Dendritic-Cell-Vaccine-Based Immunotherapy for Hepatocellular Carcinoma: Clinical Trials and Recent Preclinical Studies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Monotherapy of Whole-Tumor-Cell-Lysate-Pulsed or Specific-Tumor-Antigen-Pulsed DC Vaccines for Treating HCC Patients
Treatment | Disease Stage Targeted | Clinical Trial Identifier | Start Year | Patient Number | Phase | Status | Clinical Results | Publication |
---|---|---|---|---|---|---|---|---|
Autologous-HCC-tumor-lysate-pulsed mature-DC vaccine | Unresectable primary HCC | NA | 2000 | 8 | I | Completed |
| Iwashita et al. [25] |
Autologous-HCC-tumor-lysate-pulsed mature-DC vaccine | Advanced primary HCC, AJCC TNM (5th edition) stage IVA and IVB | NA | 2000 | 31 | NA | Completed |
| Lee et al. [26] |
Autologous-HCC-tumor-lysate-pulsed mature-DC vaccine | Primary HCC | NCT00327496 | 2006 | 10 | NA | Completed | NA | NA |
HepG2-HCC-cell-lysate-pulsed mature-DC vaccine | Advanced primary HCC | NA | NA | 35 | II | Completed |
| Palmer et al. [27] |
HepG2-HCC-cell-lysate-pulsed mature-DC vaccine | Advanced primary HCC, Child–Pugh class B or C | NA | 2009 | 30 | NA | Completed |
| EI Ansary et al. [28] |
Mature-DC vaccine co-pulsed with four AFP peptides: AFP137–145, AFP158–166, AFP325–334, and AFP542–550 | Primary HCC, AJCC TNM (5th edition) stage IIIA to IVB, Child–Pugh class A or B, class I MHC molecule HLA-A*0201 positive, AFP positive | NCT00022334 | 2003 | 10 | I/II | Completed |
| Butterfield et al. [29] |
HSP70-mRNA-transfected mature-DC vaccine | Unresectable HCV-related primary or recurrent HCC | NA | 2007 | 12 | I | Completed |
| Maeda et al. [30] |
Mature-DC vaccine co-pulsed with AFP, MAGE-1, and GPC-3 proteins | Refractory primary or recurrent HCC | JPRN-UMIN000011854 | 2013 | 5 | I | Completed | NA | NA |
Personalized HCC-tumor-antigen-pulsed mature-DC vaccine | Primary HCC, BCLC stage B or C, Child–Pugh class A or B | ChiCTR1900021177 | 2018 | 30 | NA | Ongoing | NA | NA |
2.1. Autologous Tumor-Lysate-Pulsed DC Vaccines
2.2. Allogeneic-Tumor-Cell-Line-Lysate-Pulsed DC Vaccines
2.3. Specific-Tumor-Antigen-Pulsed DC Vaccines
3. Combination Therapy of DC-Based Vaccines and Anticancer Therapies or Immune Effector Cells for Treating HCC Patients
Treatment | Disease Stage Targeted | Clinical Trial Identifier | Start Year | Patient Number | Phase | Status | Clinical Results | Publication |
---|---|---|---|---|---|---|---|---|
Combination of DC Vaccines and Anticancer Therapies | ||||||||
Immature-DC vaccine combined with EBRT | Advanced primary HCC | NA | 2001 | 12 | I | Completed |
| Chi et al. [39] |
Mature-DC vaccine combined with EBRT | Unresectable primary HCC, AJCC TNM (8th edition) stage IIIA to IVB, Child–Pugh class A | NCT03942328 | 2019 | 26 | Early I | Ongoing | NA | NA |
Mature-DC vaccine combined with RFA | HCV-related primary HCC | JPRN-C000000451 | 2006 | 5 | NA | Completed | NA | NA |
OK432-stimulated mature-DC vaccine combined with RFA | HCV-related primary HCC, Child–Pugh class A or B | JPRN-UMIN000001701 | 2009 | 30 | I/II | Completed |
| Kitahara et al. [40] |
Mature-DC vaccine combined with TAE | Primary HCC, Child–Pugh class A or B | JPRN-UMIN000012702 | 2013 | 3 | NA | Completed | NA | NA |
Mature-DC vaccine combined with TAE and RFA | Unresectable primary HCC, Child–Pugh class A or B | JPRN-UMIN000036065 | 2019 | 3 | I | Completed | NA | NA |
