Dysregulated Expression of Three Genes in Colorectal Cancer Stratifies Patients into Three Risk Groups
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodriguez-Salas, N.; Dominguez, G.; Barderas, R.; Mendiola, M.; García-Albéniz, X.; Maurel, J.; Batlle, J.F. Clinical Relevance of Colorectal Cancer Molecular Subtypes. Crit. Rev. Oncol. Hematol. 2017, 109, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Fan, X.; Yang, L.; Song, J.; Fang, S.; Tu, J.; Chen, M.J.; Zheng, L.Y.; Wu, F.Z.; Zhang, D.K.; et al. The Identification of a Common Different Gene Expression Signature in Patients with colorectal Cancer. Math. Biosci. Eng. 2019, 16, 2942–2958. [Google Scholar] [CrossRef] [PubMed]
- Engstrand, J.; Nilsson, H.; Strömberg, C.; Jonas, E.; Freedman, J. Colorectal Cancer Liver Metastases—A Population-Based Study on Incidence, Management and Survival. BMC Cancer 2018, 18, 78. [Google Scholar] [CrossRef] [PubMed]
- Fong, Y.; Fortner, J.; Sun, R.L.; Brennan, M.F.; Blumgart, L.H. Clinical Score for Predicting Recurrence after Hepatic Resection for Metastatic Colorectal Cancer. Ann. Surg. 1999, 230, 309. [Google Scholar] [CrossRef] [PubMed]
- Sayagués, J.M.; Corchete, L.A.; Gutiérrez, M.L.; Sarasquete, M.E.; del Mar Abad, M.; Bengoechea, O.; Fermiñán, E.; Anduaga, M.F.; del Carmen, S.; Iglesias, M.; et al. Genomic Characterization of Liver Metastases from Colorectal Cancer Patients. Oncotarget 2016, 7, 72908–72922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-González, M.; Gutiérrez, M.L.; Sayagués, J.M.; Muñoz-Bellvís, L.; Orfao, A. Genomic Profiling of Sporadic Liver Metastatic Colorectal Cancer. Semin. Cancer Biol. 2021, 71, 98–108. [Google Scholar] [CrossRef]
- Gutiérrez, M.L.; Corchete, L.A.; Sarasquete, M.E.; del Mar Abad, M.; Bengoechea, O.; Fermiñán, E.; Anduaga, M.F.; del Carmen, S.; Iglesias, M.; Esteban, C.; et al. Prognostic Impact of a Novel Gene Expression Profile Classifier for The Discrimination between Metastatic and Non-Metastatic Primary Colorectal Cancer Tumors. Oncotarget 2017, 8, 107685–107700. [Google Scholar] [CrossRef] [Green Version]
- Shi, G.; Wang, Y.; Zhang, C.; Zhao, Z.; Sun, X.; Zhang, S.; Fan, J.; Zhou, C.; Zhang, J.; Zhang, H.; et al. Identification of Genes Involved in the Four Stages Of Colorectal Cancer: Gene Expression Profiling. Mol. Cell. Probes. 2018, 37, 39–47. [Google Scholar] [CrossRef]
- Gao, X.; Yang, J. Identification Of Genes Related To Clinicopathological Characteristics and Prognosis of Patients with Colorectal Cancer. DNA Cell Biol. 2020, 39, 690–699. [Google Scholar] [CrossRef] [Green Version]
- You, Y.N.; Rustin, R.B.; Sullivan, J.D. Oncotype DX® Colon Cancer Assay for Prediction of Recurrence Risk in Patients with Stage II and III Colon Cancer: A Review of the Evidence. Surg. Oncol. 2015, 24, 61–66. [Google Scholar] [CrossRef]
