Single-Chain Fragment Variable: Recent Progress in Cancer Diagnosis and Therapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Single-Chain Fragment Variable (scFv) Engineering
2.1. General Properties of scFv
2.2. Generation and Expression of scFvs
3. Applications of scFvs
3.1. Cancer Diagnostics
3.2. Cancer Therapy
3.2.1. scFvs against Tumor Cell Surface Antigens
3.2.2. scFvs against Tumor Growth, Survival, and Proliferation
3.2.3. scFvs against Tumor Migration
3.2.4. scFvs Can Induce Tumor Apoptosis
4. scFvs in Cancer Therapy Clinical Trials
5. Limitations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization [Internet] Fact Sheets. Available online: https://www.who.int/es/news-room/fact-sheets/detail/cancer (accessed on 1 December 2021).
- Petrov, K.; Dion, M.; Hoffmann, L.; Dintinger, T.; Defontaine, A.; Tellier, C. Bivalent Fv antibody fragments obtained by substituting the constant domains of a fab fragment with heterotetrameric molybdopterin synthase. J. Mol. Biol. 2004, 341, 1039–1048. [Google Scholar] [CrossRef]
- Grilo, A.L.; Mantalaris, A. The Increasingly Human and Profitable Monoclonal Antibody Market. Trends Biotechnol. 2019, 37, 9–16. [Google Scholar] [CrossRef]
- Hust, M.; Jostock, T.; Menzel, C.; Voedisch, B.; Mohr, A.; Brenneis, M.; Kirsch, M.I.; Meier, D.; Dübel, S. Single chain Fab (scFab) fragment. BMC Biotechnol. 2007, 7, 14. [Google Scholar] [CrossRef]
- Skerra, A.; Plückthun, A. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 1988, 240, 1038–1041. [Google Scholar] [CrossRef]
- Glockshuber, R.; Malia, M.; Pfitzinger, I.; Plückthun, A. A comparison of strategies to stabilize immunoglobulin Fv-fragments. Biochemistry 1990, 29, 1362–1367. [Google Scholar] [CrossRef]
- Huston, J.S.; Levinson, D.; Mudgett-Hunter, M.; Tai, M.S.; Novotný, J.; Margolies, M.N.; Ridge, R.J.; Bruccoleri, R.E.; Haber, E.; Crea, R.; et al. Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA 1988, 85, 5879–5883. [Google Scholar] [CrossRef]
- Cheadle, C.; Hook, L.E.; Givol, D.; Ricca, G.A. Cloning and expression of the variable regions of mouse myeloma protein MOPC315 in E. coli: Recovery of active FV fragments. Mol. Immunol. 1992, 29, 21–30. [Google Scholar] [CrossRef]
- Monnier, P.P.; Vigouroux, R.J.; Tassew, N.G. In Vivo Applications of Single Chain Fv (Variable Domain) (scFv) Fragments. Antibodies 2013, 2, 193–208. [Google Scholar] [CrossRef]
- Yazaki, P.J.; Wu, A.M. Construction and characterization of minibodies for imaging and therapy of colorectal carcinomas. Methods Mol. Biol. 2003, 207, 351–364. [Google Scholar]
- Knowles, S.M.; Wu, A.M. Advances in immuno-positron emission tomography: Antibodies for molecular imaging in oncology. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2012, 30, 3884–3892. [Google Scholar] [CrossRef]
- Holliger, P.; Hudson, P.J. Engineered antibody fragments and the rise of single domains. Nat. Biotechnol. 2005, 23, 1126–1136. [Google Scholar] [CrossRef]
- Nelson, A.L.; Reichert, J.M. Development trends for therapeutic antibody fragments. Nat. Biotechnol. 2009, 27, 331–337. [Google Scholar] [CrossRef]
- Chiu, M.L.; Goulet, D.R.; Teplyakov, A.; Gilliland, G.L. Antibody Structure and Function: The Basis for Engineering Therapeutics. Antibodies 2019, 8, 55. [Google Scholar] [CrossRef]
- Altshuler, E.P.; Serebryanaya, D.V.; Katrukha, A.G. Generation of recombinant antibodies and means for increasing their affinity. Biochem. Biokhimiia 2010, 75, 1584–1605. [Google Scholar] [CrossRef]
- Hudson, P.J. Recombinant antibody fragments. Curr. Opin. Biotechnol. 1998, 9, 395–402. [Google Scholar] [CrossRef]
- Hudson, P.J.; Souriau, C. Engineered antibodies. Nat. Med. 2003, 9, 129–134. [Google Scholar] [CrossRef]
- Peterson, E.; Owens, S.M.; Henry, R.L. Monoclonal antibody form and function: Manufacturing the right antibodies for treating drug abuse. AAPS J. 2006, 8, E383–E390. [Google Scholar] [CrossRef]
- Chames, P.; Van Regenmortel, M.; Weiss, E.; Baty, D. Therapeutic antibodies: Successes, limitations and hopes for the future. Br. J. Pharmacol. 2009, 157, 220–233. [Google Scholar] [CrossRef]
- Beckman, R.A.; Weiner, L.M.; Davis, H.M. Antibody constructs in cancer therapy: Protein engineering strategies to improve exposure in solid tumors. Cancer 2007, 109, 170–179. [Google Scholar] [CrossRef]
- Yokota, T.; Milenic, D.E.; Whitlow, M.; Schlom, J. Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res. 1992, 52, 3402–3408. [Google Scholar]
- Knappik, A.; Ge, L.; Honegger, A.; Pack, P.; Fischer, M.; Wellnhofer, G.; Hoess, A.; Wölle, J.; Plückthun, A.; Virnekäs, B. Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J. Mol. Biol. 2000, 296, 57–86. [Google Scholar] [CrossRef]
- Wörn, A.; Plückthun, A. Stability engineering of antibody single-chain Fv fragments. J. Mol. Biol. 2001, 305, 989–1010. [Google Scholar] [CrossRef] [Green Version]
- Reiter, Y.; Brinkmann, U.; Webber, K.O.; Jung, S.H.; Lee, B.; Pastan, I. Engineering interchain disulfide bonds into conserved framework regions of Fv fragments: Improved biochemical characteristics of recombinant immunotoxins containing disulfide-stabilized Fv. Protein Eng. 1994, 7, 697–704. [Google Scholar] [CrossRef]
- Yusakul, G.; Sakamoto, S.; Pongkitwitoon, B.; Tanaka, H.; Morimoto, S. Effect of linker length between variable domains of single chain variable fragment antibody against daidzin on its reactivity. Biosci. Biotechnol. Biochem. 2016, 80, 1306–1312. [Google Scholar] [CrossRef]
- Chen, X.; Zaro, J.L.; Shen, W.C. Fusion protein linkers: Property, design and functionality. Adv. Drug Deliv. Rev. 2013, 65, 1357–1369. [Google Scholar] [CrossRef]
- Zhang, K.; Geddie, M.L.; Kohli, N.; Kornaga, T.; Kirpotin, D.B.; Jiao, Y.; Rennard, R.; Drummond, D.C.; Nielsen, U.B.; Xu, L.; et al. Comprehensive optimization of a single-chain variable domain antibody fragment as a targeting ligand for a cytotoxic nanoparticle. mAbs 2015, 7, 42–52. [Google Scholar] [CrossRef]
- Pantoliano, M.W.; Bird, R.E.; Johnson, S.; Asel, E.D.; Dodd, S.W.; Wood, J.F.; Hardman, K.D. Conformational stability, folding, and ligand-binding affinity of single-chain Fv immunoglobulin fragments expressed in Escherichia coli. Biochemistry 1991, 30, 10117–10125. [Google Scholar] [CrossRef]
- Finlay, W.J.; Bloom, L.; Cunningham, O. Phage display: A powerful technology for the generation of high specificity affinity reagents from alternative immune sources. Methods Mol. Biol. 2011, 681, 87–101. [Google Scholar]