Mature-DC vaccine combined with TAE and RFA | Unresectable primary HCC, Child–Pugh class A or B | JPRN-jRCTc050200107 | 2021 | 30 | I/II | Ongoing | NA | NA |
Mature-DC vaccine (ilixadencel) co-activated with TLR3 and 7/8 agonists and IFN-γ and given in combination with molecular-targeted drug sorafenib | Advanced primary HCC, BCLC stage B or C, Child–Pugh class A | NCT01974661 | 2013 | 17 | I | Completed |
| Rizell et al. [41] |
Autologous-irradiated-HCC-tumor-stem-cell-pulsed mature-DC vaccine combined with surgical resection and TACE | Unresectable HBV-related primary HCC, BCLC stage A or C, Child–Pugh class A | NA | 2013 | 8 | I | Completed |
| Wang et al. [42] |
HepG2-HCC-cell-lysate-pulsed mature-DC vaccine combined with TACE | Primary HCC, Child–Pugh class A or B | ISRCTN11889464 | 2014 | 48 | II | Completed | NA | NA |
HepG2-HCC-cell-lysate-pulsed mature-DC vaccine combined with TACE | HCV-related primary HCC, BCLC stage B or D, Child–Pugh class A or B or C | DRKS00016606 | 2015 | 20 | II | Completed |
| Abdel Ghafar et al. [43] |
Mature-DC vaccine co-pulsed with HBV-specific antigen peptides and HepG2 HCC cell lysate and given in combination with TACE | Unresectable HBV-related primary HCC, BCLC stage B or C, Child–Pugh class A or B | NCT03086564 | 2017 | 70 | I/II | Completed | NA | NA |
Peptides-pulsed mature-DC vaccine combined with RFA | Primary HCC, HLA-A24 positive | JPRN-UMIN000020811 | 2016 | 10 | NA | Completed | NA | NA |
Peptides-pulsed mature-DC vaccine combined with RFA | Primary HCC, Child–Pugh class A or B | JPRN-jRCTc040190093 | 2020 | 6 | I | Ongoing | NA | NA |
HSP70-mRNA-transfected mature-DC vaccine combined with surgical resection | Resectable primary HCC, LCSGJ (5th edition) stage II to IVA | JPRN-UMIN000010691 | 2012 | 45 | I/II | Completed |
| Matsui et al. [44] |
Mature-DC vaccine co-pulsed with AFP, MAGE-1, and GPC-3 proteins and given in combination with TACE | Primary HCC, AJCC TNM (6th edition) stage II to IIIC, Child–Pugh class A or B | NA | 2009 | 5 | I/II | Completed |
| Tada et al. [45] |
Mature-DC vaccine co-pulsed with AFP, MAGE-1, and GPC-3 proteins and given in combination with TACE | Unresectable primary HCC, Child–Pugh class A | KCT0000986 | 2013 | 40 | II | Ongoing | NA | NA |
Mature-DC vaccine co-pulsed with AFP, MAGE-1, and GPC-3 proteins and given in combination with surgical resection | Primary HCC | JPRN-UMIN000021545 | 2016 | 50 | II | Completed | NA | NA |
Mature-DC vaccine co-pulsed with AFP, MAGE-1, and GPC-3 proteins and given in combination with surgical resection, RFA, PEI, or TACE | Primary HCC, AJCC TNM (6th edition) stage I to IIIC, Child–Pugh class A or B | KCT0000427 | 2009 | 12 | I/IIa | Completed |
| Lee et al. [46] |
Mature-DC vaccine co-pulsed with AFP, MAGE-1, and GPC-3 proteins and given in combination with surgical resection, RFA, PEI, or TACE | Primary HCC, AJCC TNM (6th edition) stage I to IIIC, Child–Pugh class A or B | KCT0000008 | 2010 | 156 | II | Completed |
| Lee et al. [47] |
HCC-tumor-neoantigen-pulsed mature-DC vaccine combined with PMWA | Primary HCC, HKLC stage IIa, Child–Pugh class A or B | NCT03674073 | 2018 | 24 | I | Ongoing | NA | NA |