- Tan, I.B.; Tan, P. An 18-Gene Signature (Coloprint®) for Colon Cancer Prognosis. Nat. Rev. Clin. Oncol. 2011, 8, 131–133. [Google Scholar] [CrossRef]
- Kopetz, S.; Tabernero, J.; Rosenberg, R.; Jiang, Z.; Moreno, V.; Bachleitner-Hofmann, T.; Lanza, G.; Stork-Sloots, L.; Maru, D.; Simon, I.; et al. Genomic Classifier Coloprint Predicts Recurrence in Stage II Colorectal Cancer Patients More Accurately than Clinical Factors. Oncologist 2015, 20, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Kelley, R.K.; Van Bebber, S.L.; Phillips, K.A.; Venook, A.P. Personalized Medicine and Oncology Practice Guidelines: A Case Study of Contemporary Biomarkers in Colorectal Cancer. JNCCN J. Natl. Compr. Cancer Netw. 2011, 9, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to Build a Bridge from a Population-Based to a More “Personalized” Approach to Cancer Staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef]
- Greene, F.L. Current TNM Staging of Colorectal Cancer. Lancet Oncol. 2007, 8, 572–573. [Google Scholar] [CrossRef]
- Forghanifard, M.M.; Moghbeli, M.; Raeisossadati, R.; Tavassoli, A.; Mallak, A.J.; Boroumand-Noughabi, S.; Abbaszadegan, M.R. Role of SALL4 in the Progression and Metastasis of Colorectal Cancer. J. Biomed. Sci. 2013, 20, 6. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Deng, R.; Wu, C.; Zhang, P.; Wu, K.; Shi, L.; Liu, X.; Bai, J.; Deng, M.; Gao, J.; et al. Inhibition of SALL4 Suppresses Carcinogenesis of Colorectal Cancer via Regulating Gli1 Expression. Int. J. Clin. Exp. Pathol. 2015, 8, 10092–10101. [Google Scholar]
- Ardalan Khales, S.; Abbaszadegan, M.R.; Abdollahi, A.; Raeisossadati, R.; Tousi, M.F.; Forghanifard, M.M. SALL4 as A New Biomarker for Early Colorectal Cancers. J. Cancer Res. Clin. Oncol. 2015, 141, 229–235. [Google Scholar] [CrossRef]
- Hao, L.; Zhao, Y.; Wang, Z.; Yin, H.; Zhang, X.; He, T.; Song, S.; Sun, S.; Wang, B.; Li, Z.; et al. Expression and Clinical Significance of SALL4 and Β-Catenin in Colorectal Cancer. J. Mol. Histol. 2016, 47, 117–128. [Google Scholar] [CrossRef]
- Fei, W.; Chen, L.; Chen, J.; Shi, Q.; Zhang, L.; Liu, S.; Li, L.; Zheng, L.; Hu, X. RBP4 and THBS2 Are Serum Biomarkers for Diagnosis of Colorectal Cancer. Oncotarget 2017, 8, 92254–92264. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, L.; Li, H.; Sun, W.; Zhang, H.; Lai, M. THBS2 is a Potential Prognostic Biomarker in Colorectal Cancer. Sci. Rep. 2016, 6, 33366. [Google Scholar] [CrossRef] [Green Version]
- Tian, Q.; Liu, Y.; Zhang, Y.; Song, Z.; Yang, J.; Zhang, J.; Guo, T.; Gao, W.; Dai, F.; He, C. THBS2 is a Biomarker for AJCC Stages and a Strong Prognostic Indicator in Colorectal Cancer. J. Buon. 2018, 23, 1331–1336. [Google Scholar]
