Updated Systematic Review on the Role of Brain Invasion in Intracranial Meningiomas: What, When, Why?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Meningioma “Brain Invasion” Concept Evolution
4.2. Recognition of Brain Invasion: The Role of Technologies
4.2.1. MRI Findings
4.2.2. Radiomics
4.2.3. Proteomics on CSF
4.2.4. Molecular Mechanisms of Brain-Invasive Meningioma Tumor Cells
4.3. Prognostic Significance and Clinical Implications
4.4. Future Perspectives
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brokinkel, B.; Stummer, W. Brain Invasion in Meningiomas: The Rising Importance of a Uniform Neuropathologic Assessment After the Release of the 2016 World Health Organization Classification of Central Nervous System Tumors. World Neurosurg. 2016, 95, 614–615. [Google Scholar] [CrossRef] [PubMed]
- Behling, F.; Hempel, J.M.; Schittenhelm, J. Brain Invasion in Meningioma-A Prognostic Potential Worth Exploring. Cancers 2021, 13, 3259. [Google Scholar] [CrossRef] [PubMed]
- Biczok, A.; Jungk, C.; Egensperger, R.; von Deimling, A.; Suchorska, B.; Tonn, J.C.; Herold-Mende, C.; Schichor, C. Microscopic brain invasion in meningiomas previously classified as WHO grade I is not associated with patient outcome. J. Neurooncol. 2019, 145, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Giammalva, G.R.; Ferini, G.; Musso, S.; Salvaggio, G.; Pino, M.A.; Gerardi, R.M.; Brunasso, L.; Costanzo, R.; Paolini, F.; Di Bonaventura, R.; et al. Intraoperative Ultrasound: Emerging Technology and Novel Applications in Brain Tumor Surgery. Front. Oncol. 2022, 12, 818446. [Google Scholar] [CrossRef]
- Perry, A.; Scheithauer, B.W.; Stafford, S.L.; Lohse, C.M.; Wollan, P.C. “Malignancy” in meningiomas: A clinicopathologic study of 116 patients, with grading implications. Cancer 1999, 85, 2046–2056. [Google Scholar] [CrossRef]
- Pizem, J.; Velnar, T.; Prestor, B.; Mlakar, J.; Popovic, M. Brain invasion assessability in meningiomas is related to meningioma size and grade, and can be improved by extensive sampling of the surgically removed meningioma specimen. Clin. Neuropathol. 2014, 33, 354–363. [Google Scholar] [CrossRef]
- Vranic, A.; Gilbert, F. Prognostic implication of preoperative behavior changes in patients with primary high-grade meningiomas. Sci. World J. 2014, 2014, 398295. [Google Scholar] [CrossRef]
- Adeli, A.; Hess, K.; Mawrin, C.; Streckert, E.M.S.; Stummer, W.; Paulus, W.; Kemmling, A.; Holling, M.; Heindel, W.; Schmidt, R.; et al. Prediction of brain invasion in patients with meningiomas using preoperative magnetic resonance imaging. Oncotarget 2018, 9, 35974–35982. [Google Scholar] [CrossRef]
- Hess, K.; Spille, D.C.; Adeli, A.; Sporns, P.B.; Brokinkel, C.; Grauer, O.; Mawrin, C.; Stummer, W.; Paulus, W.; Brokinkel, B. Brain invasion and the risk of seizures in patients with meningioma. J. Neurosurg. 2018, 130, 789–796. [Google Scholar] [CrossRef]
- Timme, M.; Thomas, C.; Spille, D.C.; Stummer, W.; Ebel, H.; Ewelt, C.; Hans, F.J.; Schick, U.; Puchner, M.; Wildförster, U.; et al. Brain invasion in meningiomas: Does surgical sampling impact specimen characteristics and histology? Neurosurg. Rev. 2020, 43, 793–800. [Google Scholar] [CrossRef]