HCC-tumor-neoantigen-pulsed mature-DC vaccine combined with ICI nivolumab and surgical resection | Resectable primary or recurrent HCC, Child–Pugh class A | NCT04912765 | 2021 | 60 | II | Ongoing | NA | NA |
Multiple-HCC-tumor-antigens-pulsed mature-DC vaccine combined with surgical resection, TACE, or molecular-targeted drug sorafenib or lenvatinib | HBV-related primary HCC, Child–Pugh class A or B | NCT04317248 | 2020 | 600 | II | Ongoing | NA | NA |
Combination of DC vaccines and immune effector cells and anticancer therapies | ||||||||
Autologous-HCC-tumor-lysate-pulsed mature-DC vaccine with CATs and combined with surgical resection | Primary HCC | NA | 2000 | 94 | II | Completed |
| Shimizu et al. [48] |
Autologous-HCC-tumor-lysate-pulsed mature-DC vaccine with immature DCs, CIKs, mature-DC-precision CTLs, and mature DC-CIKs combined with PMWA | HBV-related primary HCC, Child–Pugh class A or B | NA | NA | 10 | I | Completed |
| Zhou et al. [49] |
Mature DC-CIKs combined with surgical resection or TACE | Primary HCC | NCT01821482 | 2013 | 100 | II | Ongoing | NA | NA |
Mature-DC vaccine with CIKs and combined with molecular-targeted drug sorafenib | Advanced primary HCC, BCLC stage B or C, Child–Pugh class A or B | NA | 2015 | 71 | NA | Completed |
| Zhou et al. [50] |
Mature-DC-precision multiple-antigen CTLs combined with surgical resection | Primary HCC, Child–Pugh class A or B | NCT02632188 | 2015 | 60 | I/II | Ongoing | NA | NA |
Mature-DC-precision multiple-antigen CTLs combined with TACE | Unresectable primary or recurrent HCC, Child–Pugh class A or B | NCT02638857 | 2015 | 60 | I/II | Ongoing | NA | NA |
Personalized HCC-tumor-neoantigen-pulsed mature-DC vaccine with mature-DC-precision neoantigen CTLs and combined with surgical resection or RFA | Primary HCC, Child–Pugh class A or B | NCT03067493 | 2017 | 10 | II | Completed |
| Peng et al. [51] |
3.1. Non-Antigen-Pulsed DC Vaccines Combined with Anticancer Therapies
3.2. Autologous-Tumor-Lysate-Pulsed, Allogeneic-Tumor-Cell-Line-Lysate-Pulsed, or Specific-Tumor-Antigen-Pulsed DC Vaccines Combined with Anticancer Therapies
3.3. Autologous-Tumor-Lysate-Pulsed or Specific-Tumor-Antigen-Pulsed DC Vaccines Together with Immune Effector Cells Combined with Anticancer Therapies
4. Recent Preclinical Studies Regarding DC-Vaccine-Based Immunotherapy for HCC
Treatment | Experimental Model Applied | Experimental Results | Publication |
Curdlan sulfate–stimulated mature-DC vaccine |
|
| Jin et al. [52] |
Mature-DC vaccine co-pulsed with Huh7, HepG2, and SNU449 HCC cell lysate or RNA |
|
| Chieochansin et al. [53] |
CD90-positive irradiated-HepG2-HCC-cell-fused mature-DC vaccine |
|
| Pang et al. [54] |
AAH-DNA-transfected mature-DC vaccine |
|
| Zhou et al. [55] |
Combination of two mature-DC vaccines, one transfected with AFP DNA and the other transfected with CD40L DNA |
|
| Vogt et al. [56] |
T-bet DNA-transfected IKDCs |
|
| Xu et al. [57] |
Hep-55.1C-HCC-cell-lysate-pulsed mature-DC vaccine combined with ICI against PD-1 |
|
| Teng et al. [58] |
Hep-55.1C-HCC-cell-lysate-pulsed mature-DC vaccine combined with ICI against PD-L1 |
|
| Teng et al. [59] |
H22-HCC-cell-specific neoantigen-pulsed mature-DC-membrane-coated acidic/photosensitive nanoparticle vaccine combined with NIR laser irradiation |
|
| Wang et al. [60] |
DC-derived exosome vaccine co-conjugated with AFP epitope AFP212, HCC tumor-targeting peptide, and HMGN1 functional domain |