- Reiter, Y.; Pastan, I. Antibody engineering of recombinant Fv immunotoxins for improved targeting of cancer: Disulfide-stabilized Fv immunotoxins. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 1996, 2, 245–252. [Google Scholar]
- Whitlow, M.; Bell, B.A.; Feng, S.L.; Filpula, D.; Hardman, K.D.; Hubert, S.L.; Rollence, M.L.; Wood, J.F.; Schott, M.E.; Milenic, D.E.; et al. An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability. Protein Eng. 1993, 6, 989–995. [Google Scholar] [CrossRef]
- Wilson, I.A.; Stanfield, R.L. Antibody-antigen interactions: New structures and new conformational changes. Curr. Opin. Struct. Biol. 1994, 4, 857–867. [Google Scholar] [CrossRef]
- Putnam, W.S.; Li, J.; Haggstrom, J.; Ng, C.; Kadkhodayan-Fischer, S.; Cheu, M.; Deniz, Y.; Lowman, H.; Fielder, P.; Visich, J.; et al. Use of quantitative pharmacology in the development of HAE1, a high-affinity anti-IgE monoclonal antibody. AAPS J. 2008, 10, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Pfarr, D.S.; Johnson, S.; Brewah, Y.A.; Woods, R.M.; Patel, N.K.; White, W.I.; Young, J.F.; Kiener, P.A. Development of motavizumab, an ultra-potent antibody for the prevention of respiratory syncytial virus infection in the upper and lower respiratory tract. J. Mol. Biol. 2007, 368, 652–665. [Google Scholar] [CrossRef] [PubMed]
- Boder, E.T.; Midelfort, K.S.; Wittrup, K.D. Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc. Natl. Acad. Sci. USA 2000, 97, 10701–10705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, K.; Terakura, S.; Uchiyama, S.; Martens, A.C.; Meerten Tv Kiyoi, H.; Nishida, T.; Naoe, T.; Murata, M. Excessively High-Affinity Single-Chain Fragment Variable Region in a Chimeric Antigen Receptor Can Counteract T-Cell Proliferation. Blood 2014, 124, 4799. [Google Scholar] [CrossRef]
- Wang, J.; An, L.; Zhao, Y.; Zhang, C.; Li, S.; Ye, C.; Jing, S.; Hang, H. In vitro affinity maturation of antibody against membrane-bound GPCR molecules. Appl. Microbiol. Biotechnol. 2019, 103, 7703–7717. [Google Scholar] [CrossRef]
- Álvarez-Vallina, L. Anticuerpos Monoclonales. In Realidades y Perspectivas; Editorial Complutense: Madrid, España, 2004. [Google Scholar]
- Lo, K.M.; Leger, O.; Hock, B. Antibody Engineering. Microbiol. Spectr. 2014, 2, Aid-0007-2012. [Google Scholar] [CrossRef]
- Parmley, S.F.; Smith, G.P. Antibody-selectable filamentous fd phage vectors: Affinity purification of target genes. Gene 1988, 73, 305–318. [Google Scholar] [CrossRef]
- Smith, G.P. Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science 1985, 228, 1315–1317. [Google Scholar] [CrossRef]
- McCafferty, J.; Griffiths, A.D.; Winter, G.; Chiswell, D.J. Phage antibodies: Filamentous phage displaying antibody variable domains. Nature 1990, 348, 552–554. [Google Scholar] [CrossRef]
- Hammers, C.M.; Stanley, J.R. Antibody phage display: Technique and applications. J. Investig. Dermatol. 2014, 134, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Bradbury, A.R.; Marks, J.D. Antibodies from phage antibody libraries. J. Immunol. Methods 2004, 290, 29–49. [Google Scholar] [CrossRef] [PubMed]
- Frenzel, A.; Kügler, J.; Helmsing, S.; Meier, D.; Schirrmann, T.; Hust, M.; Dübel, S. Designing Human Antibodies by Phage Display. Transfus. Med. Hemotherapy Off. Organ Der Dtsch. Ges. Fur Transfus. Und Immunhamatol. 2017, 44, 312–318. [Google Scholar] [CrossRef]
- Nagano, K.; Imai, S.; Mukai, Y.; Nakagawa, S.; Abe, Y.; Kamada, H.; Tsunoda, S.; Tsutsumi, Y. Rapid isolation of intrabody candidates by using an optimized non-immune phage antibody library. Die Pharm. 2009, 64, 238–241. [Google Scholar]
- Hust, M.; Maiss, E.; Jacobsen, H.J.; Reinard, T. The production of a genus-specific recombinant antibody (scFv) using a recombinant potyvirus protease. J. Virol. Methods 2002, 106, 225–233. [Google Scholar] [CrossRef]
- Russo, G.; Meier, D.; Helmsing, S.; Wenzel, E.; Oberle, F.; Frenzel, A.; Hust, M. Parallelized Antibody Selection in Microtiter Plates. Methods Mol. Biol. 2018, 1701, 273–284. [Google Scholar] [PubMed]
- Breitling, F.; Dübel, S.; Seehaus, T.; Klewinghaus, I.; Little, M. A surface expression vector for antibody screening. Gene 1991, 104, 147–153. [Google Scholar] [CrossRef]
- Wang, L.; Yu, M.; Eaton, B. Epitope mapping and engineering using phage display technology. Asia Pac. J. Mol. Biol. Biotechnol. 1995, 3, 240–258. [Google Scholar]
- Guglielmi, L.; Martineau, P. Intrabody expression in eukaryotic cells. Methods Mol. Biol. 2009, 562, 195–203. [Google Scholar]
- Ayriss, J.; Woods, T.; Bradbury, A.; Pavlik, P. High-throughput screening of single-chain antibodies using multiplexed flow cytometry. J. Proteome Res. 2007, 6, 1072–1082. [Google Scholar] [CrossRef]
- Hoogenboom, H.R.; Chames, P. Natural and designer binding sites made by phage display technology. Immunol. Today 2000, 21, 371–378. [Google Scholar] [CrossRef]
- Griffiths, A.D.; Malmqvist, M.; Marks, J.D.; Bye, J.M.; Embleton, M.J.; McCafferty, J.; Baier, M.; Holliger, K.P.; Gorick, B.D.; Hughes-Jones, N.C.; et al. Human anti-self antibodies with high specificity from phage display libraries. EMBO J. 1993, 12, 725–734. [Google Scholar] [CrossRef]
- Forrer, P.; Jung, S.; Plückthun, A. Beyond binding: Using phage display to select for structure, folding and enzymatic activity in proteins. Curr. Opin. Struct. Biol. 1999, 9, 514–520. [Google Scholar] [CrossRef]
- Burritt, J.B.; Bond, C.W.; Doss, K.W.; Jesaitis, A.J. Filamentous phage display of oligopeptide libraries. Anal. Biochem. 1996, 238, 1–13. [Google Scholar] [CrossRef]
- Lake, D.F.; Lam, K.S.; Peng, L.; Hersh, E.M. Molecular cloning, expression and mutagenesis of an anti-insulin single chain Fv (scFv). Mol. Immunol. 1994, 31, 845–856. [Google Scholar] [CrossRef]
- Sharon, J. Structural correlates of high antibody affinity: Three engineered amino acid substitutions can increase the affinity of an anti-p-azophenylarsonate antibody 200-fold. Proc. Natl. Acad. Sci. USA 1990, 87, 4814–4817. [Google Scholar] [CrossRef]
- Ruiz, G.; Moreno, M.; López, M.; Vega, M. Anticuerpos Monoclonales Terapéuticos: Informe de Vigilancia Tecnológica; Editorial Genoma España: Madrid, España, 2007; Chapter 2; pp. 15–32. [Google Scholar]
- Kobayashi, N.; Ohtoyo, M.; Wada, E.; Kato, Y.; Mano, N.; Goto, J. Generation of a single-chain Fv fragment for the monitoring of deoxycholic acid residues anchored on endogenous proteins. Steroids 2005, 70, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.D.; Rojas, G.; Mitchell, J.N.; Vincent, K.J.; Wu, J.; McCafferty, J.; Schofield, D.J. A simple vector system to improve performance and utilisation of recombinant antibodies. BMC Biotechnol. 2006, 6, 46. [Google Scholar] [CrossRef]