- Wu, X.-G.; Zhou, C.-F.; Zhang, Y.-M.; Yan, R.-M.; Wei, W.-F.; Chen, X.-J.; Yi, H.-Y.; Liang, L.-J.; Fan, L.-S.; Liang, L.; et al. Cancer-Derived Exosomal Mir-221-3p Promotes Angiogenesis by Targeting THBS2 in Cervical Squamous Cell Carcinoma. Angiogenesis 2019, 22, 397–410. [Google Scholar] [CrossRef]
- Rittling, S.R.; Singh, R. Osteopontin in Immune-Mediated Diseases. J. Dent. Res. 2015, 94, 1638–1645. [Google Scholar] [CrossRef] [Green Version]
- Allan, A.L.; George, R.; Vantyghem, S.A.; Lee, M.W.; Hodgson, N.C.; Engel, C.J.; Holliday, R.L.; Girvan, D.P.; Scott, L.A.; Postenka, C.O.; et al. Role of the Integrin-Binding Protein Osteopontin in Lymphatic Metastasis of Breast Cancer. Am. J. Pathol. 2006, 169, 233–246. [Google Scholar] [CrossRef] [Green Version]
- Anborgh, P.H.; Mutrie, J.C.; Tuck, A.B.; Chambers, A.F. Role of the Metastasis-Promoting Protein Osteopontin in the Tumour Microenvironment. J. Cell. Mol. Med. 2010, 14, 2037–2044. [Google Scholar] [CrossRef] [Green Version]
- Coppola, D.; Szabo, M.; Boulware, D.; Muraca, P.; Alsarraj, M.; Chambers, A.F.; Yeatman, T.J. Correlation of Osteopontin Protein Expression and Pathological Stage across a Wide Variety of Tumor Histologies. Clin. Cancer Res. 2004, 10, 184–190. [Google Scholar] [CrossRef] [Green Version]
- Lamort, A.S.; Giopanou, I.; Psallidas, I.; Stathopoulos, G.T. Osteopontin as a Link BETWEEN Inflammation and Cancer: The Thorax in the Spotlight. Cells 2019, 8, 815. [Google Scholar] [CrossRef] [Green Version]
- Ng, L.; Wan, T.M.-H.; Lam, C.S.-C.; Chow, A.K.-M.; Wong, S.K.-M.; Man, J.H.-W.; Li, H.-S.; Cheng, N.S.-M.; Pak, R.C.-H.; Cheung, A.H.-K.; et al. Post-Operative Plasma Osteopontin Predicts Distant Metastasis in Human Colorectal Cancer. PLoS ONE. 2015, 10, e0126219. [Google Scholar]
- Sun, G.; Li, Y.; Peng, Y.; Lu, D.; Zhang, F.; Cui, X.; Zhang, Q.; Li, Z. Identification of Differentially Expressed Genes and Biological Characteristics of Colorectal Cancer by Integrated Bioinformatics Analysis. J. Cell. Physiol. 2019, 234, 15215–15224. [Google Scholar] [CrossRef]
- Xiong, Y.; You, W.; Wang, R.; Peng, L.; Fu, Z. Prediction and Validation of Hub Genes Associated with Colorectal Cancer by Integrating PPI Network and Gene Expression Data. Biomed. Res. Int. 2017, 2017, 2421459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; He, X.; Zhang, Y.; Hosaka, K.; Andersson, P.; Wu, J.; Wu, J.; Jing, X.; Du, Q.; Hui, X.; et al. Inflammatory Cell-Derived CXCL3 Promotes Pancreatic Cancer Metastasis through a Novel Myofibroblast-Hijacked Cancer Escape Mechanism. Gut 2022, 71, 129–147. [Google Scholar] [CrossRef] [PubMed]