- Friconnet, G.; Espíndola Ala, V.H.; Janot, K.; Brinjikji, W.; Bogey, C.; Lemnos, L.; Salle, H.; Saleme, S.; Mounayer, C.; Rouchaud, A. MRI predictive score of pial vascularization of supratentorial intracranial meningioma. Eur. Radiol. 2019, 29, 3516–3522. [Google Scholar] [CrossRef] [PubMed]
- Fioravanzo, A.; Caffo, M.; Di Bonaventura, R.; Gardiman, M.P.; Ghimenton, C.; Ius, T.; Maffeis, V.; Martini, M.; Nicolato, A.; Pallini, R.; et al. A Risk Score Based on 5 Clinico-Pathological Variables Predicts Recurrence of Atypical Meningiomas. J. Neuropathol. Exp. Neurol. 2020, 79, 500–507. [Google Scholar] [CrossRef]
- Behling, F.; Fodi, C.; Gepfner-Tuma, I.; Machetanz, K.; Renovanz, M.; Skardelly, M.; Bornemann, A.; Honegger, J.; Tabatabai, G.; Tatagiba, M.; et al. CNS Invasion in Meningioma-How the Intraoperative Assessment Can Improve the Prognostic Evaluation of Tumor Recurrence. Cancers 2020, 12, 3620. [Google Scholar] [CrossRef]
- Joo, L.; Park, J.E.; Park, S.Y.; Nam, S.J.; Kim, Y.H.; Kim, J.H.; Kim, H.S. Extensive peritumoral edema and brain-to-tumor interface MRI features enable prediction of brain invasion in meningioma: Development and validation. Neuro Oncol. 2021, 23, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Segura, M.E.; Erickson, A.W.; Jairath, R.; Munoz, D.G.; Das, S. Necrosis and Brain Invasion Predict Radio-Resistance and Tumor Recurrence in Atypical Meningioma: A Retrospective Cohort Study. Neurosurgery 2020, 88, E42–E48. [Google Scholar] [CrossRef] [PubMed]
- Behling, F.; Fodi, C.; Wang, S.; Hempel, J.M.; Hoffmann, E.; Tabatabai, G.; Honegger, J.; Tatagiba, M.; Schittenhelm, J.; Skardelly, M. Increased proliferation is associated with CNS invasion in meningiomas. J. Neurooncol. 2021, 155, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Banan, R.; Abbetmeier-Basse, M.; Hong, B.; Dumitru, C.A.; Sahm, F.; Nakamura, M.; Krauss, J.K.; Hartmann, C. The prognostic significance of clinicopathological features in meningiomas: Microscopic brain invasion can predict patient outcome in otherwise benign meningiomas. Neuropathol. Appl. Neurobiol. 2021, 47, 724–735. [Google Scholar] [CrossRef]
- McLean, C.A.; Jolley, D.; Cukier, E.; Giles, G.; Gonzales, M.F. Atypical and malignant meningiomas: Importance of micronecrosis as a prognostic indicator. Histopathology 1993, 23, 349–353. [Google Scholar] [CrossRef]
- Park, Y.W.; Kim, S.; Ahn, S.S.; Han, K.; Kang, S.G.; Chang, J.H.; Kim, S.H.; Lee, S.K.; Park, S.H. Magnetic resonance imaging-based 3-dimensional fractal dimension and lacunarity analyses may predict the meningioma grade. Eur. Radiol. 2020, 30, 4615–4622. [Google Scholar] [CrossRef]
- Spille, D.C.; Heß, K.; Sauerland, C.; Sanai, N.; Stummer, W.; Paulus, W.; Brokinkel, B. Brain Invasion in Meningiomas: Incidence and Correlations with Clinical Variables and Prognosis. World Neurosurg. 2016, 93, 346–354. [Google Scholar] [CrossRef]
- Friconnet, G.; Baudouin, M.; Brinjikji, W.; Saleme, S.; Espíndola Ala, V.H.; Boncoeur-Martel, M.P.; Mounayer, C.; Rouchaud, A. Advanced MRI shape analysis as a predictor of histologically aggressive supratentorial meningioma. J. Neuroradiol. 2022, 49, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Rooprai, H.K.; Martin, A.J.; King, A.; Appadu, U.D.; Gullan, R.W.; Thomas, N.W.M.; Pilkington, G.J. Lack of Correlation Between Immunohistochemical Expression of SPARC and Invasion in Different Grades of Meningiomas. Anticancer Res. 2020, 40, 3081–3089. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Brokinkel, B.; Hess, K.; Mawrin, C. Brain invasion in meningiomas-clinical considerations and impact of neuropathological evaluation: A systematic review. Neuro Oncol. 2017, 19, 1298–1307. [Google Scholar] [CrossRef]