- Wang, P.L.; Lo, B.K.; Winter, G. Generating molecular diversity by homologous recombination in Escherichia coli. Protein Eng. Des. Sel. PEDS 2005, 18, 397–404. [Google Scholar] [CrossRef]
- Charlton, K.; Harris, W.J.; Porter, A.J. The isolation of super-sensitive anti-hapten antibodies from combinatorial antibody libraries derived from sheep. Biosens. Bioelectron. 2001, 16, 639–646. [Google Scholar] [CrossRef]
- Ravn, P.; Danielczyk, A.; Jensen, K.B.; Kristensen, P.; Christensen, P.A.; Larsen, M.; Karsten, U.; Goletz, S. Multivalent scFv display of phagemid repertoires for the selection of carbohydrate-specific antibodies and its application to the Thomsen-Friedenreich antigen. J. Mol. Biol. 2004, 343, 985–996. [Google Scholar] [CrossRef] [PubMed]
- Sakai, K.; Shimizu, Y.; Chiba, T.; Matsumoto-Takasaki, A.; Kusada, Y.; Zhang, W.; Nakata, M.; Kojima, N.; Toma, K.; Takayanagi, A.; et al. Isolation and characterization of phage-displayed single chain antibodies recognizing nonreducing terminal mannose residues. 1. A new strategy for generation of anti-carbohydrate antibodies. Biochemistry 2007, 46, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Okada, T.; Akada, M.; Fujita, T.; Iwata, T.; Goto, Y.; Kido, K.; Okada, T.; Matsuzaki, Y.; Kobayashi, K.; Matsuno, S.; et al. A novel cancer testis antigen that is frequently expressed in pancreatic, lung, and endometrial cancers. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2006, 12, 191–197. [Google Scholar] [CrossRef] [PubMed]
- McWhirter, J.R.; Kretz-Rommel, A.; Saven, A.; Maruyama, T.; Potter, K.N.; Mockridge, C.I.; Ravey, E.P.; Qin, F.; Bowdish, K.S. Antibodies selected from combinatorial libraries block a tumor antigen that plays a key role in immunomodulation. Proc. Natl. Acad. Sci. USA 2006, 103, 1041–1046. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.L.; Gou, J.J.; Zhang, Z.Y.; Jing, Y.X.; Zhang, L.; Guo, R.; Yan, P.; Cheng, N.L.; Niu, B.; Xie, J. Screening and evaluation of human single-chain fragment variable antibody against hepatitis B virus surface antigen. Hepatobiliary Pancreat. Dis. Int. HBPD INT 2006, 5, 237–241. [Google Scholar]
- Ho, M.; Nagata, S.; Pastan, I. Isolation of anti-CD22 Fv with high affinity by Fv display on human cells. Proc. Natl. Acad. Sci. USA 2006, 103, 9637–9642. [Google Scholar] [CrossRef]
- Galeffi, P.; Lombardi, A.; Pietraforte, I.; Novelli, F.; Di Donato, M.; Sperandei, M.; Tornambé, A.; Fraioli, R.; Martayan, A.; Natali, P.G.; et al. Functional expression of a single-chain antibody to ErbB-2 in plants and cell-free systems. J. Transl. Med. 2006, 4, 39. [Google Scholar] [CrossRef]
- Choo, A.B.; Dunn, R.D.; Broady, K.W.; Raison, R.L. Soluble expression of a functional recombinant cytolytic immunotoxin in insect cells. Protein Expr. Purif. 2002, 24, 338–347. [Google Scholar] [CrossRef]
- Baneyx, F. Recombinant protein expression in Escherichia coli. Curr. Opin. Biotechnol. 1999, 10, 411–421. [Google Scholar] [CrossRef]
- Swartz, J.R. Advances in Escherichia coli production of therapeutic proteins. Curr. Opin. Biotechnol. 2001, 12, 195–201. [Google Scholar] [CrossRef]
- Miller, K.D.; Weaver-Feldhaus, J.; Gray, S.A.; Siegel, R.W.; Feldhaus, M.J. Production, purification, and characterization of human scFv antibodies expressed in Saccharomyces cerevisiae, Pichia pastoris, and Escherichia coli. Protein Expr. Purif. 2005, 42, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Lesley, S.A. High-throughput proteomics: Protein expression and purification in the postgenomic world. Protein Expr. Purif. 2001, 22, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Better, M.; Chang, C.P.; Robinson, R.R.; Horwitz, A.H. Escherichia coli secretion of an active chimeric antibody fragment. Science 1988, 240, 1041–1043. [Google Scholar] [CrossRef]
- Ward, E.S. Antibody engineering using Escherichia coli as host. Adv. Pharmacol. 1993, 24, 1–20. [Google Scholar]
- Skerra, A.; Dreher, M.L.; Winter, G. Filter screening of antibody Fab fragments secreted from individual bacterial colonies: Specific detection of antigen binding with a two-membrane system. Anal. Biochem. 1991, 196, 151–155. [Google Scholar] [CrossRef]
- Huston, J.S. Single chain Fv design and production by preparative folding. Antib. Eng. 1995, 2, 185–197. [Google Scholar]
- Smallshaw, J.E.; Georges, F.; Lee, J.S.; Waygood, E.B. Synthesis, cloning and expression of the single-chain Fv gene of the HPr-specific monoclonal antibody, Jel42. Determination of binding constants with wild-type and mutant HPrs. Protein Eng. 1999, 12, 623–630. [Google Scholar] [CrossRef]
- Hoogenboom, H.R.; Griffiths, A.D.; Johnson, K.S.; Chiswell, D.J.; Hudson, P.; Winter, G. Multi-subunit proteins on the surface of filamentous phage: Methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res. 1991, 19, 4133–4137. [Google Scholar] [PubMed]
- Dudgeon, K.; Rouet, R.; Kokmeijer, I.; Schofield, P.; Stolp, J.; Langley, D.; Stock, D.; Christ, D. General strategy for the generation of human antibody variable domains with increased aggregation resistance. Proc. Natl. Acad. Sci. USA 2012, 109, 10879–10884. [Google Scholar]
- Yamauchi, S.; Kobashigawa, Y.; Fukuda, N.; Teramoto, M.; Toyota, Y.; Liu, C.; Ikeguchi, Y.; Sato, T.; Sato, Y. Cyclization of Single-Chain Fv Antibodies Markedly Suppressed Their Characteristic Aggregation Mediated by Inter-Chain VH-VL Interactions. Molecules 2019, 24, 2620. [Google Scholar] [CrossRef]
- Lee, J.; Der, B.S.; Karamitros, C.S.; Li, W.; Marshall, N.M.; Lungu, O.I.; Miklos, A.E.; Xu, J.; Kang, T.H.; Lee, C.H.; et al. Computer-based Engineering of Thermostabilized Antibody Fragments. AIChE J. Am. Inst. Chem. Eng. 2020, 66, e16864. [Google Scholar] [CrossRef]
- Arimori, T.; Kitago, Y.; Umitsu, M.; Fujii, Y.; Asaki, R.; Tamura-Kawakami, K.; Takagi, J. Fv-clasp: An Artificially Designed Small Antibody Fragment with Improved Production Compatibility, Stability, and Crystallizability. Structure 2017, 25, 1611–1622.e1614. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, J.; Fan, H.; Yin, R.; Zheng, Z.; Xu, Q.; Liu, Q.; He, H.; Peng, X.; Wang, X.; et al. Expression and purification of soluble single-chain Fv against human fibroblast growth factor receptor 3 fused with Sumo tag in Escherichia coli. Electron. J. Biotechnol. 2015, 18, 302–306. [Google Scholar] [CrossRef]