- Kwon, C.H.; Park, H.J.; Choi, J.H.; Lee, J.R.; Kim, H.K.; Jo, H.-J.; Kim, H.S.; Oh, N.; Song, G.A.; Park, D.Y. Snail and Serpina1 Promote Tumor Progression and Predict Prognosis in Colorectal Cancer. Oncotarget 2015, 6, 20312–20326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, Z.; Ge, A.; Pang, D.; Zhao, Y.; Xu, S. Long Noncoding RNA FER1L4 Acts as an Oncogenic Driver in Human Pan-Cancer. J. Cell. Physiol. 2020, 235, 1795–1807. [Google Scholar] [CrossRef]
- Cox, A.; Tolkach, Y.; Kristiansen, G.; Ritter, M.; Ellinger, J. The Lncrna Fer1L4 Is an Adverse Prognostic Parameter in Clear-Cell Renal-Cell Carcinoma. Clin. Transl. Oncol. 2020, 22, 1524–1531. [Google Scholar] [CrossRef] [Green Version]
- Ostovarpour, M.; Khalaj-Kondori, M.; Ghasemi, T. Correlation Between Expression Levels of Lncrna FER1L4 and RB1 in Patients with Colorectal Cancer. Mol. Biol. Rep. 2021, 48, 4581–4589. [Google Scholar] [CrossRef]
- Chen, C.; Wang, L.; Liao, Q.; Xu, L.; Huang, Y.; Zhang, C.; Ye, H.; Xu, X.; Ye, M.; Duan, S. Association between Six Genetic Polymorphisms and Colorectal Cancer: A Meta-Analysis. Genet. Test. Mol. Biomark. 2014, 18, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Wu, J.; Wu, X.; Zheng, J.; Ou, Y. SRPX2 Boosts Pancreatic Cancer Chemoresistance By Activating PI3K/AKT Axis. Open Med. 2020, 15, 1072–1082. [Google Scholar] [CrossRef]
- Lin, X.; Chang, W.; Wang, Y.; Tian, M.; Yu, Z. SRPX2, an Independent Prognostic Marker, Promotes Cell Migration and Invasion in Hepatocellular Carcinoma. Biomed. Pharmacother. 2017, 93, 398–405. [Google Scholar] [CrossRef]
- Liu, K.; Fan, J.; Wu, J. Sushi Repeat-Containing Protein X-Linked 2 Promotes Angiogenesis through the Urokinase-Type Plasminogen Activator Receptor Dependent Integrin Avβ3/Focal Adhesion Kinase Pathways. Drug Discov. Ther. 2017, 11, 212–217. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Liu, Y.; Gu, X.; Zhang, B.; Song, C.; Cui, B. Identification of Sixteen Metabolic Genes as Potential Biomarkers for Colon Adenocarcinoma. J. BUON. 2021, 26, 1252–1259. [Google Scholar]
- Choi, C.K.; Shin, M.-H.; Cho, S.-H.; Kim, H.-Y.; Zheng, W.; Long, J.; Kweon, S.-S. Association between ALDH2 and ADH1B Polymorphisms and the Risk for Colorectal Cancer in Koreans. Cancer Res. Treat. 2021, 53, 754–762. [Google Scholar] [CrossRef]
- Chiang, S.-F.; Kan, C.-Y.; Hsiao, Y.-C.; Tang, R.; Hsieh, L.-L.; Chiang, J.-M.; Tsai, W.-S.; Yeh, C.-Y.; Hsieh, P.-S.; Liang, Y.; et al. Bone Marrow Stromal Antigen 2 Is a Novel Plasma Biomarker and Prognosticator for Colorectal Carcinoma: A Secretome-Based Verification Study. Dis. Markers 2015, 2015, 874054. [Google Scholar] [CrossRef] [Green Version]
