MRD Monitoring by Multiparametric Flow Cytometry in AML: Is It Time to Incorporate Immune Parameters?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Multiparametric Flow Cytometry-MRD (MFC-MRD) Testing in AML
2.1. MFC-MRD after Intensive Chemotherapy
2.2. MFC-MRD after Lower Intensity Treatment
2.3. MFC-MRD Prior to and after AlloSCT
3. Future Perspective: A Holistic Approach for MFC-MRD in AML
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Döhner, H.; Weisdorf, D.J.; Bloomfield, C.D. Acute Myeloid Leukemia. N. Engl. J. Med. 2015, 373, 1136–1152. [Google Scholar] [CrossRef] [PubMed]
- Ngai, L.L.; Kelder, A.; Janssen, J.J.W.M.; Ossenkoppele, G.J.; Cloos, J. MRD Tailored Therapy in AML: What We Have Learned So Far. Front. Oncol. 2021, 10, 603636. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef]
- Nazha, A.; Sekeres, M.A.; Garcia-Manero, G.; Barnard, J.; Ali, N.H.A.; Roboz, G.J.; Steensma, D.P.; DeZern, A.E.; Zimmerman, C.; Jabbour, E.J.; et al. Outcomes of patients with myelodysplastic syndromes who achieve stable disease after treatment with hypomethylating agents. Leuk. Res. 2016, 41, 43–47. [Google Scholar] [CrossRef]
- Papageorgiou, S.G.; Kontos, C.K.; Kotsianidis, I.; Vasilatou, D.; Symeonidis, A.; Galanopoulos, A.; Bouchla, A.; Hatzimichael, E.; Repousis, P.; Zikos, P. The outcome of patients with high-risk MDS achieving stable disease after treatment with 5-azacytidine: A retrospective analysis of the Hellenic (Greek) MDS study group. Hematol. Oncol. 2018, 36, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Dohner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and Management of AML in Adults: 2022 ELN Recommendations from an International Expert Panel. Blood 2022, 129, 424–447. [Google Scholar] [CrossRef] [PubMed]
- Dix, C.; Lo, T.-H.; Clark, G.; Abadir, E. Measurable Residual Disease in Acute Myeloid Leukemia Using Flow Cytometry: A Review of Where We Are and Where We Are Going. J. Clin. Med. 2020, 9, 1714. [Google Scholar] [CrossRef]
- Tettero, J.M.; Freeman, S.; Buecklein, V.; Venditti, A.; Maurillo, L.; Kern, W.; Walter, R.B.; Wood, B.L.; Roumier, C.; Philippé, J.; et al. Technical Aspects of Flow Cytometry-based Measurable Residual Disease Quantification in Acute Myeloid Leukemia: Experience of the European LeukemiaNet MRD Working Party. Hemasphere 2021, 6, e676. [Google Scholar] [CrossRef]
- Schuurhuis, G.J.; Heuser, M.; Freeman, S.; Béné, M.-C.; Buccisano, F.; Cloos, J.; Grimwade, D.; Haferlach, T.; Hills, R.K.; Hourigan, C.S.; et al. Minimal/measurable residual disease in AML: A consensus document from the European LeukemiaNet MRD Working Party. Blood 2018, 131, 1275–1291. [Google Scholar] [CrossRef]
- Paietta, E. Consensus on MRD in AML? Blood 2018, 131, 1265–1266. [Google Scholar] [CrossRef]
- Short, N.J.; Ravandi, F. How close are we to incorporating measurable residual disease into clinical practice for acute myeloid leukemia? Haematologica 2019, 104, 1532–1541. [Google Scholar] [CrossRef] [PubMed]
- Brooimans, R.A.; van der Velden, V.H.J.; Boeckx, N.; Slomp, J.; Preijers, F.; te Marvelde, J.G.; Van, N.M.; Heijs, A.; Huys, E.; van der Holt, B.; et al. Immunophenotypic measurable residual disease (MRD) in acute myeloid leukemia: Is multicentric MRD assessment feasible? Leuk. Res. 2019, 76, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Maurer-Granofszky, M.; Schumich, A.; Buldini, B.; Gaipa, G.; Kappelmayer, J.; Mejstrikova, E.; Karawajew, L.; Rossi, J.; Suzan, A.Ç.; Agriello, E.; et al. An Extensive Quality Control and Quality Assurance (QC/QA) Program Significantly Improves Inter-Laboratory Concordance Rates of Flow-Cytometric Minimal Residual Disease Assessment in Acute Lymphoblastic Leukemia: An I-BFM-FLOW-Network Report. Cancers 2021, 13, 6148. [Google Scholar] [CrossRef]