- Alam, M.K.; Brabant, M.; Viswas, R.S.; Barreto, K.; Fonge, H.; Ronald Geyer, C. A novel synthetic trivalent single chain variable fragment (tri-scFv) construction platform based on the SpyTag/SpyCatcher protein ligase system. BMC Biotechnol. 2018, 18, 55. [Google Scholar] [CrossRef] [PubMed]
- Le Gall, F.; Reusch, U.; Little, M.; Kipriyanov, S.M. Effect of linker sequences between the antibody variable domains on the formation, stability and biological activity of a bispecific tandem diabody. Protein Eng. Des. Sel. PEDS 2004, 17, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Wolf, E.; Hofmeister, R.; Kufer, P.; Schlereth, B.; Baeuerle, P.A. BiTEs: Bispecific antibody constructs with unique anti-tumor activity. Drug Discov. Today 2005, 10, 1237–1244. [Google Scholar] [CrossRef]
- Huehls, A.M.; Coupet, T.A.; Sentman, C.L. Bispecific T-cell engagers for cancer immunotherapy. Immunol. Cell Biol. 2015, 93, 290–296. [Google Scholar] [CrossRef]
- Baeuerle, P.A.; Reinhardt, C. Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res. 2009, 69, 4941–4944. [Google Scholar] [CrossRef]
- Perisic, O.; Webb, P.A.; Holliger, P.; Winter, G.; Williams, R.L. Crystal structure of a diabody, a bivalent antibody fragment. Structure 1994, 2, 1217–1226. [Google Scholar] [CrossRef]
- Nuñez-Prado, N.; Compte, M.; Harwood, S.; Álvarez-Méndez, A.; Lykkemark, S.; Sanz, L.; Álvarez-Vallina, L. The coming of age of engineered multivalent antibodies. Drug Discov. Today 2015, 20, 588–594. [Google Scholar] [CrossRef]
- van der Steen, S.C.; van Tilborg, A.A.; Vallen, M.J.; Bulten, J.; van Kuppevelt, T.H.; Massuger, L.F. Prognostic significance of highly sulfated chondroitin sulfates in ovarian cancer defined by the single chain antibody GD3A11. Gynecol. Oncol. 2016, 140, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Eyvazi, S.; Kazemi, B.; Bandehpour, M.; Dastmalchi, S. Identification of a novel single chain fragment variable antibody targeting CD24-expressing cancer cells. Immunol. Lett. 2017, 190, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Verachi, F.; Percario, Z.; Di Bonito, P.; Affabris, E.; Amici, C.; Accardi, L. Purification and Characterization of Antibodies in Single-Chain Format against the E6 Oncoprotein of Human Papillomavirus Type 16. BioMed Res. Int. 2018, 2018, 6583852. [Google Scholar] [CrossRef] [PubMed]
- Jalilzadeh-Razin, S.; Mantegi, M.; Tohidkia, M.R.; Pazhang, Y.; Pourseif, M.M.; Barar, J.; Omidi, Y. Phage antibody library screening for the selection of novel high-affinity human single-chain variable fragment against gastrin receptor: An in silico and in vitro study. DARU J. Pharm. Sci. 2019, 27, 21–34. [Google Scholar] [CrossRef]
- Fogaça, R.L.; Alvarenga, L.M.; Woiski, T.D.; Becker-Finco, A.; Teixeira, K.N.; Silva, S.K.; de Moraes, R.N.; Noronha, L.; Noiray, M.; de Figueiredo, B.C.; et al. Biomolecular engineering of antidehydroepiandrosterone antibodies: A new perspective in cancer diagnosis and treatment using single-chain antibody variable fragment. Nanomedicine 2019, 14, 689–705. [Google Scholar] [CrossRef]
- Banisadr, A.; Safdari, Y.; Kianmehr, A.; Pourafshar, M. Production of a germline-humanized cetuximab scFv and evaluation of its activity in recognizing EGFR- overexpressing cancer cells. Hum. Vaccines Immunother. 2018, 14, 856–863. [Google Scholar] [CrossRef]
- Mahgoub, E.O.; Bolad, A.K. Construction, expression and characterisation of a single chain variable fragment in the Escherichia coli periplasmic that recognise MCF-7 breast cancer cell line. J. Cancer Res. Ther. 2014, 10, 265–273. [Google Scholar] [CrossRef]
- Zuhaida, A.A.; Ali, A.M.; Tamilselvan, S.; Alitheen, N.B.; Hamid, M.; Noor, A.M.; Yeap, S.K. Construction of single-chain variable fragment antibodies against MCF-7 breast cancer cells. Genet. Mol. Res. GMR 2013, 12, 5547–5559. [Google Scholar] [CrossRef]
- Gur, D.; Liu, S.; Shukla, A.; Pero, S.C.; Wicha, M.S.; Krag, D.N. Identification of single chain antibodies to breast cancer stem cells using phage display. Biotechnol. Prog. 2009, 25, 1780–1787. [Google Scholar] [CrossRef]
- Kessler, C.; Pardo, A.; Tur, M.K.; Gattenlöhner, S.; Fischer, R.; Kolberg, K.; Barth, S. Novel PSCA targeting scFv-fusion proteins for diagnosis and immunotherapy of prostate cancer. J. Cancer Res. Clin. Oncol. 2017, 143, 2025–2038. [Google Scholar] [CrossRef]
- Salavatifar, M.; Amin, S.; Jahromi, Z.M.; Rasgoo, N.; Rastgoo, N.; Arbabi, M. Green fluorescent-conjugated anti-CEA single chain antibody for the detection of CEA-positive cancer cells. Hybridoma 2011, 30, 229–238. [Google Scholar] [CrossRef]
- Khantasup, K.; Saiviroonporn, P.; Jarussophon, S.; Chantima, W.; Dharakul, T. Anti-EpCAM scFv gadolinium chelate: A novel targeted MRI contrast agent for imaging of colorectal cancer. Magn. Reson. Mater. Phys. Biol. Med. 2018, 31, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Huang, J.; Li, F.; Wang, Y.; Ding, M.; Zhang, J.; Yin, H.; Zhang, R.; Ren, X. EGFR-specific single-chain variable fragment antibody-conjugated Fe(3)O(4)/Au nanoparticles as an active MRI contrast agent for NSCLC. Magma 2021, 34, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Shoji, M.; Chen, J.; Bierhaus, A.; Danave, I.; Micko, C.; Casper, K.; Dillehay, D.L.; Nawroth, P.P.; Rickles, F.R. Regulation of vascular endothelial growth factor production and angiogenesis by the cytoplasmic tail of tissue factor. Proc. Natl. Acad. Sci. USA 1999, 96, 8663–8668. [Google Scholar] [CrossRef] [PubMed]
- Rong, Y.; Post, D.E.; Pieper, R.O.; Durden, D.L.; Van Meir, E.G.; Brat, D.J. PTEN and hypoxia regulate tissue factor expression and plasma coagulation by glioblastoma. Cancer Res. 2005, 65, 1406–1413. [Google Scholar] [CrossRef]
- Sato, R.; Obonai, T.; Tsumura, R.; Tsumoto, K.; Koga, Y.; Yasunaga, M.; Matsumura, Y. Preparation and characterization of anti-tissue factor single-chain variable fragment antibody for cancer diagnosis. Cancer Sci. 2014, 105, 1631–1637. [Google Scholar] [CrossRef]
- Chen, B.; Jerger, K.; Fréchet, J.M.; Szoka, F.C., Jr. The influence of polymer topology on pharmacokinetics: Differences between cyclic and linear PEGylated poly(acrylic acid) comb polymers. J. Control. Release Off. J. Control. Release Soc. 2009, 140, 203–209. [Google Scholar] [CrossRef]