|
| Zuo et al. [61] |
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Llovet, J.M.; Zucman-Rossi, J.; Pikarsky, E.; Sangro, B.; Schwartz, M.; Sherman, M.; Gores, G. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2016, 2, 16018. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.C.; Lin, W.Y.; Liu, C.S.; Lin, C.C.; Lai, H.C.; Lai, S.W. Association of different types of liver disease with demographic and clinical factors. Biomedicine 2016, 6, 16. [Google Scholar] [CrossRef]
- Gallage, S.; Garcia-Beccaria, M.; Szydlowska, M.; Rahbari, M.; Mohr, R.; Tacke, F.; Heikenwalder, M. The therapeutic landscape of hepatocellular carcinoma. Med 2021, 2, 505–552. [Google Scholar] [CrossRef]
- Llovet, J.M.; De Baere, T.; Kulik, L.; Haber, P.K.; Greten, T.F.; Meyer, T.; Lencioni, R. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 293–313. [Google Scholar] [CrossRef] [PubMed]
- Galle, P.R.; Dufour, J.F.; Peck-Radosavljevic, M.; Trojan, J.; Vogel, A. Systemic therapy of advanced hepatocellular carcinoma. Future Oncol. 2021, 17, 1237–1251. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.L.; Kang, Y.K.; Chen, Z.; Tsao, C.J.; Qin, S.; Kim, J.S.; Luo, R.; Feng, J.; Ye, S.; Yang, T.S.; et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: A phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009, 10, 25–34. [Google Scholar] [CrossRef]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.W.; Han, G.; Jassem, J.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef]
- Kulik, L.; El-Serag, H.B. Epidemiology and Management of Hepatocellular Carcinoma. Gastroenterology 2019, 156, 477–491. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Steinman, R.M. The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 1991, 9, 271–296. [Google Scholar] [CrossRef]
- Banchereau, J.; Briere, F.; Caux, C.; Davoust, J.; Lebecque, S.; Liu, Y.J.; Pulendran, B.; Palucka, K. Immunobiology of dendritic cells. Annu. Rev. Immunol. 2000, 18, 767–811. [Google Scholar] [CrossRef]
- Liu, K.; Nussenzweig, M.C. Origin and development of dendritic cells. Immunol. Rev. 2010, 234, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Van Elssen, C.H.; Oth, T.; Germeraad, W.T.; Bos, G.M.; Vanderlocht, J. Natural killer cells: The secret weapon in dendritic cell vaccination strategies. Clin. Cancer. Res. 2014, 20, 1095–1103. [Google Scholar] [CrossRef] [PubMed]
- Peterson, E.E.; Barry, K.C. The Natural Killer-Dendritic Cell Immune Axis in Anti-Cancer Immunity and Immunotherapy. Front. Immunol. 2021, 11, 621254. [Google Scholar] [CrossRef] [PubMed]
- Palucka, K.; Banchereau, J. Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer 2012, 12, 265–277. [Google Scholar] [CrossRef]
- Shang, N.; Figini, M.; Shangguan, J.; Wang, B.; Sun, C.; Pan, L.; Ma, Q.; Zhang, Z. Dendritic cells based immunotherapy. Am. J. Cancer Res. 2017, 7, 2091–2102. [Google Scholar]
- Constantino, J.; Gomes, C.; Falcao, A.; Neves, B.M.; Cruz, M.T. Dendritic cell-based immunotherapy: A basic review and recent advances. Immunol. Res. 2017, 65, 798–810. [Google Scholar] [CrossRef]
- Mahdian, R.; Kokhaei, P.; Najar, H.M.; Derkow, K.; Choudhury, A.; Mellstedt, H. Dendritic cells, pulsed with lysate of allogeneic tumor cells, are capable of stimulating MHC-restricted antigen-specific antitumor T cells. Med. Oncol. 2006, 23, 273–282. [Google Scholar] [CrossRef]