- Wood, B.L. Principles of minimal residual disease detection for hematopoietic neoplasms by flow cytometry. Cytom. Part B Clin. Cytom. 2016, 90, 47–53. [Google Scholar] [CrossRef]
- Wood, B.L. Acute Myeloid Leukemia Minimal Residual Disease Detection: The Difference from Normal Approach. Curr. Protoc. Cytom. 2020, 93, e73. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.A.; Ramachandar, K.; Taub, R.N. Specificity of Heteroantisera to Human Acute Leukemia-Associated Antigens. J. Clin. Investig. 1974, 54, 1273–1278. [Google Scholar] [CrossRef]
- Greaves, M.F.; Brown, G.; Rapson, N.T.; Lister, T.A. Antisera to acute lymphoblastic leukemia cells. Clin. Immunol. Immunopathol. 1975, 4, 67–84. [Google Scholar] [CrossRef]
- Al Mawali, A.; Gillis, D.; Hissaria, P.; Lewis, I. Incidence, Sensitivity, and Specificity of Leukemia-Associated Phenotypes in Acute Myeloid Leukemia Using Specific Five-Color Multiparameter Flow Cytometry. Am. J. Clin. Pathol. 2008, 129, 934–945. [Google Scholar] [CrossRef]
- Vonk, C.M.; Al Hinai, A.S.A.; Hanekamp, D.; Valk, P.J.M. Molecular Minimal Residual Disease Detection in Acute Myeloid Leukemia. Cancers 2021, 13, 5431. [Google Scholar] [CrossRef]
- Sievers, E.L.; Lange, B.J.; Alonzo, T.A.; Gerbing, R.B.; Bernstein, I.D.; Smith, F.O.; Arceci, R.J.; Woods, W.G.; Loken, M.R. Immunophenotypic evidence of leukemia after induction therapy predicts relapse: Results from a prospective Children’s Cancer Group study of 252 patients with acute myeloid leukemia. Blood 2003, 101, 3398–3406. [Google Scholar] [CrossRef] [Green Version]
- MRD-AML-BFM Study Group; Langebrake, C.; Creutzig, U.; Dworzak, M.; Hrusak, O.; Mejstrikova, E.; Griesinger, F.; Zimmermann, M.; Reinhardt, D. Residual disease monitoring in childhood acute myeloid leukemia by multiparameter flow cytometry: The MRD-AML-BFM Study Group. J. Clin. Oncol. 2006, 24, 3686–3692. [Google Scholar] [CrossRef]
- Liu, F.-J.; Cheng, W.-Y.; Lin, X.-J.; Wang, S.-Y.; Jiang, T.-Y.; Ma, T.-T.; Zhu, Y.-M.; Shen, Y. Measurable Residual Disease Detected by Multiparameter Flow Cytometry and Sequencing Improves Prediction of Relapse and Survival in Acute Myeloid Leukemia. Front. Oncol. 2021, 11, 677833. [Google Scholar] [CrossRef] [PubMed]
- Getta, B.M. Multicolor Flow Cytometry and Multigene Next-Generation Sequencing Are Complementary and Highly Predictive for Relapse in Acute Myeloid Leukemia after Allogeneic Transplantation. Biol. Blood Marrow Transpl. 2017, 23, 1064–1071. [Google Scholar] [CrossRef] [PubMed]
- Venditti, A.; Piciocchi, A.; Candoni, A.; Melillo, L.; Calafiore, V.; Cairoli, R.; de Fabritiis, P.; Storti, G.; Salutari, P.; Lanza, F.; et al. GIMEMA AML1310 trial of risk-adapted, MRD-directed therapy for young adults with newly diagnosed acute myeloid leukemia. Blood 2019, 134, 935–945. [Google Scholar] [CrossRef] [PubMed]
- Coustan-Smith, E.; Song, G.; Shurtleff, S.; Yeoh, A.E.-J.; Chng, W.J.; Chen, S.P.; Rubnitz, J.E.; Pui, C.-H.; Downing, J.R.; Campana, D. Universal monitoring of minimal residual disease in acute myeloid leukemia. JCI Insight 2018, 3, 98561. [Google Scholar] [CrossRef]
- Terwijn, M.; van Putten, W.L.J.; Kelder, A.; van der Velden, V.H.J.; Brooimans, R.A.; Pabst, T.; Maertens, J.; Boeckx, N.; de Greef, G.E.; Valk, P.J.M.; et al. High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: Data from the HOVON/SAKK AML 42A study. J. Clin. Oncol. 2013, 31, 3889. [Google Scholar] [CrossRef]