- Mukai, S.; Oue, N.; Oshima, T.; Mukai, R.; Tatsumoto, Y.; Sakamoto, N.; Sentani, K.; Tanabe, K.; Egi, H.; Hinoi, T.; et al. Overexpression of Transmembrane Protein BST2 Is Associated with Poor Survival of Patients with Esophageal, Gastric, or Colorectal Cancer. Ann. Surg. Oncol. 2017, 24, 594–602. [Google Scholar] [CrossRef] [Green Version]
Variable | Total (%) |
---|---|
Age (years) * | 68 (38–92) |
Gender | |
Female | 29 (44) |
Male | 37 (56) |
Tumour size (cm) * | 4 (0.5–13) |
Site of primary tumour | |
Left colon | 7 (10) |
Right colon | 26 (40) |
Rectum | 33 (50) |
CEA serum levels (ng/mL) * | 2.53 (0.54–5481) |
≤5 ng/mL | 54 (82) |
>5 ng/mL | 12 (18) |
Grade of differentiation | |
Well-differentiated | 18 (26) |
Moderately-differentiated | 46 (70) |
Poorly differentiated | 1 (2) |
Undifferentiated | 1 (2) |
Lymphovascular invasion | |
Yes | 22 (33) |
No | 44 (67) |
Histopathological tumour classification | |
pT1 | 5 (8) |
pT2 | 16 (24) |
pT3 | 39 (59) |
pT4 | 6 (9) |
Lymph node involvement | |
pN0 | 35 (53) |
pN1 | 15 (23) |
pN2 | 16 (24) |
Metastasis status | |
M0 | 61 (92) |
M1 | 5 (8) |
TNM stage at diagnosis | |
I | 14 (21) |
II | 21 (32) |
III | 26 (39) |
IV | 5 (8) |
Deaths | 24 (36) |
Overall survival (months) * | 65 (5–79) |
Gene Name | Gene ID # | Fold Change * (vs. Nontumoral) | Chromosomal Band | p |
---|---|---|---|---|
Transcripts upregulated in CRC relative to nontumoral tissue | ||||
SALL4 | NM_001318031 | 5.86 | 20q13.2 | <0.001 |
SPP1 | NM_000582 | 5.84 | 4q22.1 | <0.001 |
THBS2 | NM_003247 | 4.81 | 6q27 | <0.001 |
CXCL3 | NM_002090 | 3.94 | 4q13.3 | <0.001 |
SRPX2 | NM_014467 | 3.08 | Xq22.1 | <0.001 |
SERPINA1 | NM_000295 | 2.65 | 14q32.13 | 0.01 |
FER1L4 | NR_119376 | 2.56 | 20q11.22 | 0.01 |
IL13RA2 | NM_000640 | 1.75 | Xq23 | 0.07 |
MOCOS | NM_017947 | 1.73 | 18q12.2 | 0.01 |
BST2 | NM_004335 | 0.89 | 19p13.11 | 0.02 |
Transcripts downregulated in CRC relative to nontumoral tissue | ||||
ADH1B | NM_001286650 | −5.38 | 4q23 | <0.001 |
ADH1B | NM_000668 | −4.40 | 4q23 | <0.001 |
MYLK | NM_001321309 | −2.41 | 3q21.1 | 0.003 |
MYLK | NM_053026 | −2.40 | 3q21.1 | <0.001 |
SALL4 | MYLK1 | SRPX2 | THBS2 | ADH1B2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cut-Off (Fold Change) | <8.12 | ≥8.12 | p | <7.53 | ≥7.53 | p | <9.79 | ≥9.79 | p | <7.60 | ≥7.60 | p | <9.25 | ≥9.25 | p | |
Tumour size (cm) | <4 | 18 (27) | 12 (18) | 0.03 | 11 (17) | 19 (29) | NS | 16 (24) | 14 (21) | 0.02 | 13 (20) | 17 (26) | NS | 22 (33) | 8 (12) | NS |
≥4 | 30 (46) | 6 (9) | 21 (32) | 15 (23) | 29 (44) | 7 (11) | 20 (30) | 16 (24) | 27 (41) | 9 (14) | ||||||
Site of primary tumour | Colon | 27 (41) | 6 (9) | NS | 22 (33) | 11 (17) | 0.003 | 25 (38) | 8 (12) | NS | 21 (32) | 12 (18) | 0.05 | 28 (42) | 5 (8) | 0.02 |
Rectum | 21 (32) | 12 (18) | 10 (15) | 23 (35) | 20 (30) | 13 (20) | 12 (18) | 21 (32) | 21 (32) | 12 (18) | ||||||
