers as well as tumor-dependent prognostic targets for clear cell renal cell carcinoma. Mol. Cancer Res. 2021, 19, 1322–1337. [Google Scholar] [CrossRef] [PubMed]
- Vaz, F.M.; Pras-Raves, M.; Bootsma, A.H.; van Kampen, A.H.C. Principles and practice of lipidomics. J. Inherit. Metab. Dis. 2015, 38, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Sutphen, R.; Xu, Y.; Wilbanks, G.D.; Fiorica, J.; Grendys, E.C., Jr.; LaPolla, J.P.; Arango, H.; Hoffman, M.S.; Martino, M.; Wakeley, K.; et al. Lysophospholipids are potential biomarkers of ovarian Cancer. Cancer Epidemiol. Biomark. Prev. 2004, 13, 1185–1191. [Google Scholar] [CrossRef]
- Giskeødegård, G.F.; Hansen, A.F.; Bertilsson, H.; Gonzalez, S.V.; Kristiansen, K.A.; Bruheim, P.; Mjøs, S.A.; Angelsen, A.; Bathen, T.F.; Tessem, M.B. Metabolic markers in blood can separate prostate Cancer from benign prostatic hyperplasia. Br. J. Cancer 2015, 113, 1712–1719. [Google Scholar] [CrossRef]
- Nagahashi, M.; Tsuchida, J.; Moro, K.; Hasegawa, M.; Tatsuda, K.; Woelfel, I.A.; Takabe, K.; Wakai, T. High levels of sphingolipids in human breast Cancer. J. Surg. Res. 2016, 204, 435–444. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, M.; Cheng, X.; Liu, X.; Sun, H.; Guo, Z.; Li, J.; Tang, X.; Wang, Z.; Sun, W.; et al. Lc-Ms-based plasma metabolomics and lipidomics analyses for differential diagnosis of bladder Cancer and renal cell carcinoma. Front. Oncol. 2020, 10, 717. [Google Scholar] [CrossRef]
- Jones, E.E.; Powers, T.W.; Neely, B.A.; Cazares, L.H.; Troyer, D.A.; Parker, A.S.; Drake, R.R. Maldi imaging mass spectrometry profiling of proteins and lipids in clear cell renal cell carcinoma. Proteomics 2014, 14, 924–935. [Google Scholar] [CrossRef] [Green Version]
- Saito, K.; Arai, E.; Maekawa, K.; Ishikawa, M.; Fujimoto, H.; Taguchi, R.; Matsumoto, K.; Kanai, Y.; Saito, Y. Lipidomic signatures and associated transcriptomic profiles of clear cell renal cell carcinoma. Sci. Rep. 2016, 6, 28932. [Google Scholar] [CrossRef] [Green Version]
- Manzi, M.; Palazzo, M.; Knott, M.E.; Beauseroy, P.; Yankilevich, P.; Giménez, M.I.; Monge, M.E. Coupled mass-spectrometry-based lipidomics machine learning approach for early detection of clear cell renal cell carcinoma. J. Proteome. Res. 2021, 20, 841–857. [Google Scholar] [CrossRef]
- Mustafa, A.; Gupta, S.; Hudes, G.R.; Egleston, B.L.; Uzzo, R.G.; Kruger, W.D. Serum amino acid levels as a biomarker for renal cell carcinoma. J. Urol. 2011, 186, 1206–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.; Ma, X.; Li, H.; Guo, G.; Li, P.; Li, H.; Gu, L.; Li, X.; Chen, L.; Zhang, X. The predictive and prognostic values of serum amino acid levels for clear cell renal cell carcinoma. Urol. Oncol. 2017, 35, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.O.; Uzzo, R.G.; Kister, D.; Kruger, W.D. Combination of serum histidine and plasma tryptophan as a potential biomarker to detect clear cell renal cell carcinoma. J. Transl. Med. 2017, 15, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makino, T.; Kadomoto, S.; Izumi, K.; Mizokami, A. Epidemiology and Prevention of Renal Cell Carcinoma. Cancers 2022, 14, 4059. https://doi.org/10.3390/cancers14164059
Makino T, Kadomoto S, Izumi K, Mizokami A. Epidemiology and Prevention of Renal Cell Carcinoma. Cancers. 2022; 14(16):4059. https://doi.org/10.3390/cancers14164059
Chicago/Turabian StyleMakino, Tomoyuki, Suguru Kadomoto, Kouji Izumi, and Atsushi Mizokami. 2022. "Epidemiology and Prevention of Renal Cell Carcinoma" Cancers 14, no. 16: 4059. https://doi.org/10.3390/cancers14164059
APA StyleMakino, T., Kadomoto, S., Izumi, K., & Mizokami, A. (2022). Epidemiology and Prevention of Renal Cell Carcinoma. Cancers, 14(16), 4059. https://doi.org/10.3390/cancers14164059