- Dashti, A.; Ebrahimi, M.; Hadjati, J.; Memarnejadian, A.; Moazzeni, S.M. Dendritic cell based immunotherapy using tumor stem cells mediates potent antitumor immune responses. Cancer Lett. 2016, 374, 175–185. [Google Scholar] [CrossRef]
- Stober, D.; Trobonjaca, Z.; Reimann, J.; Schirmbeck, R. Dendritic cells pulsed with exogenous hepatitis B surface antigen particles efficiently present epitopes to MHC class I-restricted cytotoxic T cells. Eur. J. Immunol. 2002, 32, 1099–1108. [Google Scholar] [CrossRef]
- Butterfield, L.H.; Ribas, A.; Potter, D.M.; Economou, J.S. Spontaneous and vaccine induced AFP-specific T cell phenotypes in subjects with AFP-positive hepatocellular cancer. Cancer Immunol. Immunother. 2007, 56, 1931–1943. [Google Scholar] [CrossRef] [PubMed]
- Koido, S.; Kashiwaba, M.; Chen, D.; Gendler, S.; Kufe, D.; Gong, J. Induction of antitumor immunity by vaccination of dendritic cells transfected with MUC1 RNA. J. Immunol. 2000, 165, 5713–5719. [Google Scholar] [CrossRef]
- Daftarian, P.; Kaifer, A.E.; Li, W.; Blomberg, B.B.; Frasca, D.; Roth, F.; Chowdhury, R.; Berg, E.A.; Fishman, J.B.; Al Sayegh, H.A.; et al. Peptide-conjugated PAMAM dendrimer as a universal DNA vaccine platform to target antigen-presenting cells. Cancer Res. 2011, 71, 7452–7462. [Google Scholar] [CrossRef]
- Gong, J.; Chen, D.; Kashiwaba, M.; Kufe, D. Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells. Nat. Med. 1997, 3, 558–561. [Google Scholar] [CrossRef]
- Iwashita, Y.; Tahara, K.; Goto, S.; Sasaki, A.; Kai, S.; Seike, M.; Chen, C.L.; Kawano, K.; Kitano, S. A phase I study of autologous dendritic cell-based immunotherapy for patients with unresectable primary liver cancer. Cancer Immunol. Immunother. 2003, 52, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.C.; Wang, H.C.; Hung, C.F.; Huang, P.F.; Lia, C.R.; Chen, M.F. Vaccination of advanced hepatocellular carcinoma patients with tumor lysate-pulsed dendritic cells: A clinical trial. J. Immunother. 2005, 28, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Palmer, D.H.; Midgley, R.S.; Mirza, N.; Torr, E.E.; Ahmed, F.; Steele, J.C.; Steven, N.M.; Kerr, D.J.; Young, L.S.; Adams, D.H. A phase II study of adoptive immunotherapy using dendritic cells pulsed with tumor lysate in patients with hepatocellular carcinoma. Hepatology 2009, 49, 124–132. [Google Scholar] [CrossRef]
- El Ansary, M.; Mogawer, S.; Elhamid, S.A.; Alwakil, S.; Aboelkasem, F.; Sabaawy, H.E.; Abdelhalim, O. Immunotherapy by autologous dendritic cell vaccine in patients with advanced HCC. J. Cancer Res. Clin. Oncol. 2013, 139, 39–48. [Google Scholar] [CrossRef]
- Butterfield, L.H.; Ribas, A.; Dissette, V.B.; Lee, Y.; Yang, J.Q.; De la Rocha, P.; Duran, S.D.; Hernandez, J.; Seja, E.; Potter, D.M.; et al. A phase I/II trial testing immunization of hepatocellular carcinoma patients with dendritic cells pulsed with four alpha-fetoprotein peptides. Clin. Cancer Res. 2006, 12, 2817–2825. [Google Scholar] [CrossRef]
- Maeda, Y.; Yoshimura, K.; Matsui, H.; Shindo, Y.; Tamesa, T.; Tokumitsu, Y.; Hashimoto, N.; Tokuhisa, Y.; Sakamoto, K.; Sakai, K.; et al. Dendritic cells transfected with heat-shock protein 70 messenger RNA for patients with hepatitis C virus-related hepatocellular carcinoma: A phase 1 dose escalation clinical trial. Cancer Immunol. Immunother. 2015, 64, 1047–1056. [Google Scholar] [CrossRef]