- Liu, Q.; Pang, H.; Hu, X.; Li, W.; Xi, J.; Xu, L.; Zhou, J. Construction of human single-chain variable fragment antibodies of medullary thyroid carcinoma and single photon emission computed tomography/computed tomography imaging in tumor-bearing nude mice. Oncol. Rep. 2016, 35, 171–178. [Google Scholar] [CrossRef]
- Liu, Q.; Pang, H.; Liu, Q.; Zhou, J.; Liu, Y. Preparation of human single-chain variable fragment antibodies against anaplastic thyroid carcinoma, and single photon emission-computed tomography/computed tomography imaging in tumor-bearing nude mice. Oncol. Rep. 2017, 37, 2980–2986. [Google Scholar] [CrossRef]
- Frigerio, B.; Fracasso, G.; Luison, E.; Cingarlini, S.; Mortarino, M.; Coliva, A.; Seregni, E.; Bombardieri, E.; Zuccolotto, G.; Rosato, A.; et al. A single-chain fragment against prostate specific membrane antigen as a tool to build theranostic reagents for prostate cancer. Eur. J. Cancer 2013, 49, 2223–2232. [Google Scholar] [CrossRef]
- Mazzocco, C.; Fracasso, G.; Germain-Genevois, C.; Dugot-Senant, N.; Figini, M.; Colombatti, M.; Grenier, N.; Couillaud, F. In vivo imaging of prostate cancer using an anti-PSMA scFv fragment as a probe. Sci. Rep. 2016, 6, 23314. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Wu, J.; Han, Y.; Wei, M.; Han, S.; Lin, R.; Sun, Z.; Yang, F.; Jiao, D.; Xie, P.; et al. A novel anti-PSMA human scFv has the potential to be used as a diagnostic tool in prostate cancer. Oncotarget 2016, 7, 59471–59481. [Google Scholar] [CrossRef]
- Kim, H.Y.; Wang, X.; Kang, R.; Tang, D.; Boone, B.A.; Zeh, H.J., 3rd; Lotze, M.T.; Edwards, W.B. RAGE-specific single chain Fv for PET imaging of pancreatic cancer. PLoS ONE 2018, 13, e0192821. [Google Scholar]
- Arcangeli, A.; Becchetti, A. hERG Channels: From Antitargets to Novel Targets for Cancer Therapy. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017, 23, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Duranti, C.; Carraresi, L.; Sette, A.; Stefanini, M.; Lottini, T.; Crescioli, S.; Crociani, O.; Iamele, L.; De Jonge, H.; Gherardi, E.; et al. Generation and characterization of novel recombinant anti-hERG1 scFv antibodies for cancer molecular imaging. Oncotarget 2018, 9, 34972–34989. [Google Scholar] [CrossRef] [PubMed]
- Yakushiji, H.; Kobayashi, K.; Takenaka, F.; Kishi, Y.; Shinohara, M.; Akehi, M.; Sasaki, T.; Ohno, E.; Matsuura, E. Novel single-chain variant of antibody against mesothelin established by phage library. Cancer Sci. 2019, 110, 2722–2733. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, C.; Hu, F.; Zhang, Y.; Wang, J.; Gao, Y.; Jiang, Y.; Zhang, Y.; Lan, X. PET Imaging of VCAM-1 Expression and Monitoring Therapy Response in Tumor with a (68)Ga-Labeled Single Chain Variable Fragment. Mol. Pharm. 2018, 15, 609–618. [Google Scholar] [CrossRef]
- Freedman M, Chang EH, Zhou Q, Pirollo KF: Nanodelivery of MRI contrast agent enhances sensitivity of detection of lung cancer metastases. Acad. Radiol. 2009, 16, 627–637. [CrossRef]
- Cuesta, A.M.; Sánchez-Martín, D.; Sanz, L.; Bonet, J.; Compte, M.; Kremer, L.; Blanco, F.J.; Oliva, B.; Alvarez-Vallina, L. In vivo tumor targeting and imaging with engineered trivalent antibody fragments containing collagen-derived sequences. PLoS ONE 2009, 4, e5381. [Google Scholar] [CrossRef]
- Rios, X.; Compte, M.; Gómez-Vallejo, V.; Cossío, U. Immuno-PET Imaging and Pharmacokinetics of an Anti-CEA scFv-based Trimerbody and Its Monomeric Counterpart in Human Gastric Carcinoma-Bearing Mice. Mol. Pharm. 2019, 16, 1025–1035. [Google Scholar] [CrossRef]
- Jugniot, N.; Bam, R.; Paulmurugan, R. Expression and purification of a native Thy1-single-chain variable fragment for use in molecular imaging. Sci. Rep. 2021, 11, 23026. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Vasylieva, N.; Shen, D.; Barnych, B.; Yang, J.; He, Q.; Jiang, Z.; Zhao, S.; Hammock, B.D. Biotinylated single-chain variable fragment-based enzyme-linked immunosorbent assay for glycocholic acid. Analyst 2018, 143, 2057–2065. [Google Scholar] [CrossRef] [PubMed]
- Marasco, W.A.; Dana Jones, S. Antibodies for targeted gene therapy: Extracellular gene targeting and intracellular expression. Adv. Drug Deliv. Rev. 1998, 31, 153–170. [Google Scholar]
- Li, Q.; Hudson, W.; Wang, D.; Berven, E.; Uckun, F.M.; Kersey, J.H. Pharmacokinetics and biodistribution of radioimmunoconjugates of anti-CD19 antibody and single-chain Fv for treatment of human B-cell malignancy. Cancer Immunol. Immunother. CII 1998, 47, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K.; Jeong, H.J.; Kao, C.H.; Yao, Z.; Paik, D.S.; Pie, J.E.; Kobayashi, H.; Waldmann, T.A.; Carrasquillo, J.A.; Paik, C.H. Improved renal clearance and tumor targeting of 99mTc-labeled anti-Tac monoclonal antibody Fab by chemical modifications. Nucl. Med. Biol. 2002, 29, 139–146. [Google Scholar] [CrossRef]
- Chowdhury, P.S.; Viner, J.L.; Beers, R.; Pastan, I. Isolation of a high-affinity stable single-chain Fv specific for mesothelin from DNA-immunized mice by phage display and construction of a recombinant immunotoxin with anti-tumor activity. Proc. Nat. Acad. Sci. USA 1998, 95, 669–674. [Google Scholar] [CrossRef]
- Esmaeili, S.A.; Nejatollahi, F.; Sahebkar, A. Inhibition of Intercellular Communication between Prostate Cancer Cells by A Specific Anti-STEAP-1 Single Chain Antibody. Anti-Cancer Agents Med. Chem. 2018, 18, 1674–1679. [Google Scholar] [CrossRef]
- Feldmann, A.; Arndt, C.; Töpfer, K.; Stamova, S.; Krone, F.; Cartellieri, M.; Koristka, S.; Michalk, I.; Lindemann, D.; Schmitz, M.; et al. Novel humanized and highly efficient bispecific antibodies mediate killing of prostate stem cell antigen-expressing tumor cells by CD8+ and CD4+ T cells. J. Immunol. 2012, 189, 3249–3259. [Google Scholar] [CrossRef]
- Friedrich, M.; Raum, T.; Lutterbuese, R.; Voelkel, M.; Deegen, P.; Rau, D.; Kischel, R.; Hoffmann, P.; Brandl, C.; Schuhmacher, J.; et al. Regression of human prostate cancer xenografts in mice by AMG 212/BAY2010112, a novel PSMA/CD3-Bispecific BiTE antibody cross-reactive with non-human primate antigens. Mol. Cancer Ther. 2012, 11, 2664–2673. [Google Scholar] [CrossRef]
- Ji, X.; Shen, Y.; Sun, H.; Gao, X. A novel anti-alpha-fetoprotein single-chain variable fragment displays anti-tumor effects in HepG2 cells as a single agent or in combination with paclitaxel. Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med. 2016, 37, 10085–10096. [Google Scholar] [CrossRef]