- Jacobsohn, D.A.; Loken, M.R.; Fei, M.; Adams, A.; Brodersen, L.E.; Logan, B.R.; Ahn, K.W.; Shaw, B.E.; Kletzel, M.; Olszewski, M.; et al. Outcomes of Measurable Residual Disease in Pediatric Acute Myeloid Leukemia before and after Hematopoietic Stem Cell Transplant: Validation of Difference from Normal Flow Cytometry with Chimerism Studies and Wilms Tumor 1 Gene Expression. Biol. Blood Marrow Transplant. 2018, 24, 2040–2046. [Google Scholar] [CrossRef]
- Daga, S.; Rosenberger, A.; Kashofer, K.; Heitzer, E.; Quehenberger, F.; Halbwedl, I.; Graf, R.; Krisper, N.; Prietl, B.; Höfler, G.; et al. Sensitive and broadly applicable residual disease detection in acute myeloid leukemia using flow cytometry-based leukemic cell enrichment followed by mutational profiling. Am. J. Hematol. 2020, 95, 1148–1157. [Google Scholar] [CrossRef]
- Short, N.J.; Zhou, S.; Fu, C.; Berry, D.A.; Walter, R.B.; Freeman, S.D.; Hourigan, C.S.; Huang, X.; Nogueras Gonzalez, G.; Hwang, H.; et al. Association of Measurable Residual Disease with Survival Outcomes in Patients with Acute Myeloid Leukemia: A Systematic Review and Meta-analysis. JAMA Oncol. 2020, 6, 1890–1899. [Google Scholar] [CrossRef]
- Wei, A.H.; Döhner, H.; Pocock, C.; Montesinos, P.; Afanasyev, B.; Dombret, H.; Ravandi, F.; Sayar, H.; Jang, J.-H.; Porkka, K.; et al. Oral Azacitidine Maintenance Therapy for Acute Myeloid Leukemia in First Remission. N. Engl. J. Med. 2020, 383, 2526–2537. [Google Scholar] [CrossRef]
- Maiti, A.; DiNardo, C.D.; Wang, S.A.; Jorgensen, J.; Kadia, T.M.; Daver, N.G.; Short, N.J.; Yilmaz, M.; Pemmaraju, N.; Borthakur, G.; et al. Prognostic value of measurable residual disease after venetoclax and decitabine in acute myeloid leukemia. Blood Adv. 2021, 5, 1876–1883. [Google Scholar] [CrossRef] [PubMed]
- Pratz, K.W.; Jonas, B.A.; Pullarkat, V.; Recher, C.; Schuh, A.C.; Thirman, M.J.; Garcia, J.S.; DiNardo, C.D.; Vorobyev, V.; Fracchiolla, N.S.; et al. Measurable Residual Disease Response and Prognosis in Treatment-Naive Acute Myeloid Leukemia With Venetoclax and Azacitidine. J. Clin. Oncol. 2022, 40, 855–865. [Google Scholar] [CrossRef] [PubMed]
- Araki, D.; Wood, B.L.; Othus, M.; Radich, J.P.; Halpern, A.B.; Zhou, Y.; Mielcarek, M.; Estey, E.H.; Appelbaum, F.R.; Walter, R.B. Allogeneic Hematopoietic Cell Transplantation for Acute Myeloid Leukemia: Time to Move Toward a Minimal Residual Disease-Based Definition of Complete Remission? J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2016, 34, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Rubnitz, J.E.; Inaba, H.; Dahl, G.; Ribeiro, R.C.; Bowman, W.P.; Taub, J.; Pounds, S.; Razzouk, B.I.; Lacayo, N.J.; Cao, X.; et al. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: Results of the AML02 multicentre trial. Lancet Oncol. 2010, 11, 543–552. [Google Scholar] [CrossRef]
- Walter, R.B.; Gooley, T.A.; Wood, B.L.; Milano, F.; Fang, M.; Sorror, M.L.; Estey, E.H.; Salter, A.I.; Lansverk, E.; Chien, J.W.; et al. Impact of Pretransplantation Minimal Residual Disease, As Detected by Multiparametric Flow Cytometry, on Outcome of Myeloablative Hematopoietic Cell Transplantation for Acute Myeloid Leukemia. J. Clin. Oncol. 2011, 29, 1190–1197. [Google Scholar] [CrossRef]
- Zhou, Y.; Othus, M.; Araki, D.; Wood, B.L.; Radich, J.P.; Halpern, A.B.; Mielcarek, M.; Estey, E.H.; Appelbaum, F.R.; Walter, R.B. Pre- and post-transplant quantification of measurable (‘minimal’) residual disease via multiparameter flow cytometry in adult acute myeloid leukemia. Leukemia 2016, 30, 1456–1464. [Google Scholar] [CrossRef]