- Topfer, K.; Kempe, S.; Muller, N.; Schmitz, M.; Bachmann, M.; Cartellieri, M.; Schackert, G.; Temme, A. Tumor evasion from T cell surveillance. J. Biomed. Biotechnol. 2011, 2011, 918471. [Google Scholar] [CrossRef] [Green Version]
- Kuol, N.; Stojanovska, L.; Nurgali, K.; Apostolopoulos, V. The mechanisms tumor cells utilize to evade the host’s immune system. Maturitas 2017, 105, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Hargadon, K.M.; Johnson, C.E.; Williams, C.J. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int. Immunopharmacol. 2018, 62, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Chehrazi-Raffle, A.; Reddi, S.; Salgia, R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: A comprehensive review of registration trials and future considerations. J. Immunother. Cancer. 2018, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.Y.; Choo, S.P.; Trojan, J.; Welling, T.H.R.; et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017, 389, 2492–2502. [Google Scholar] [CrossRef]
- Longo, V.; Brunetti, O.; Gnoni, A.; Licchetta, A.; Delcuratolo, S.; Memeo, R.; Solimando, A.G.; Argentiero, A. Emerging role of Immune Checkpoint Inhibitors in Hepatocellular Carcinoma. Medicina 2019, 55, 698. [Google Scholar] [CrossRef] [PubMed]
- Shek, D.; Read, S.A.; Nagrial, A.; Carlino, M.S.; Gao, B.; George, J.; Ahlenstiel, G. Immune-Checkpoint Inhibitors for Advanced Hepatocellular Carcinoma: A Synopsis of Response Rates. Oncologist 2021, 26, e1216–e1225. [Google Scholar] [CrossRef]
- Melero, I.; Gaudernack, G.; Gerritsen, W.; Huber, C.; Parmiani, G.; Scholl, S.; Thatcher, N.; Wagstaff, J.; Zielinski, C.; Faulkner, I.; et al. Therapeutic vaccines for cancer: An overview of clinical trials. Nat. Rev. Clin. Oncol. 2014, 11, 509–524. [Google Scholar] [CrossRef]
- Chi, K.H.; Liu, S.J.; Li, C.P.; Kuo, H.P.; Wang, Y.S.; Chao, Y.; Hsieh, S.L. Combination of conformal radiotherapy and intratumoral injection of adoptive dendritic cell immunotherapy in refractory hepatoma. J. Immunother. 2005, 28, 129–135. [Google Scholar] [CrossRef]
- Kitahara, M.; Mizukoshi, E.; Terashima, T.; Nakagawa, H.; Horii, R.; Iida, N.; Arai, K.; Yamashita, T.; Sakai, Y.; Yamashita, T.; et al. Safety and Long-Term Outcome of Intratumoral Injection of OK432-Stimulated Dendritic Cells for Hepatocellular Carcinomas After Radiofrequency Ablation. Transl. Oncol. 2020, 13, 100777. [Google Scholar] [CrossRef]
- Rizell, M.; Sternby Eilard, M.; Andersson, M.; Andersson, B.; Karlsson-Parra, A.; Suenaert, P. Phase 1 Trial with the Cell-Based Immune Primer Ilixadencel, Alone, and Combined with Sorafenib, in Advanced Hepatocellular Carcinoma. Front. Oncol. 2019, 9, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Bayer, M.E.; Chen, X.; Fredrickson, C.; Cornforth, A.N.; Liang, G.; Cannon, J.; He, J.; Fu, Q.; Liu, J.; et al. Phase I trial of active specific immunotherapy with autologous dendritic cells pulsed with autologous irradiated tumor stem cells in hepatitis B-positive patients with hepatocellular carcinoma. J. Surg. Oncol. 2015, 111, 862–867. [Google Scholar] [CrossRef]
- Abdel Ghafar, M.T.; Morad, M.A.; El-Zamarany, E.A.; Ziada, D.; Soliman, H.; Abd-Elsalam, S.; Salama, M. Autologous dendritic cells pulsed with lysate from an allogeneic hepatic cancer cell line as a treatment for patients with advanced hepatocellular carcinoma: A pilot study. Int. Immunopharmacol. 2020, 82, 106375. [Google Scholar] [CrossRef] [PubMed]