- Liu, J.; Yi, B.; Zhang, Z.; Cao, Y. CD176 single-chain variable antibody fragment inhibits the adhesion of cancer cells to endothelial cells and hepatocytes. Front. Med. 2016, 10, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Wang, Y.; Xiao, Y.; He, Y.; Luo, C.; Duan, D.; Li, C.; Xu, S.; Xiang, T. RP215 single chain fragment variable and single domain recombinant antibodies induce cell cycle arrest at G0/G1 phase in breast cancer. Mol. Immunol. 2014, 59, 100–109. [Google Scholar] [CrossRef]
- Tong, Q.; Liu, K.; Lu, X.M.; Shu, X.G.; Wang, G.B. Construction and characterization of a novel fusion protein MG7-scFv/SEB against gastric cancer. J. Biomed. Biotechnol. 2010, 2010, 121094. [Google Scholar] [CrossRef] [Green Version]
- Gattenlöhner, S.; Jörissen, H.; Huhn, M.; Vincent, A.; Beeson, D.; Tzartos, S.; Mamalaki, A.; Etschmann, B.; Muller-Hermelink, H.K.; Koscielniak, E.; et al. A human recombinant autoantibody-based immunotoxin specific for the fetal acetylcholine receptor inhibits rhabdomyosarcoma growth in vitro and in a murine transplantation model. J. Biomed. Biotechnol. 2010, 2010, 187621. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.P.; Liu, I.J.; Chung, M.J.; Wu, H.C. Novel anti-EGFR scFv human antibody-conjugated immunoliposomes enhance chemotherapeutic efficacy in squamous cell carcinoma of head and neck. Oral. Oncol. 2020, 106, 104689. [Google Scholar] [CrossRef] [PubMed]
- Mikiewicz, D.; Łukasiewicz, N.; Zieliński, M.; Cecuda-Adamczewska, V.; Bierczyńska-Krzysik, A.; Romanik-Chruścielewska, A.; Kęsik-Brodacka, M. Bacterial expression and characterization of an anti-CD22 single-chain antibody fragment. Protein Expr. Purif. 2020, 170, 105594. [Google Scholar] [CrossRef]
- Moradi-Kalbolandi, S.; Habibi-Anbouhi, M.; Golkar, M.; Behdani, M.; Rezaei, G.; Ghazizadeh, L.; Abolhassani, M.; Shokrgozar, M.A. Development of a novel engineered antibody targeting human CD123. Anal. Biochem. 2016, 511, 27–30. [Google Scholar] [CrossRef]
- Nickho, H.; Younesi, V.; Aghebati-Maleki, L.; Motallebnezhad, M.; Majidi Zolbanin, J.; Movassagh Pour, A.; Yousefi, M. Developing and characterization of single chain variable fragment (scFv) antibody against frizzled 7 (Fzd7) receptor. Bioengineered 2017, 8, 501–510. [Google Scholar] [CrossRef]
- Crépin, R.; Goenaga, A.-L.; Jullienne, B.; Bougherara, H.; Legay, C.; Benihoud, K.; Marks, J.D.; Poul, M.-A. Development of human single-chain antibodies to the transferrin receptor that effectively antagonize the growth of leukemias and lymphomas. Cancer Res. 2010, 70, 5497–5506. [Google Scholar] [CrossRef]
- Peng, J.L.; Wu, S.; Zhao, X.P.; Wang, M.; Li, W.H.; Shen, X.; Liu, J.; Lei, P.; Zhu, H.F.; Shen, G.X. Downregulation of transferrin receptor surface expression by intracellular antibody. Biochem. Biophys. Res. Commun. 2007, 354, 864–871. [Google Scholar] [CrossRef]
- Veisi, K.; Farajnia, S.; Zarghami, N.; Khorshid, H.R.; Samadi, N.; Safdari, Y.; Ahmadzadeh, V. Development and Evaluation of a Cetuximab-based Humanized Single Chain Antibody Against EGFR-overexpressing Tumors. Drug Res. 2015, 65, 624–628. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.L.; Liu, D.X.; Zhen, S.J.; Zhou, Y.G.; Zhang, D.J.; Yang, L.Y.; Chen, H.B.; Feng, Q. A novel anti-p21Ras scFv antibody reacting specifically with human tumour cell lines and primary tumour tissues. BMC Cancer 2016, 16, 131. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.R.; Bai, S.; Feng, Q.; Pan, X.Y.; Song, S.L.; Fang, H.; Cui, J.; Yang, J.L. Anti-colorectal cancer effects of anti-p21Ras scFv delivered by the recombinant adenovirus KGHV500 and cytokine-induced killer cells. BMC Cancer 2018, 18, 1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmohl, J.U.; Gleason, M.K.; Dougherty, P.R.; Miller, J.S.; Vallera, D.A. Heterodimeric Bispecific Single Chain Variable Fragments (scFv) Killer Engagers (BiKEs) Enhance NK-cell Activity Against CD133+ Colorectal Cancer Cells. Target. Oncol. 2016, 11, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Tang, W.; Cao, Y.; Jiang, D.; Zhao, L.; Zhao, J.; Zhang, Y.; Li, C.; Cheng, C.; Wang, S.; et al. A Cyclin D1-Specific Single-Chain Variable Fragment Antibody that Inhibits HepG2 Cell Growth and Proliferation. Biotechnol. J. 2020, 15, e1900430. [Google Scholar] [CrossRef]
- Strube, R.W.; Chen, S.Y. Characterization of anti-cyclin E single-chain Fv antibodies and intrabodies in breast cancer cells: Enhanced intracellular stability of novel sFv-F(c) intrabodies. J. Immunol. Methods 2002, 263, 149–167. [Google Scholar] [CrossRef]
- Qiu, Q.; Wang, Q.; Deng, C.; Sun, Y.; Chen, T.; Guo, L.; Zhang, F. Small molecular peptide-ScFv αvβ3 conjugates specifically inhibit lung cancer cell growth in vitro and in vivo. Am. J. Cancer Res. 2016, 6, 2846–2858. [Google Scholar]
- Zhang, X.Q.; Yu, L.T.; Du, P.; Yin, T.Q.; Zhang, Z.Y.; Xu, Y.; Li, X.; Li, Y.J.; Wang, M.; Luo, C. Single-chain Antibody Against Reg4 Suppresses Gastric Cancer Cell Growth and Enhances 5-FU-induced Cell Death in vitro. Anti-Cancer Agents Med. Chem. 2019, 19, 610–619. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.S.; Railkar, R.; Swain, M.; Atreya, H.S.; Dighe, R.R.; Kondaiah, P. Novel anti IGFBP2 single chain variable fragment inhibits glioma cell migration and invasion. J. Neuro-Oncol. 2015, 123, 225–235. [Google Scholar] [CrossRef]
- Mohammadi, M.; Nejatollahi, F.; Ghasemi, Y.; Faraji, S.N. Anti-Metastatic and Anti-Invasion Effects of a Specific Anti-MUC18 scFv Antibody on Breast Cancer Cells. Appl. Biochem. Biotechnol. 2017, 181, 379–390. [Google Scholar] [CrossRef]
- Gao, R.; Li, L.; Shang, B.; Zhao, C.; Sheng, W.; Li, D. A Gelatinases-targeting scFv-based Fusion Protein Shows Enhanced Antitumour Activity with Endostar against Hepatoma. Basic Clin. Pharmacol. Toxicol. 2015, 117, 105–116. [Google Scholar] [PubMed]
- Amoury, M.; Kolberg, K.; Pham, A.T.; Hristodorov, D.; Mladenov, R.; Di Fiore, S.; Helfrich, W.; Kiessling, F.; Fischer, R.; Pardo, A.; et al. Granzyme B-based cytolytic fusion protein targeting EpCAM specifically kills triple negative breast cancer cells in vitro and inhibits tumor growth in a subcutaneous mouse tumor model. Cancer Lett. 2016, 372, 201–209. [Google Scholar] [PubMed]
- Xu, L.; Tang, W.-H.; Huang, C.-C.; Alexander, W.; Xiang, L.-M.; Pirollo, K.F.; Rait, A.; Chang, E.H. Systemic p53 gene therapy of cancer with immunolipoplexes targeted by anti-transferrin receptor scFv. Mol. Med. 2001, 7, 723–734. [Google Scholar] [PubMed]