- Guolo, F.; Di Grazia, C.; Minetto, P.; Raiola, A.M.; Clavio, M.; Miglino, M.; Tedone, E.; Contini, P.; Mangerini, R.; Kunkl, A.; et al. Pre-transplant minimal residual disease assessment and transplant-related factors predict the outcome of acute myeloid leukemia patients undergoing allogeneic stem cell transplantation. Eur. J. Haematol. 2021, 107, 573–582. [Google Scholar] [CrossRef]
- Roboz, G.J.; Ravandi, F.; Wei, A.H.; Dombret, H.; Döhner, H.; Thol, F.; Voso, M.T.; Schuh, A.C.; Porkka, K.; La Torre, I.; et al. CC-486 Prolongs Survival for Patients with Acute Myeloid Leukemia (AML) in Remission after Intensive Chemotherapy (IC) Independent of the Presence of Measurable Residual Disease (MRD) at Study Entry: Results from the QUAZAR AML-001 Maintenance Trial. Blood 2020, 136, 32–33. [Google Scholar] [CrossRef]
- de Leeuw, D.C.; Ossenkoppele, G.J.; Janssen, J. Older Patients with Acute Myeloid Leukemia Deserve Individualized Treatment. Curr. Oncol. Rep. 2022. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Jonas, B.A.; Pullarkat, V.; Thirman, M.J.; Garcia, J.S.; Wei, A.H.; Konopleva, M.; Döhner, H.; Letai, A.; Fenaux, P.; et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. N. Engl. J. Med. 2020, 383, 617–629. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Pratz, K.; Pullarkat, V.; Jonas, B.A.; Arellano, M.; Becker, P.S.; Frankfurt, O.; Konopleva, M.; Wei, A.H.; Kantarjian, H.M.; et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood 2019, 133, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Simoes, C.; Paiva, B.; Martinez-Cuadron, D.; Bergua, J.M.; Vives, S.; Algarra, L.; Tormo, M.; Martinez, P.; Serrano, J.; Herrera, P.; et al. Measurable residual disease in elderly acute myeloid leukemia: Results from the PETHEMA-FLUGAZA phase 3 clinical trial. Blood Adv. 2021, 5, 760–770. [Google Scholar] [CrossRef] [PubMed]
- Hourigan, C.S.; Dillon, L.W.; Gui, G.; Logan, B.R.; Fei, M.; Ghannam, J.; Li, Y.; Licon, A.; Alyea, E.P.; Bashey, A.; et al. Impact of Conditioning Intensity of Allogeneic Transplantation for Acute Myeloid Leukemia With Genomic Evidence of Residual Disease. J. Clin. Oncol. 2020, 38, 1273–1283. [Google Scholar] [CrossRef] [PubMed]
- Buckley, S.A.; Wood, B.L.; Othus, M.; Hourigan, C.S.; Ustun, C.; Linden, M.A.; DeFor, T.E.; Malagola, M.; Anthias, C.; Valkova, V.; et al. Minimal residual disease prior to allogeneic hematopoietic cell transplantation in acute myeloid leukemia: A meta-analysis. Haematologica 2017, 102, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Walter, R.B.; Buckley, S.A.; Pagel, J.M.; Wood, B.L.; Storer, B.E.; Sandmaier, B.M.; Fang, M.; Gyurkocza, B.; Delaney, C.; Radich, J.P.; et al. Significance of minimal residual disease before myeloablative allogeneic hematopoietic cell transplantation for AML in first and second complete remission. Blood 2013, 122, 1813–1821. [Google Scholar] [CrossRef]
- Freeman, S.D.; Virgo, P.; Couzens, S.; Grimwade, D.; Russell, N.; Hills, R.K.; Burnett, A.K. Prognostic relevance of treatment response measured by flow cytometric residual disease detection in older patients with acute myeloid leukemia. J. Clin. Oncol. 2013, 31, 4123–4131. [Google Scholar] [CrossRef]
- Hanekamp, D.; Snel, A.N.; Kelder, A.; Scholten, W.J.; Khan, N.; Metzner, M.; Irno-Consalvo, M.; Sugita, M.; de Jong, A.; Oude Alink, S.; et al. Applicability and reproducibility of acute myeloid leukaemia stem cell assessment in a multi-centre setting. Br. J. Haematol. 2020, 190, 891–900. [Google Scholar] [CrossRef]