- Matsui, H.M.; Hazama, S.; Nakajima, M.; Xu, M.; Matsukuma, S.; Tokumitsu, Y.; Shindo, Y.; Tomochika, S.; Yoshida, S.; Iida, M.; et al. Novel adjuvant dendritic cell therapy with transfection of heat-shock protein 70 messenger RNA for patients with hepatocellular carcinoma: A phase I/II prospective randomized controlled clinical trial. Cancer Immunol. Immunother. 2021, 70, 945–957. [Google Scholar] [CrossRef]
- Tada, F.; Abe, M.; Hirooka, M.; Ikeda, Y.; Hiasa, Y.; Lee, Y.; Jung, N.C.; Lee, W.B.; Lee, H.S.; Bae, Y.S.; et al. Phase I/II study of immunotherapy using tumor antigen-pulsed dendritic cells in patients with hepatocellular carcinoma. Int. J. Oncol. 2012, 41, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Lee, Y.; Lee, M.; Heo, M.K.; Song, J.S.; Kim, K.H.; Lee, H.; Yi, N.J.; Lee, K.W.; Suh, K.S.; et al. A phase I/IIa study of adjuvant immunotherapy with tumour antigen-pulsed dendritic cells in patients with hepatocellular carcinoma. Br. J. Cancer 2015, 113, 1666–1676. [Google Scholar] [CrossRef]
- Lee, J.H.; Tak, W.Y.; Lee, Y.; Heo, M.K.; Song, J.S.; Kim, H.Y.; Park, S.Y.; Bae, S.H.; Lee, J.H.; Heo, J.; et al. Adjuvant immunotherapy with autologous dendritic cells for hepatocellular carcinoma, randomized phase II study. Oncoimmunology 2017, 6, e1328335. [Google Scholar] [CrossRef]
- Shimizu, K.; Kotera, Y.; Aruga, A.; Takeshita, N.; Katagiri, S.; Ariizumi, S.; Takahashi, Y.; Yoshitoshi, K.; Takasaki, K.; Yamamoto, M. Postoperative dendritic cell vaccine plus activated T-cell transfer improves the survival of patients with invasive hepatocellular carcinoma. Hum. Vaccin. Immunother. 2014, 10, 970–976. [Google Scholar] [CrossRef]
- Zhou, P.; Liang, P.; Dong, B.; Yu, X.; Han, Z.; Xu, Y. Phase I clinical study of combination therapy with microwave ablation and cellular immunotherapy in hepatocellular carcinoma. Cancer Biol. Ther. 2011, 11, 450–456. [Google Scholar] [CrossRef]
- Zhou, Z.; Qin, H.; Weng, L.; Ni, Y. Clinical efficacy of DC-CIK combined with sorafenib in the treatment of advanced hepatocellular carcinoma. J. BUON 2019, 24, 615–621. [Google Scholar]
- Peng, S.; Chen, S.; Hu, W.; Mei, J.; Zeng, X.; Su, T.; Wang, W.; Chen, Z.; Xiao, H.; Zhou, Q.; et al. Combination Neoantigen-Based Dendritic Cell Vaccination and Adoptive T-Cell Transfer Induces Antitumor Responses Against Recurrence of Hepatocellular Carcinoma. Cancer. Immunol. Res. 2022, 10, 728–744. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Mu, Y.; Zhang, S.; Li, P.; Wang, F. Preparation and evaluation of the adjuvant effect of curdlan sulfate in improving the efficacy of dendritic cell-based vaccine for antitumor immunotherapy. Int. J. Biol. Macromol. 2020, 146, 273–284. [Google Scholar] [CrossRef]
- Chieochansin, T.; Thepmalee, C.; Grainok, J.; Junking, M.; Yenchitsomanus, P.T. Cytolytic Activity of Effector T-lymphocytes Against Hepatocellular Carcinoma is Improved by Dendritic Cells Pulsed with Pooled Tumor Antigens. Sci. Rep. 2019, 9, 17668. [Google Scholar] [CrossRef]