- Backer-Grøndahl, T.; Moen, B.H.; Arnli, M.B.; Torseth, K.; Torp, S.H. Immunohistochemical characterization of brain-invasive meningiomas. Int. J. Clin. Exp. Pathol. 2014, 7, 7206–7219. [Google Scholar]
- Qin, C.; Huang, M.; Pan, Y.; Li, Y.; Long, W.; Liu, Q. Brain-invasive meningiomas: Molecular mechanisms and potential therapeutic options. Brain Tumor Pathol. 2021, 38, 156–172. [Google Scholar] [CrossRef]
- Fritz, J.; Roser, F.; Tatagiba, M.; Bornemann, A. The basement membrane at the tumour-brain interface of brain-invasive grade I meningiomas. Neuropathol. Appl. Neurobiol. 2005, 31, 339–342. [Google Scholar] [CrossRef]
- Nakasu, S.; Nakasu, Y. Prognostic significance of brain invasion in meningiomas: Systematic review and meta-analysis. Brain Tumor Pathol. 2021, 38, 81–95. [Google Scholar] [CrossRef]
- Baumgarten, P.; Gessler, F.; Schittenhelm, J.; Skardelly, M.; Tews, D.S.; Senft, C.; Dunst, M.; Imoehl, L.; Plate, K.H.; Wagner, M.; et al. Brain invasion in otherwise benign meningiomas does not predict tumor recurrence. Acta Neuropathol. 2016, 132, 479–481. [Google Scholar] [CrossRef]
- Louis, D.N.; Ohgaki, H.; Wiestler, O.D.; Cavenee, W.K.; Burger, P.C.; Jouvet, A.; Scheithauer, B.W.; Kleihues, P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007, 114, 97–109, Erratum in: Acta Neuropathol. 2007, 114, 547. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coroller, T.P.; Bi, W.L.; Huynh, E.; Abedalthagafi, M.; Aizer, A.A.; Greenwald, N.F.; Parmar, C.; Narayan, V.; Wu, W.W.; de Moura, S.M.; et al. Radiographic prediction of meningioma grade by semantic and radiomic features. PLoS ONE 2017, 12, e0187908. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chotai, S.; Chen, M.; Jin, S.; Qi, S.T.; Pan, J. Preoperative radiologic classification of convexity meningioma to predict the survival and aggressive meningioma behavior. PLoS ONE 2015, 10, e0118908. [Google Scholar] [CrossRef]
- Ong, T.; Bharatha, A.; Alsufayan, R.; Das, S.; Lin, A.W. MRI predictors for brain invasion in meningiomas. Neuroradiol. J. 2021, 34, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.Y.; Bi, W.L.; Griffith, B.; Kaufmann, T.J.; la Fougère, C.; Schmidt, N.O.; Tonn, J.C.; Vogelbaum, M.A.; Wen, P.Y.; Aldape, K.; et al. International Consortium on Meningiomas. Imaging and diagnostic advances for intracranial meningiomas. Neuro Oncol. 2019, 21 (Suppl. S1), i44–i61. [Google Scholar] [CrossRef] [PubMed]
- Brunasso, L.; Ferini, G.; Bonosi, L.; Costanzo, R.; Musso, S.; Benigno, U.E.; Gerardi, R.M.; Giammalva, G.R.; Paolini, F.; Umana, G.E.; et al. A Spotlight on the Role of Radiomics and Machine-Learning Applications in the Management of Intracranial Meningiomas: A New Perspective in Neuro-Oncology: A Review. Life 2022, 12, 586. [Google Scholar] [CrossRef] [PubMed]
- Park, J.E.; Kim, H.S. Radiomics as a Quantitative Imaging Biomarker: Practical Considerations and the Current Standpoint in Neuro-oncologic Studies. Nucl. Med. Mol. Imaging 2018, 52, 99–108. [Google Scholar] [CrossRef]