- Terwijn, M.; Zeijlemaker, W.; Kelder, A.; Rutten, A.P.; Snel, A.N.; Scholten, W.J.; Pabst, T.; Verhoef, G.; Lowenberg, B.; Zweegman, S.; et al. Leukemic stem cell frequency: A strong biomarker for clinical outcome in acute myeloid leukemia. PLoS ONE 2014, 9, e107587. [Google Scholar] [CrossRef]
- Dominy, K.; Mokretar, K.; Reid, A.G.; Khorashad, J.S. Molecular Monitoring of Chronic Myeloid Leukemia. Methods Mol. Biol. 2020, 2065, 153–173. [Google Scholar] [CrossRef]
- Rp, H.; Dp, S.; Ta, G.; Bl, E. Clonal hematopoiesis and measurable residual disease assessment in acute myeloid leukemia. Blood 2020, 135, 1729–1738. [Google Scholar] [CrossRef]
- Boyd, A.L.; Aslostovar, L.; Reid, J.; Ye, W.; Tanasijevic, B.; Porras, D.P.; Shapovalova, Z.; Almakadi, M.; Foley, R.; Leber, B.; et al. Identification of Chemotherapy-Induced Leukemic-Regenerating Cells Reveals a Transient Vulnerability of Human AML Recurrence. Cancer Cell 2018, 34, 483–498.e485. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.S.; Mellman, I. Elements of cancer immunity and the cancer–immune set point. Nature 2017, 541, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, R.D.; Old, L.J.; Smyth, M.J. Cancer immunoediting: Integrating immunity’s roles in cancer suppression and promotion. Science 2011, 331, 1565–1570. [Google Scholar] [CrossRef] [PubMed]
- Blankenstein, T.; Coulie, P.G.; Gilboa, E.; Jaffee, E.M. The determinants of tumour immunogenicity. Nat. Rev. Cancer 2012, 12, 307–313. [Google Scholar] [CrossRef]
- Gotwals, P.; Cameron, S.; Cipolletta, D.; Cremasco, V.; Crystal, A.; Hewes, B.; Mueller, B.; Quaratino, S.; Sabatos-Peyton, C.; Petruzzelli, L.; et al. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat. Rev. Cancer 2017, 17, 286–301. [Google Scholar] [CrossRef]
- Kottke, T.; Boisgerault, N.; Diaz, R.M.; Donnelly, O.; Rommelfanger-Konkol, D.; Pulido, J.; Thompson, J.; Mukhopadhyay, D.; Kaspar, R.; Coffey, M.; et al. Detecting and targeting tumor relapse by its resistance to innate effectors at early recurrence. Nat. Med. 2013, 19, 1625–1631. [Google Scholar] [CrossRef]
- Boisgerault, N.; Kottke, T.; Pulido, J.; Thompson, J.; Diaz, R.M.; Rommelfanger-Konkol, D.; Embry, A.; Saenz, D.; Poeschla, E.; Pandha, H.; et al. Functional Cloning of Recurrence-specific Antigens Identifies Molecular Targets to Treat Tumor Relapse. Mol. Ther. 2013, 21, 1507. [Google Scholar] [CrossRef]
- Bruni, D.; Angell, H.K.; Galon, J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 2020, 20, 662–680. [Google Scholar] [CrossRef]
- Dufva, O.; Pölönen, P.; Brück, O.; Keränen, M.A.I.; Klievink, J.; Mehtonen, J.; Huuhtanen, J.; Kumar, A.; Malani, D.; Siitonen, S.; et al. Immunogenomic landscape of hematological malignancies. Cancer Cell 2020, 38, 380–399.E13. [Google Scholar] [CrossRef]
- Brück, O.; Dufva, O.; Hohtari, H.; Blom, S.; Turkki, R.; Ilander, M.; Kovanen, P.; Pallaud, C.; Ramos, P.M.; Lähteenmäki, H.; et al. Immune profiles in acute myeloid leukemia bone marrow associate with patient age, T-cell receptor clonality, and survival. Blood Adv. 2020, 4, 274–286. [Google Scholar] [CrossRef]
- Christopher, M.J.; Petti, A.A.; Rettig, M.P.; Miller, C.A.; Chendamarai, E.; Duncavage, E.J.; Klco, J.M.; Helton, N.M.; O’Laughlin, M.; Fronick, C.C.; et al. Immune escape of relapsed AML cells after allogeneic transplantation. N. Engl. J. Med. 2018, 379, 2330–2341. [Google Scholar] [CrossRef] [PubMed]
- Toffalori, C.; Zito, L.; Gambacorta, V.; Riba, M.; Oliveira, G.; Bucci, G.; Barcella, M.; Spinelli, O.; Greco, R.; Crucitti, L.; et al. Immune signature drives leukemia escape and relapse after hematopoietic cell transplantation. Nat. Med. 2019, 25, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Othus, M.; Gale, R.P.; Hourigan, C.S.; Walter, R.B. Statistics and measurable residual disease (MRD) testing: Uses and abuses in hematopoietic cell transplantation. Bone Marrow Transpl. 2020, 55, 843–850. [Google Scholar] [CrossRef]