CEA serum levels (ng/mL) | ≤5 | 40 (61) | 14 (21) | NS | 26 (39) | 28 (42) | NS | 40 (61) | 14 (21) | 0.03 | 29 (44) | 25 (38) | NS | 39 (59) | 15 (23) | NS |
>5 | 8 (12) | 4 (6) | 6 (9) | 6 (9) | 5 (8) | 7 (11) | 4 (6) | 8 (12) | 10 (15) | 2 (3) | ||||||
pT stage | pT1–pT2 | 17 (26) | 4 (6) | NS | 15 (23) | 6 (9) | 0.01 | 14 (21) | 7 (11) | NS | 14 (21) | 7 (11) | NS | 19 (29) | 2 (3) | 0.04 |
pT3–pT4 | 31 (47) | 14 (21) | 17 (26) | 28 (42) | 31 (47) | 14 (21) | 19 (29) | 26 (39) | 30 (45) | 15 (23) | ||||||
Lymph node involvement | pN0 | 26 (39) | 9 (14) | NS | 21 (32) | 14 (21) | 0.05 | 24 (36) | 11 (17) | NS | 21 (32) | 14 (21) | NS | 28 (42) | 7 (11) | NS |
pN1–pN2 | 22 (33) | 9 (14) | 11 (17) | 20 (30) | 21 (32) | 10 (15) | 12 (18) | 19 (29) | 21 (32) | 10 (15) | ||||||
TNM stage at diagnosis | I | 10 (15) | 4 (6) | NS | 11 (17) | 3 (4) | 0.02 | 9 (14) | 5 (8) | NS | 10 (15) | 4 (6) | NS | 12 (18) | 2 (3) | NS |
II | 16 (24) | 5 (8) | 10 (15) | 11 (17) | 16 (24) | 5 (8) | 10 (15) | 11 (17) | 17 (26) | 4 (6) | ||||||
III | 18 (27) | 8 (12) | 9 (14) | 17 (26) | 16 (24) | 10 (15) | 11 (17) | 15 (23) | 16 (24) | 10 (15) | ||||||
IV | 4 (6) | 1 (2) | 2 (3) | 3 (5) | 4 (6) | 1 (2) | 2 (3) | 3 (5) | 4 (6) | 1 (2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez, A.; Corchete, L.A.; Alcazar, J.A.; Montero, J.C.; Rodriguez, M.; Chinchilla-Tábora, L.M.; Vidal Tocino, R.; Moyano, C.; Muñoz-Bravo, S.; Sayagués, J.M.; et al. Dysregulated Expression of Three Genes in Colorectal Cancer Stratifies Patients into Three Risk Groups. Cancers 2022, 14, 4076. https://doi.org/10.3390/cancers14174076
Rodriguez A, Corchete LA, Alcazar JA, Montero JC, Rodriguez M, Chinchilla-Tábora LM, Vidal Tocino R, Moyano C, Muñoz-Bravo S, Sayagués JM, et al. Dysregulated Expression of Three Genes in Colorectal Cancer Stratifies Patients into Three Risk Groups. Cancers. 2022; 14(17):4076. https://doi.org/10.3390/cancers14174076
Chicago/Turabian StyleRodriguez, Alba, Luís Antonio Corchete, José Antonio Alcazar, Juan Carlos Montero, Marta Rodriguez, Luis Miguel Chinchilla-Tábora, Rosario Vidal Tocino, Carlos Moyano, Saray Muñoz-Bravo, José María Sayagués, and et al. 2022. "Dysregulated Expression of Three Genes in Colorectal Cancer Stratifies Patients into Three Risk Groups" Cancers 14, no. 17: 4076. https://doi.org/10.3390/cancers14174076
APA StyleRodriguez, A., Corchete, L. A., Alcazar, J. A., Montero, J. C., Rodriguez, M., Chinchilla-Tábora, L. M., Vidal Tocino, R., Moyano, C., Muñoz-Bravo, S., Sayagués, J. M., & Abad, M. (2022). Dysregulated Expression of Three Genes in Colorectal Cancer Stratifies Patients into Three Risk Groups. Cancers, 14(17), 4076. https://doi.org/10.3390/cancers14174076