- Fan, Y.; Feng, M.; Wang, R. Application of Radiomics in Central Nervous System Diseases: A Systematic literature review. Clin. Neurol. Neurosurg. 2019, 187, 105565. [Google Scholar] [CrossRef]
- Gu, H.; Zhang, X.; di Russo, P.; Zhao, X.; Xu, T. The Current State of Radiomics for Meningiomas: Promises and Challenges. Front. Oncol. 2020, 10, 567736. [Google Scholar] [CrossRef]
- Xiao, B.; Fan, Y.; Zhang, Z.; Tan, Z.; Yang, H.; Tu, W.; Wu, L.; Shen, X.; Guo, H.; Wu, Z.; et al. Three-Dimensional Radiomics Features From Multi-Parameter MRI Combined with Clinical Characteristics Predict Postoperative Cerebral Edema Exacerbation in Patients With Meningioma. Front. Oncol. 2021, 11, 625220. [Google Scholar] [CrossRef]
- van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging—“how-to” guide and critical reflection. Insights Imaging 2020, 11, 91. [Google Scholar] [CrossRef] [PubMed]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [PubMed]
- Burrell, R.A.; McGranahan, N.; Bartek, J.; Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 2013, 501, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Mo, Y.; Huang, C.; Han, K.; He, M.; Wang, X.; Wen, J.; Yang, S.; Wu, H.; Dong, F.; et al. A Clinical Semantic and Radiomics Nomogram for Predicting Brain Invasion in WHO Grade II Meningioma Based on Tumor and Tumor-to-Brain Interface Features. Front. Oncol. 2021, 11, 752158. [Google Scholar] [CrossRef]
- Ko, C.C.; Zhang, Y.; Chen, J.H.; Chang, K.T.; Chen, T.Y.; Lim, S.W.; Wu, T.C.; Su, M.Y. Pre-operative MRI Radiomics for the Prediction of Progression and Recurrence in Meningiomas. Front Neurol. 2021, 12, 636235. [Google Scholar] [CrossRef]
- Kandemirli, S.G.; Chopra, S.; Priya, S.; Ward, C.; Locke, T.; Soni, N.; Srivastava, S.; Jones, K.; Bathla, G. Presurgical detection of brain invasion status in meningiomas based on first-order histogram based texture analysis of contrast enhanced imaging. Clin. Neurol. Neurosurg. 2020, 198, 106205. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, K.; Liu, P.; Liu, Z.; Han, T.; Zhao, Z.; Cao, Y.; Zhang, G.; Zhang, J.; Tian, J.; et al. A radiomics model for preoperative prediction of brain invasion in meningioma non-invasively based on MRI: A multicentre study. EBioMedicine 2020, 58, 102933. [Google Scholar] [CrossRef]
- McArdle, A.J.; Menikou, S. What is proteomics? Arch. Dis. Child. Educ. Pract. Ed. 2021, 106, 178–181. [Google Scholar] [CrossRef]
- Nassiri, F.; Liu, J.; Patil, V.; Mamatjan, Y.; Wang, J.Z.; Hugh-White, R.; Macklin, A.M.; Khan, S.; Singh, O.; Karimi, S.; et al. A clinically applicable integrative molecular classification of meningiomas. Nature 2021, 597, 119–125. [Google Scholar] [CrossRef]
- Abbritti, R.V.; Polito, F.; Cucinotta, M.; Lo Giudice, C.; Caffo, M.; Tomasello, C.; Germanò, A.; Aguennouz, M. Meningiomas and Proteomics: Focus on New Potential Biomarkers and Molecular Pathways. Cancer Genom. Proteom. 2016, 13, 369–379. [Google Scholar]
- Gupta, S.; Mukherjee, S.; Syed, P.; Pandala, N.G.; Choudhary, S.; Singh, V.A.; Singh, N.; Zhu, H.; Epari, S.; Noronha, S.B.; et al. Evaluation of autoantibody signatures in meningioma patients using human proteome arrays. Oncotarget 2017, 8, 58443–58456. [Google Scholar] [CrossRef] [PubMed]