- Lakshmikanth, T.; Olin, A.; Chen, Y.; Mikes, J.; Fredlund, E.; Remberger, M.; Omazic, B.; Brodin, P. Mass Cytometry and Topological Data Analysis Reveal Immune Parameters Associated with Complications after Allogeneic Stem Cell Transplantation. Cell Rep. 2017, 20, 2238–2250. [Google Scholar] [CrossRef] [PubMed]
- Daver, N.; Garcia-Manero, G.; Basu, S.; Boddu, P.C.; Alfayez, M.; Cortes, J.E.; Konopleva, M.; Ravandi-Kashani, F.; Jabbour, E.; Kadia, T.; et al. Efficacy, safety, and biomarkers of response to azacitidine and nivolumab in relapsed/refractory acute myeloid leukemia: A nonrandomized, open-label, phase II study. Cancer Discov. 2019, 9, 370–383. [Google Scholar] [CrossRef]
- Lamprianidou, E.; Kordella, C.; Kazachenka, A.; Zoulia, E.; Bernard, E.; Filia, A.; Laidou, S.; Garantziotis, P.; Vassilakopoulos, T.P.; Papageorgiou, S.G.; et al. Modulation of IL-6/STAT3 signaling axis in CD4+FOXP3− T cells represents a potential antitumor mechanism of azacitidine. Blood Adv. 2021, 5, 129. [Google Scholar] [CrossRef]
- Lee, J.B.; Khan, D.H.; Hurren, R.; Xu, M.; Na, Y.; Kang, H.; Mirali, S.; Wang, X.; Gronda, M.; Jitkova, Y.; et al. Venetoclax enhances T cell-mediated antileukemic activity by increasing ROS production. Blood 2021, 138, 234–245. [Google Scholar] [CrossRef]
- Ho, C.M.; McCarthy, P.L.; Wallace, P.K.; Zhang, Y.; Fora, A.; Mellors, P.; Tario, J.D.; McCarthy, B.L.S.; Chen, G.L.; Holstein, S.A.; et al. Immune signatures associated with improved progression-free and overall survival for myeloma patients treated with AHSCT. Blood Adv. 2017, 1, 1056–1066. [Google Scholar] [CrossRef]
- Paiva, B.; Cedena, M.-T.; Puig, N.; Arana, P.; Vidriales, M.-B.; Cordon, L.; Flores-Montero, J.; Gutierrez, N.C.; Martín-Ramos, M.-L.; Martinez-Lopez, J.; et al. Minimal residual disease monitoring and immune profiling in multiple myeloma in elderly patients. Blood 2016, 127, 3165–3174. [Google Scholar] [CrossRef]
- Tiong, I.S.; Dillon, R.; Ivey, A.; Kuzich, J.A.; Thiagarajah, N.; Sharplin, K.M.; Kok, C.H.; Tedjaseputra, A.; Rowland, J.P.; Grove, C.S.; et al. Clinical impact of NPM1-mutant molecular persistence after chemotherapy for acute myeloid leukemia. Blood Adv. 2021, 5, 5107–5111. [Google Scholar] [CrossRef]
- Schraivogel, D.; Kuhn, T.M.; Rauscher, B.; Rodríguez-Martínez, M.; Paulsen, M.; Owsley, K.; Middlebrook, A.; Tischer, C.; Ramasz, B.; Ordoñez-Rueda, D.; et al. High-speed fluorescence image-enabled cell sorting. Science 2022, 375, 315–320. [Google Scholar] [CrossRef] [PubMed]
Method | Sensitivity | Advantages | Disadvantages | References |
---|---|---|---|---|
Flow cytometry FC-LAIP (Leukemia-Associated Immunophenotypes) | 10−3 to 10−5 | Sensitivity Applicability to >90% of patients Rapid turnaround time Available technique through laboratories Can distinguish between live and dead cells | Experienced staff needed for proper interpretation Need for standardization Stability of the leukemic phenotype missing Diagnostic pretreatment sample needed Extended antibody panel needed Sensitivity depends on the antibody used | Brooimans 2019 [12] Maurer-Granofszky 2021 [13] [Wood 2016] [14] |
Flow cytometry FC-DfN (Different from Normal) | 10−3 to 10−5 | Sensitivity Applicability to >90% of patients Diagnostic sample not required Phenotypic shifts do not affect the results Rapid turn-around time Can distinguish between live and dead cells | Need for standardization Experienced staff needed to operate the process, subjectivity in the definition of population Sensitivity depends on the antibody used | Schuurhuis 2018 [9] Maurer-Granofszky 2021 [13] Wood 2020 [15] |