- Pang, Y.B.; He, J.; Cui, B.Y.; Xu, S.; Li, X.L.; Wu, M.Y.; Liang, R.; Feng, Y.; Guo, X.; Zhang, X.H.; et al. A Potential Antitumor Effect of Dendritic Cells Fused with Cancer Stem Cells in Hepatocellular Carcinoma. Stem Cells Int. 2019, 2019, 5680327. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, C.; Shi, G.; Xu, X.; Luo, X.; Zhang, Y.; Fu, J.; Chen, L.; Zeng, A. Dendritic cell-based vaccine targeting aspartate-beta-hydroxylas represents a promising therapeutic strategy for HCC. Immunotherapy 2019, 11, 1399–1407. [Google Scholar] [CrossRef]
- Vogt, A.; Sadeghlar, F.; Ayub, T.H.; Schneider, C.; Mohring, C.; Zhou, T.; Mahn, R.; Bartels, A.; Praktiknjo, M.; Kornek, M.T.; et al. Alpha-Fetoprotein- and CD40Ligand-Expressing Dendritic Cells for Immunotherapy of Hepatocellular Carcinoma. Cancers 2021, 13, 3375. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Liu, Z.; He, K.; Xiang, G. T-bet transduction enhances anti-tumor efficacy of IFN-producing dendritic cell (IKDC) against hepatocellular carcinoma via apoptosis induction. Biochem. Biophys. Res. Commun. 2021, 535, 80–86. [Google Scholar] [CrossRef]
- Teng, C.F.; Wang, T.; Shih, F.Y.; Shyu, W.C.; Jeng, L.B. Therapeutic efficacy of dendritic cell vaccine combined with programmed death 1 inhibitor for hepatocellular carcinoma. J. Gastroenterol. Hepatol. 2021, 36, 1988–1996. [Google Scholar] [CrossRef]
- Teng, C.F.; Wang, T.; Wu, T.H.; Lin, J.H.; Shih, F.Y.; Shyu, W.C.; Jeng, L.B. Combination therapy with dendritic cell vaccine and programmed death ligand 1 immune checkpoint inhibitor for hepatocellular carcinoma in an orthotopic mouse model. Ther. Adv. Med. Oncol. 2020, 12, 1758835920922034. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Q.; Zhao, B.; Zheng, Y.; Zhuang, Q.; Liao, N.; Wang, P.; Cai, Z.; Zhang, D.; Zeng, Y.; et al. Remodeling Tumor-Associated Neutrophils to Enhance Dendritic Cell-Based HCC Neoantigen Nano-Vaccine Efficiency. Adv. Sci. 2022, 9, e2105631. [Google Scholar] [CrossRef]
- Zuo, B.; Zhang, Y.; Zhao, K.; Wu, L.; Qi, H.; Yang, R.; Gao, X.; Geng, M.; Wu, Y.; Jing, R.; et al. Universal immunotherapeutic strategy for hepatocellular carcinoma with exosome vaccines that engage adaptive and innate immune responses. J. Hematol. Oncol. 2022, 15, 46. [Google Scholar] [CrossRef] [PubMed]
- Dhanasekaran, R. Deciphering Tumor Heterogeneity in Hepatocellular Carcinoma (HCC)-Multi-Omic and Singulomic Approaches. Semin. Liver Dis. 2021, 41, 9–18. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeng, L.-B.; Liao, L.-Y.; Shih, F.-Y.; Teng, C.-F. Dendritic-Cell-Vaccine-Based Immunotherapy for Hepatocellular Carcinoma: Clinical Trials and Recent Preclinical Studies. Cancers 2022, 14, 4380. https://doi.org/10.3390/cancers14184380
Jeng L-B, Liao L-Y, Shih F-Y, Teng C-F. Dendritic-Cell-Vaccine-Based Immunotherapy for Hepatocellular Carcinoma: Clinical Trials and Recent Preclinical Studies. Cancers. 2022; 14(18):4380. https://doi.org/10.3390/cancers14184380
Chicago/Turabian StyleJeng, Long-Bin, Li-Ying Liao, Fu-Ying Shih, and Chiao-Fang Teng. 2022. "Dendritic-Cell-Vaccine-Based Immunotherapy for Hepatocellular Carcinoma: Clinical Trials and Recent Preclinical Studies" Cancers 14, no. 18: 4380. https://doi.org/10.3390/cancers14184380
APA StyleJeng, L. -B., Liao, L. -Y., Shih, F. -Y., & Teng, C. -F. (2022). Dendritic-Cell-Vaccine-Based Immunotherapy for Hepatocellular Carcinoma: Clinical Trials and Recent Preclinical Studies. Cancers, 14(18), 4380. https://doi.org/10.3390/cancers14184380