- Sofela, A.A.; Hilton, D.A.; Ammoun, S.; Baiz, D.; Adams, C.L.; Ercolano, E.; Jenkinson, M.D.; Kurian, K.M.; Teo, M.; Whitfield, P.C.; et al. Fibulin-2: A Novel Biomarker for Differentiating Grade II from Grade I Meningiomas. Int. J. Mol. Sci. 2021, 22, 560. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Lee, S.K.; Yoo, Y.C.; Park, N.H.; Park, D.B.; Yoo, J.S.; An, H.J.; Park, Y.M.; Cho, K.G. Proteome analysis of human cerebrospinal fluid as a diagnostic biomarker in patients with meningioma. Med. Sci. Monit. 2012, 18, BR450–BR460. [Google Scholar] [CrossRef]
- Mashayekhi, F.; Saberi, A.; Mashayekhi, S. Serum TIMP1 and TIMP2 concentration in patients with different grades of meningioma. Clin. Neurol. Neurosurg. 2018, 170, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, R.; Elabbas, A.; Vyas, A.; Osborne, D.; Chigurupati, H.D.; Abbas, L.F.; Kampa, P.; Farzana, M.H.; Sarwar, H.; Alfonso, M. Utilization of Cerebrospinal Fluid Proteome Analysis in the Diagnosis of Meningioma: A Systematic Review. Cureus 2021, 13, e20707. [Google Scholar] [CrossRef] [PubMed]
- Rempel, S.A.; Ge, S.; Gutiérrez, J.A. SPARC: A potential diagnostic marker of invasive meningiomas. Clin. Cancer Res. 1999, 5, 237–241. [Google Scholar]
- Zeltner, L.; Schittenhelm, J.; Mittelbronn, M.; Roser, F.; Tatagiba, M.; Mawrin, C.; Kim, Y.J.; Bornemann, A. The astrocytic response towards invasive meningiomas. Neuropathol. Appl. Neurobiol. 2007, 33, 163–168. [Google Scholar] [CrossRef]
- Borch, J.S.; Haslund-Vinding, J.; Vilhardt, F.; Maier, A.D.; Mathiesen, T. Meningioma-Brain Crosstalk: A Scoping Review. Cancers 2021, 13, 4267. [Google Scholar] [CrossRef]
- Maugeri, R.; Schiera, G.; Di Liegro, C.M.; Fricano, A.; Iacopino, D.G.; Di Liegro, I. Aquaporins and Brain Tumors. Int. J. Mol. Sci. 2016, 17, 1029. [Google Scholar] [CrossRef]
- Shao, Z.; Liu, L.; Zheng, Y.; Tu, S.; Pan, Y.; Yan, S.; Wei, Q.; Shao, A.; Zhang, J. Molecular Mechanism and Approach in Progression of Meningioma. Front. Oncol. 2020, 10, 538845. [Google Scholar] [CrossRef]
- von Spreckelsen, N.; Kesseler, C.; Brokinkel, B.; Goldbrunner, R.; Perry, A.; Mawrin, C. Molecular neuropathology of brain-invasive meningiomas. Brain Pathol. 2022, 32, e13048. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Youngblood, M.W.; Gupte, T.P.; Vetsa, S.; Nadar, A.; Barak, T.; Yalcin, K.; Aguilera, S.M.; Mishra-Gorur, K.; Blondin, N.A.; et al. Type of bony involvement predicts genomic subgroup in sphenoid wing meningiomas. J. Neurooncol. 2021, 154, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Mirian, C.; Duun-Henriksen, A.K.; Juratli, T.; Sahm, F.; Spiegl-Kreinecker, S.; Peyre, M.; Biczok, A.; Tonn, J.C.; Goutagny, S.; Bertero, L.; et al. Poor prognosis associated with TERT gene alterations in meningioma is independent of the WHO classification: An individual patient data meta-analysis. J. Neurol. Neurosurg. Psychiatry 2020, 91, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Sahm, F.; Schrimpf, D.; Olar, A.; Koelsche, C.; Reuss, D.; Bissel, J.; Kratz, A.; Capper, D.; Schefzyk, S.; Hielscher, T.; et al. TERT Promoter Mutations and Risk of Recurrence in Meningioma. J. Natl. Cancer Inst. 2015, 108, djv377. [Google Scholar] [CrossRef]