−19NGS | 10−3 to 10−5 | Limited applicability Easy to be conducted High sensitivity, theoretically to 10−6, depending on the NGS platform | Need for standardization Mutations can be identified in healthy populations (not necessarily linked with disease) Sample contamination Sensitivity is affected by error rate Clonal evolution (if based on allelic ratios) | Ngai 2021 [2] Dix 2020 [7] |
RT-qPCR | 10−3 to 10−5 | High sensitivity (≥MFC) Quality assurance integration Applicability Standardization | Time-consuming Need for expertise Threshold limit settings required Expensive Sensitivity is affected as well by the expression level of the target per cell Molecular targets applicable to only ~50% of all AML patients (less in elderly) | Ngai 2021 [2] Wood 2016 [14] |
Reference | No. of Patients | Age (Years) Median (Range) | Method | Cut-Off Level | Timepoint of MRD Assessment | Outcome |
---|---|---|---|---|---|---|
Intensive Chemotherapy | ||||||
Sievers et al., 2003 [20] | 252 Pediatric | 0–2 or 10–21 | MFC-MRD | ≥0.5% blasts | Before and after intensification therapy | Before MRDpos: Relative risk of relapse 4.2 (95% CI = 2.6–6.8, p < 0.0001) After MRDpos: 5.3 (95% CI = 3.2–8.6, p < 0.0001) All cohorts: Median time to relapse: MRDpos vs. MRD neg 168.5 days versus 293 days, p = 0.008) Relative risk of death MRDpos:3.4 (95% CI = 2.2–5.4, p < 0.0001) |
Langebrake et al., 2006 [21] (2 Parts) | 150 | Part1 7.59 (0.2–17.7) Part 2 9.98 (0.06–20) | LAIP MFC-MRD | <0.1% | -BPM1 First at 15 days from the start of treatment -BPM2 Second at 29 days from the start of treatment | 3-year EFS BPM1: ΜRDneg: 48% ± 9% ΜRDpos: 71% ± 6% p = 0.029 BPM2: ΜRDneg: 50% ± 7% ΜRDpos: 70% ± 6% p = 0.033 |
Fu-Jia Liu et al., 2021 [22] | 492 | 45 (15–74) | MFC-MRD 10-color FC | 0.1% | After induction therapy | MRDneg: <60, 276 (83.9%) ≥60, 53 (16.1%) MRDpos: <60, 136 (83.4%) ≥60, 27 (16.6%) p = 1.000 |
Getta et al., 2017 [23] | 104 | 58 (21–78) | DfN MFC-MRD alone or combined with NGS 10-color MFC assay | 0.1% | Pre-alloSCT | MFC–MRDneg: 18-month relapse 9% OS 73% MFC–MRDpos: 18-month relapse: 37% OS 48% |
Vendittiet al., 2019 [24] | 500 | 49 (18–60.9) | LAIP MFC-MRD combined with qPCR 8-color MFC assay | 0.035% | After consolidation | Both neg: 2-year OS 89% and DFS 69% MFCpos/PCR neg or MFCneg/PCR pos: 2-year OS 88–89% DFS 65–76% Both pos: 2-year OS 55%, DFS 22% |
Coustan-Smith et al., 2018 [25] | 370 | <1–63 | Novel leukemia-specific markers | 1 in 105 | At diagnosis | Clinical outcomes not determined |
Terwijn et al., 2013 [26] | 517 | 48 (18–60) | LAIPMFC-MRD | 0.1% | After induction therapy | MRDneg: RFS > 47 months 4-year RFS 52% MRDpos: median RFS 8.6 months 4-year RFS 23% |
Jacobsohn et al., 2018 [27] | 144 | Patients < 21 years of age | DfN MFC-MRD | 0.02% | preHCT | MRDneg: 2-year relapse risk: 32% 2-year DFS: 55% 2-year OS: 63% MRDpos: 2-year relapse risk: 70% 2-year DFS: 10% 2-year OS: 20% |
Daga et al., 2020 [28] | 39 out of 41 patients | Adults > 60 years | Combination of MFC-MRD followed by (NGS) or digital PCR | 0.1% | After induction therapy | MRDneg: 18 (48.2%) % relapse 27.8% MRDpos: 21 (53.8%) % relapse 71.4% p = 0.007 Median RFS 283 vs. not reached, p = 0.003 5-year CIR: 90.5% vs. 28%, p < 0.001 OS: not significant p = 0.085 Median follow-up time: 559 days |