- Yu, W.; Pirollo, K.F.; Rait, A.; Yu, B.; Xiang, L.M.; Huang, W.Q.; Zhou, Q.; Ertem, G.; Chang, E.H. A sterically stabilized immunolipoplex for systemic administration of a therapeutic gene. Gene Ther. 2004, 11, 1434–1440. [Google Scholar] [PubMed] [Green Version]
- Xavier, S.; Gopi Mohan, C.; Nair, S.; Menon, K.N.; Vijayachandran, L.S. Generation of humanized single-chain fragment variable immunotherapeutic against EGFR variant III using baculovirus expression system and in vitro validation. Int. J. Biol. Macromol. 2019, 124, 17–24. [Google Scholar]
- Xu, L.; Huang, C.-C.; Huang, W.; Tang, W.-H.; Rait, A.; Yin, Y.Z.; Cruz, I.; Xiang, L.-M.; Pirollo, K.F.; Chang, E.H. Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes 1 this work was supported in part by National Cancer Institute Grant R01 CA45158 (to EC), National Cancer Institute Small Business Technology Transfer Phase I Grant R41 CA80449 (to EC), and a grant from SynerGene Therapeutics, Inc. 1. Mol. Cancer Ther. 2002, 1, 337–346. [Google Scholar] [PubMed]
- Hong, M.; Clubb, J.D.; Chen, Y.Y. Engineering CAR-T Cells for Next-Generation Cancer Therapy. Cancer Cell 2020, 38, 473–488. [Google Scholar]
- Pirollo, K.F.; Nemunaitis, J.; Leung, P.K.; Nunan, R.; Adams, J.; Chang, E.H. Safety and Efficacy in Advanced Solid Tumors of a Targeted Nanocomplex Carrying the p53 Gene Used in Combination with Docetaxel: A Phase 1b Study. Mol. Ther. 2016, 24, 1697–1706. [Google Scholar]
- Senzer, N.; Nemunaitis, J.; Nemunaitis, D.; Bedell, C.; Edelman, G.; Barve, M.; Nunan, R.; Pirollo, K.F.; Rait, A.; Chang, E.H. Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol. Ther. J. Am. Soc. Gene Ther. 2013, 21, 1096–1103. [Google Scholar]
- Luria-Pérez, R.; Helguera, G.; Rodríguez, J.A. Antibody-mediated targeting of the transferrin receptor in cancer cells. Boletín Médico Hosp. Infant. México 2016, 73, 372–379. [Google Scholar]
- Siefker-Radtke, A.; Zhang, X.-Q.; Guo, C.C.; Shen, Y.; Pirollo, K.F.; Sabir, S.; Leung, C.; Leong-Wu, C.; Ling, C.-M.; Chang, E.H.; et al. A Phase l Study of a Tumor-targeted Systemic Nanodelivery System, SGT-94, in Genitourinary Cancers. Mol. Ther. J. Am. Soc. Gene Ther. 2016, 24, 1484–1491. [Google Scholar]
- Löffler, A.; Kufer, P.; Lutterbüse, R.; Zettl, F.; Daniel, P.T.; Schwenkenbecher, J.M.; Riethmüller, G.; Dörken, B.; Bargou, R.C. A recombinant bispecific single-chain antibody, CD19 x CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood 2000, 95, 2098–2103. [Google Scholar] [PubMed]
- Bargou, R.; Leo, E.; Zugmaier, G.; Klinger, M.; Goebeler, M.; Knop, S.; Noppeney, R.; Viardot, A.; Hess, G.; Schuler, M.; et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 2008, 321, 974–977. [Google Scholar] [PubMed]
- Klinger, M.; Brandl, C.; Zugmaier, G.; Hijazi, Y.; Bargou, R.C.; Topp, M.S.; Gökbuget, N.; Neumann, S.; Goebeler, M.; Viardot, A.; et al. Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell-engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood 2012, 119, 6226–6233. [Google Scholar] [PubMed]
- Osada, T.; Hsu, D.; Hammond, S.; Hobeika, A.; Devi, G.; Clay, T.M.; Lyerly, H.K.; Morse, M.A. Metastatic colorectal cancer cells from patients previously treated with chemotherapy are sensitive to T-cell killing mediated by CEA/CD3-bispecific T-cell-engaging BiTE antibody. Br. J. Cancer 2010, 102, 124–133. [Google Scholar]
- Lutterbuese, R.; Raum, T.; Kischel, R.; Lutterbuese, P.; Schlereth, B.; Schaller, E.; Mangold, S.; Rau, D.; Meier, P.; Kiener, P.A.; et al. Potent control of tumor growth by CEA/CD3-bispecific single-chain antibody constructs that are not competitively inhibited by soluble CEA. J. Immunother. 2009, 32, 341–352. [Google Scholar]
- MacDonald, G.C.; Rasamoelisolo, M.; Entwistle, J.; Cuthbert, W.; Kowalski, M.; Spearman, M.A.; Glover, N. A phase I clinical study of intratumorally administered VB4-845, an anti-epithelial cell adhesion molecule recombinant fusion protein, in patients with squamous cell carcinoma of the head and neck. Med. Oncol. 2009, 26, 257–264. [Google Scholar]
- Demarest, S.J.; Glaser, S.M. Antibody therapeutics, antibody engineering, and the merits of protein stability. Curr. Opin. Drug Discov. Dev. 2008, 11, 675–687. [Google Scholar]
- Bates, A.; Power, C.A. David vs. Goliath: The Structure, Function, and Clinical Prospects of Antibody Fragments. Antibodies 2019, 8, 28. [Google Scholar]
- Austerberry, J.I.; Thistlethwaite, A.; Fisher, K.; Golovanov, A.P. Arginine to Lysine Mutations Increase the Aggregation Stability of a Single-Chain Variable Fragment through Unfolded-State Interactions. Biochemistry 2019, 58, 3413–3421. [Google Scholar]
- Ettayapuram Ramaprasad, A.S.; Uddin, S.; Casas-Finet, J.; Jacobs, D.J. Decomposing Dynamical Couplings in Mutated scFv Antibody Fragments into Stabilizing and Destabilizing Effects. J. Am. Chem. Soc. 2017, 139, 17508–17517. [Google Scholar]
- Ahmad, Z.A.; Yeap, S.K.; Ali, A.M.; Ho, W.Y.; Alitheen, N.B.; Hamid, M. scFv antibody: Principles and clinical application. Clin. Dev. Immunol. 2012, 2012, 980250. [Google Scholar] [PubMed]
- Holt, L.J.; Basran, A.; Jones, K.; Chorlton, J.; Jespers, L.S.; Brewis, N.D.; Tomlinson, I.M. Anti-serum albumin domain antibodies for extending the half-lives of short lived drugs. Protein Eng. Des. Sel. PEDS 2008, 21, 283–288. [Google Scholar]
- Asaadi, Y.; Jouneghani, F.F.; Janani, S.; Rahbarizadeh, F. A comprehensive comparison between camelid nanobodies and single chain variable fragments. Biomark. Res. 2021, 9, 87. [Google Scholar]
- Khantasup, K.; Chantima, W.; Sangma, C.; Poomputsa, K.; Dharakul, T. Design and Generation of Humanized Single-chain Fv Derived from Mouse Hybridoma for Potential Targeting Application. Monoclon. Antibodies Immunodiagn. Immunother. 2015, 34, 404–417. [Google Scholar]
- Xu, P.; Raden, D.; Doyle, F.J., 3rd; Robinson, A.S. Analysis of unfolded protein response during single-chain antibody expression in Saccaromyces cerevisiae reveals different roles for BiP and PDI in folding. Metab. Eng. 2005, 7, 269–279. [Google Scholar]
- de Aguiar, R.B.; da Silva, T.A.; Costa, B.A.; Machado, M.F.M.; Yamada, R.Y.; Braggion, C.; Perez, K.R.; Mori, M.A.S.; Oliveira, V.; de Moraes, J.Z. Generation and functional characterization of a single-chain variable fragment (scFv) of the anti-FGF2 3F12E7 monoclonal antibody. Sci. Rep. 2021, 11, 1432. [Google Scholar]
- Zuber, C.; Mitteregger, G.; Schuhmann, N.; Rey, C.; Knackmuss, S.; Rupprecht, W.; Reusch, U.; Pace, C.; Little, M.; Kretzschmar, H.A.; et al. Delivery of single-chain antibodies (scFvs) directed against the 37/67 kDa laminin receptor into mice via recombinant adeno-associated viral vectors for prion disease gene therapy. J. Gen. Virol. 2008, 89 Pt 8, 2055–2061. [Google Scholar]