- Spiegl-Kreinecker, S.; Lötsch, D.; Neumayer, K.; Kastler, L.; Gojo, J.; Pirker, C.; Pichler, J.; Weis, S.; Kumar, R.; Webersinke, G.; et al. TERT promoter mutations are associated with poor prognosis and cell immortalization in meningioma. Neuro Oncol. 2018, 20, 1584–1593. [Google Scholar] [CrossRef] [Green Version]
Author, Year | N of Patients | Sex | Age | WHO Classification | Tumor Location | Therapy | Brain Invasion (Present) | Brain Invasion (Absent) | High Mitotic Index (×10 HPF) | Low Mitotic Index | Pre-Operative Edema | Pre-Operative MRI Analysis |
---|---|---|---|---|---|---|---|---|---|---|---|---|
McLean et al., 1993 [18] | 28 | 15 M, 13 F | Mean 54 | 28 II–III | Non-skull base (not specified location) | NR | NR | NR | Present (not specified) | NR | NR | NR |
McLean et al., 1993 [18] | 20 | not specified | Not specified | 12 II; 8 III | Non-skull base (not specified location) | NR | NR | NR | NR | NR | NR | NR |
Perry et al., 1998 [5] | 116 | 63 M, 53 F | Median 60 | not specified | Non-skull base (not specified location) | Surgery + RT | 118 | NR | > 4/10 HPF 26%; >20/10 HPF 63% | NR | NR | NR |
Pizem et al., 2014 [6] | 294 | 93 M, 201 F | Median 58 | 233 I; 61 II–III | 146 parasagittal; 115 skull base; 33 non-skull base (not specified location) | Surgery + RT | 22 (28%) benign, 33 (64%) atypical, 10 (100%) malignant | 229 | 2.4 per 10 HPFs (mean) | NR | present | NR |
Vranic et al., 2014 [7] | 86 | 42 M, 44 F | Median 57.2 | 76 II; 10 III | 26 falx; 36 convexity; 24 skull base | NR | 25 | NR | NR | NR | present | NR |
Spille et al., 2016 [20] | 467 | 136 M, 331 F | Median 57 | 401 I; 60 II; 6 III | 66 parasagittal; 173 convexity; 221 skull base; 7 intraventricular | Surgery + RT | 77% finger-like in middle skull base, 53% clustered in convexity) | NR | NR | NR | NR | NR |
Adeli et al., 2018 [8] | 617 | 176 M, 441 F | Median 59 | 557 I; 57 II; 3 III | 215 convexity; 85 parasagittal; 271 skull base; 41 posterior fossa; 5 intraventricular | Surgery | 24 | 593 | NR | NR | 554 (median) | Arachnoid layer disrupted/irregular tumor shape; calcifications; capsular contrast enhancement; heterogeneous enhancement |
Hess et al., 2019 [9] | 176 | 68 M, 108 F | Median 60 | 92 I; 79 II; 5 III | 72 convexity, 69 skull base, 35 non-skull base (not specified location) | Surgery | 38 | 138 | NR | NR | 130.7 ± 110.2 cm3 (volume) | Median tumor volume = 13.73 m3 |
Timme et al., 2019 [10] | 2625 | 713 M, 1912 F | Median 61 | 2488 I; 137 II–III | 1809 non-skull base (not specified location); 816 skull base | Surgery | 136 non-skull base, 40 skull base | NR | NR | NR | NR | NR |
Biczok et al., 2019 [3] | 875 | 220 M, 655 F | Median 57 | 875 I | 8 convexity; 400 skull base; 467 non-skull base (not specified location) | Surgery + RT | NR | NR | range 0 | range 0 | NR | NR |
Friconnet et al., 2019 [11] | 54 | 16 M, 38 F | Mean 58.5 | 41 II–III; 13 I | 18 skull base; 36 non-skull base (not specified location) | Surgery | 38 | NR | NR | NR | 26 patients | Presence of incomplete CSF rim |
Fioravanzo et al., 2020 [12] | 200 | 100 M, 100 F | Median 63 | 200 II | 95 convexity; 63 parasagittal; 42 skull base | Surgery | 94 | 106 | 82 | 118 | NR | NR |
Friconnet et al., 2020 [21] | 101 | 34 M, 67 F | Mean 60.2 | 62 I; 39 II–III | 36 convexity, 26 parasagittal; 5 falx; 34 skull base | NR | NR | NR | NR | NR | NR | Analysis of shape, fractal and skeleton of the tumor |