Short et al., 2020 [29] Meta-analysis of 81 studies | 151 | Adult-Pediatric | MFC-MRD, qPCR NGS, or cytogenetics/FISH | various | Induction or during/after consolidation | 25 (40) MFC-MRD detection studies with OS analysis 29 (43) MFC-MRD detection studies with DFS analysis Overall analysis through all methods: MRDneg 5-y DFS: 64% 5-y OS: 68% MRDpos 5-y DFS: 25% 5-y OS: 34% |
Wei et al., 2020 [30] | 472 | 86 (55–86) | LAIP MFC-MRD | 0.1% | First remission after IC | 2-year survival MRDneg CC-486: 58.6% MRDpos CC-486: 39.5% MRDneg placebo: 51.7% MRDpos placebo: 22.0% 2-year survival differences (95% CI) MRDneg: 6.9 (5.8 to 19.5) MRDpos: 17.5 (5.3 to 29.8) |
Low-Intensity Chemotherapy | ||||||
Mait et al., 2021 [31] | 97 Venetoclax plus Decitabine | 72 (68–78) | MFC-MRD | 0.1% | 1, 2, 4 months of therapy | MRDneg at 2 months: Median RFS, not reached vs. 5.2 months hazard ratio [HR] = 0.31; 95% CI, 0.12–0.78; p = 0.004 Median EFS, not reached vs. 5.8 months; HR, 0.25; 95% CI, 0.12–0.55; p = 0.001) MRDneg CR (median OS, 25.1 vs. 7.1 months; HR= 0.23; 95% CI, 0.110.51; p = 0.001) MRD neg at 1 month Median OS, 25.1 vs. 3.4 months; HR, 0.15; 95% CI, 0.03–0.64; p = 0.0001 |
Pratz et al., 2022 [32] | 164 Azacitidine–Venetoclax (N = 286) Azacitidine–Placebo (N = 145) | 76 (49–91) 76 (60–90) | MFC-MRD | 0.1% | After cycle 1 and every 3 cycles | MRDneg Median EFS: not reached Median OS: not reached MRDpos Median EFS: 10.6 Median OS: 18.7 |
Allo-HCT | ||||||
Araki et al., 2016 [33] | 359 | 50 (18.2–75.3) | DfN MFC-MRD 10 colors | 0.1% | Pre-alloSCT | MRDneg: 3-year OS >70% Relapse risk 20–25% MRDpos: 3-year OS 25% Relapse risk 70% |
Rubnitz et al., 2010 [34] | 202 | 9.1 (2–21.4) | MFC-MRD | >0.1% | After induction I and II | After induction I: MRDneg 3-year CIR: 16.9% ± 3.4% 3-year EFS: 73.6% ± 5% MRDpos 3-year CIR: 38.6% ± 5.8% 3-year EFS: 43.1% ± 6.9% After induction II: MRD-neg 3-year CIR: 16.7% ± 3.1% 3-year EFS: 71.2% ± 4.7% MRDpos 3-year CIR: 56.3% ± 8.4% 3-year EFS: 35.8% ± 8.6% |
Walter et al., 2011 [35] | 99 | 45.3 (0.6–69.5) | DfN MFC-MRD 10-colors | 0.1% | Before HCT | OS MRDneg (n = 75) HR:1 MRDpos (n = 24) HR: 4.05 95% CI = 1.90 to 8.62 p < 0.001 Relapse MRDneg HR:1 MRDpos HR: 8.49 95% CI: 3.67 to 19.65 p < 0.001 2-year OS MRDneg: 76.6% (64.4% to 85.1%) MRDpos: 30.2% (13.1% to 49.3%) 2-year DFS MRDneg: 74.8% (62.8% to 83.4%) MRDpos: 9.0% (1.6% to 24.9%) |
Zhou Y et al., 2016 [36] | 279 | >18 years | DfN MFC-MRD 10 colors | Not used | Pre-alloSCT and post-alloSCT (day 28) | MRDpos pre-alloSCT and MRDneg post: 3-year OS: 29% 3-year RFS: 18% MRDpos at both timepoints: 3-year OS: 19% 3-year RFS: 14% MRDneg at both timepoints: 3-year OS: 76% 3-year RFS: 71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pessach, I.; Spyropoulos, T.; Lamprianidou, E.; Kotsianidis, I. MRD Monitoring by Multiparametric Flow Cytometry in AML: Is It Time to Incorporate Immune Parameters? Cancers 2022, 14, 4294. https://doi.org/10.3390/cancers14174294
Pessach I, Spyropoulos T, Lamprianidou E, Kotsianidis I. MRD Monitoring by Multiparametric Flow Cytometry in AML: Is It Time to Incorporate Immune Parameters? Cancers. 2022; 14(17):4294. https://doi.org/10.3390/cancers14174294
Chicago/Turabian StylePessach, Ilias, Theodoros Spyropoulos, Eleftheria Lamprianidou, and Ioannis Kotsianidis. 2022. "MRD Monitoring by Multiparametric Flow Cytometry in AML: Is It Time to Incorporate Immune Parameters?" Cancers 14, no. 17: 4294. https://doi.org/10.3390/cancers14174294
APA StylePessach, I., Spyropoulos, T., Lamprianidou, E., & Kotsianidis, I. (2022). MRD Monitoring by Multiparametric Flow Cytometry in AML: Is It Time to Incorporate Immune Parameters? Cancers, 14(17), 4294. https://doi.org/10.3390/cancers14174294