Target scFv | Type of Cancer | Diagnostic Method | Reference |
---|---|---|---|
Epithelial cell adhesion molecule (EpCAM) | Adenocarcinoma and squamous cell carcinomas (colorectal) | MRI | [105] |
Epidermal growth factor receptor (EGFR) | Non-small cell lung cancer | MRI | [106] |
Tissue factor (TF) | Solid tumors such as gastric, pancreatic, and brain cancer | IVIS in vivo imaging system | [107,109] |
Medullary thyroid carcinoma | Medullary thyroid carcinoma | SPECT and SPECT-CT | [111] |
Anaplastic thyroid carcinoma | Anaplastic thyroid carcinoma | SPECT and SPECT-CT | [112] |
Prostate-specific membrane antigen (PSMA) | Prostate cancer | Fluorescent molecular tomography (FMT) | [114,115] |
Prostate-specific membrane antigen (PSMA) | Prostate cancer | Fluorescence imaging (FLI) using near infrared (NIR) | [115] |
Receptor for advanced glycation end-products (RAGE) | Pancreatic cancer | PET | [116] |
hERG1 | Various neoplasms | Near-infrared (NIR) spectroscopy | [117,118] |
Mesothelin (MSLN) | Various neoplasms | PET/CT | [119] |
Vascular cell adhesion molecule-1 (VCAM-1) | Various neoplasms | PET/CT | [120] |
Transferrin receptor | Lung tumors | MRI | [121] |
Carcinoembryonic antigen (CEA) | Adenocarcinomas | PET | [122] |
Anti-thymocyte differentiation antigen | Pancreatic ductal adenocarcinoma | Ultrasound | [124] |
Glycolytic acid (GCA) | Human hepatocellular carcinoma | ELISA | [125] |
Target | Type of Cancer | Reference |
---|---|---|
scFv against tumor-cell surface antigen | ||
scFv/Mesothelin | Epidermoid cervical carcinoma | [129] |
Prostate-specific membrane antigen (PSMA) | Prostate cancer | [113] |
Alpha-fetoprotein (AFP) | Hepatocellular carcinoma | [133] |
CA125 | Breast cancer | [135] |
Six-transmembrane epithelial antigen of the prostate (STEAP-1) | Prostate cancer | [130] |
CD176 | Gastric and colorectal cancer | [134] |
MG7-scFv/SEB | Gastric cancer | [136] |
fAChR scFv/ETA | Rhabdomyosarcoma | [137] |
CD22 | Lymphoma | [139] |
Cholecystokinin-2/gastrin receptor (CCKR2) | Gastric adenocarcinoma | [97] |
Epidermal growth factor receptor III (EGFRvIII) | Glioblastoma | [144,158] |
CD123 | Erythroleukemia | [140] |
scFv against tumor growth, survival, and proliferation | ||
Frizzled class receptor 7 (Fzd7) | Breast cancer | [141] |
Transferrin receptor 1 (TfR1) | Squamous cell carcinoma and hematopoietic neoplasms | [138,142,156,159] |
p21Ras | Colorectal cancer | [146] |
Cyclin D1 | Hepatocellular carcinoma | [148] |
Cyclin E | Breast cancer | [149] |
Integrin alphavbeta3 (ITG αvβ3) | Lung cancer | [150] |
scFv against tumor migration | ||
Reg4 | Gastric cancer | [151] |
Insulin-like growth factor binding protein-2 (IGFBP2) | Glioblastoma | [152] |
MUC18 | Breast cancer | [153] |
Lidamidine apoprotein (LDP) | Hepatocellular carcinoma | [154] |
scFv inducing tumor apoptosis | ||
Epithelial cell adhesion molecule (EpCAM) | Triple-negative breast cancer (TNBC) | [155] |
p53 | Solid tumors | [159,160] |
Format | Type of Cancer | Clinical Trial Identifier | Phase | Start Year |
---|---|---|---|---|
T cells modified with RNA anti-cMET CAR | Malignant melanoma Breast cancer | NCT03060356 | Phase I | 2017 |
CAR-T-BCMA | Multiple myeloma | NCT02546167 | Phase I | 2015 |
CAR-20/19-T cells | Acute lymphoblastic leukemia | NCT04049383 | Phase I | 2019 |
CAR-20/19-T cells | Non-Hodgkin lymphoma Chronic lymphocytic leukemia | NCT03019055 | Phase I | 2017 |
IMCgp100 (tebentafusp-tebn) | Malignant melanoma | NCT03070392 | Phase II | 2010 |
Blinatumomab/MT103/MEDI-538 | Non-Hodgkin lymphoma Acute lymphocytic leukemia | NTC02101853 NTC02003222 | Phase III | 2013 |
BAY2010112/AM112 (Pasutuxizuab) | Prostate cancer | NTC01723475 | Phase I | 2012 |
MT-103/scFv-tandem scFv fused with a linker | Non-Hodgkin lymphoma, acute lymphoblastic leukemia | NCT00274742, NCT00538096, NCT01471782, NCT00676871, NCT02101853, | Phases I, II, III | 2000 |
MT-110/scFv- tandem scFv fused with a linker | Solid tumors | NCT00635596 | Phase I | 2006 |
MT-111/scFv-tandem scFv fused with a linker | Gastrointestinal tumors, adenocarcinomas | NCT01284231 | Phase I | 2009 |
BAY2010112/scFv-tandem scFv fused with a linker | Prostate cancer | NCT01723475 | Phase I | 2012 |
Anti-EpCAM ScFv Vicinium VB8-845 | Bladder cancer | NCT02449239 | Phase III | 2015 |
Anti-EpCAM ScFv Proxinium VB8-845 | Squamous cell carcinoma of the head and neck | NCT00272181 NCT00412776 | Phases II and III | 2006 |
Plasmid DNA p53 gene encapsulated in scFv liposome | Central nervous system tumors | NCT03554707 | Phase I | 2018 |
Plasmid DNA p53 gene encapsulated in scFv liposome | Solid tumors | NCT02354547 | Phase I | 2015 |
Plasmid DNA p53 gene encapsulated in scFv liposome | Metastatic pancreatic cancer | NCT02340117 | Phase II | 2015 |
Plasmid DNA p53 gene encapsulated in scFv liposome | Recurrent glioblastoma | NCT02340156 | Phase II | 2015 |
Plasmid DNA p53 gene encapsulated in scFv liposome | Solid tumors | NCT00470613 | Phase I | 2007 |
RB94 gene encapsulated in scFv liposome | Solid tumors | NCT01517464 | Phase I | 2012 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-López, P.; Ribas-Aparicio, R.M.; Becerra-Báez, E.I.; Fraga-Pérez, K.; Flores-Martínez, L.F.; Mateos-Chávez, A.A.; Luria-Pérez, R. Single-Chain Fragment Variable: Recent Progress in Cancer Diagnosis and Therapy. Cancers 2022, 14, 4206. https://doi.org/10.3390/cancers14174206
Muñoz-López P, Ribas-Aparicio RM, Becerra-Báez EI, Fraga-Pérez K, Flores-Martínez LF, Mateos-Chávez AA, Luria-Pérez R. Single-Chain Fragment Variable: Recent Progress in Cancer Diagnosis and Therapy. Cancers. 2022; 14(17):4206. https://doi.org/10.3390/cancers14174206
Chicago/Turabian StyleMuñoz-López, Paola, Rosa María Ribas-Aparicio, Elayne Irene Becerra-Báez, Karla Fraga-Pérez, Luis Fernando Flores-Martínez, Armando Alfredo Mateos-Chávez, and Rosendo Luria-Pérez. 2022. "Single-Chain Fragment Variable: Recent Progress in Cancer Diagnosis and Therapy" Cancers 14, no. 17: 4206. https://doi.org/10.3390/cancers14174206
APA StyleMuñoz-López, P., Ribas-Aparicio, R. M., Becerra-Báez, E. I., Fraga-Pérez, K., Flores-Martínez, L. F., Mateos-Chávez, A. A., & Luria-Pérez, R. (2022). Single-Chain Fragment Variable: Recent Progress in Cancer Diagnosis and Therapy. Cancers, 14(17), 4206. https://doi.org/10.3390/cancers14174206