Behling et al., 2020 [13] | 1517 | 402 M, 1115 F | Median 56.8 | 1281 I; 232 II; 4 III | 788 skull base; 574 falx; 155 not specified location | NR | Found intraoperatively 345 pt; histopathology 73 pt | intraoperative 1110; histopathological 1444 | NR | NR | NR | NR |
Joo et al., 2020 [14] | 454 | 126 M, 328 F | Mean 55 | 397 I; 57 II–III | 63 convexity; 4 falx; 16 skull base; 4 posterior fossa; 1 intraventricular; 366 non-skull base (not specified location) | NR | 88 | 366 | NR | NR | 158.3 ± 114.5 (mL) volume | NR |
Joo et al., 2020 [14] | 150 | 47 M, 103 F | Mean 57.7 | 99 I; 48 II; 3 III | 13 convexity; 6 falx; 3 skull base; 1 posterior fossa; 1 intraventricular; 126 non-skull base (not specified location) | NR | 29 | 121 | NR | NR | 182.02 ± 129.43 (mL) (volume) | NR |
Rooprai et al., 2020 [22] | 34 | 13 M, 21 F | Mean 62 | 7 I; 26 II; 1 III | 28 convexity; 6 skull base | NR | NR | NR | yes | NR | NR | NR |
Park et al., 2020 [19] | 131 | 26 M, 105 F | Mean 57.8 | 98 I; 29 II; 4 III | 100 skull base; 31 non-skull base (not specified location) | NR | NR | NR | 7.5 ± 5.7 (high grade) | 1.1 ± 0.3 (low grade) | NR | Used fractal parameters |
Garcia-Segura et al., 2020 [15] | 181 | 72 M, 109 F | Mean 56.9 | 181 II | 68 convexity; 48 falx; 65 skull base | Surgery + RT | 48 | 133 | 28 patients | 143 patients | NR | NR |
Behling et al., 2021 [15] | 1718 | 489 M, 1229 F | Median 70 | 1412 I; 285 II; 21 III | 649 convexity; 893 skull base; 176 non-skull base (not specified location) | NR | 108 | 1610 | NR | NR | NR | NR |
Banan et al., 2021 [17] | 374 | 127 M, 247 F | Median 65 | 316 I; 58 II | 75 convexity; 47 parasagittal; 174 skull base; 17 posterior fossa; 61 non-skull base (not specified location) | Surgery + RT | 20 | 240 | NR | NR | NR | NR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brunasso, L.; Bonosi, L.; Costanzo, R.; Buscemi, F.; Giammalva, G.R.; Ferini, G.; Valenti, V.; Viola, A.; Umana, G.E.; Gerardi, R.M.; et al. Updated Systematic Review on the Role of Brain Invasion in Intracranial Meningiomas: What, When, Why? Cancers 2022, 14, 4163. https://doi.org/10.3390/cancers14174163
Brunasso L, Bonosi L, Costanzo R, Buscemi F, Giammalva GR, Ferini G, Valenti V, Viola A, Umana GE, Gerardi RM, et al. Updated Systematic Review on the Role of Brain Invasion in Intracranial Meningiomas: What, When, Why? Cancers. 2022; 14(17):4163. https://doi.org/10.3390/cancers14174163
Chicago/Turabian StyleBrunasso, Lara, Lapo Bonosi, Roberta Costanzo, Felice Buscemi, Giuseppe Roberto Giammalva, Gianluca Ferini, Vito Valenti, Anna Viola, Giuseppe Emmanuele Umana, Rosa Maria Gerardi, and et al. 2022. "Updated Systematic Review on the Role of Brain Invasion in Intracranial Meningiomas: What, When, Why?" Cancers 14, no. 17: 4163. https://doi.org/10.3390/cancers14174163
APA StyleBrunasso, L., Bonosi, L., Costanzo, R., Buscemi, F., Giammalva, G. R., Ferini, G., Valenti, V., Viola, A., Umana, G. E., Gerardi, R. M., Sturiale, C. L., Albanese, A., Iacopino, D. G., & Maugeri, R. (2022). Updated Systematic Review on the Role of Brain Invasion in Intracranial Meningiomas: What, When, Why? Cancers, 14(17), 4163. https://doi.org/10.3390/cancers14174163