Current Approaches to the Management of Patients with Endometrial Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Classification of Endometrial Cancer
2.1. Histological Classification of Endometrial Cancer
2.2. FIGO Grading System
2.3. Molecular Classification
2.4. Pathogenesis
2.5. Risk Factors
2.6. Risk Stratification and Staging
- Low
- Intermediate
- High-intermediate
- High and
- Advanced/metastatic [1].
3. Management of Endometrial Cancer
3.1. Primary Management
3.2. Routes of Surgery
3.3. Determining Myometrial Invasion
3.4. Fertility-Sparing Management
3.5. Lymphadenectomy
- Selective lymph node sampling;
- Deciding whether to perform lymphadenectomy based on intrauterine risk factors mainly from IFS and;
- SLN mapping.
3.6. Adjuvant Radiotherapy
3.7. Chemotherapy
3.8. Immunotherapy
3.9. Sentinel Lymph Node Biopsy
4. Discussion
5. Conclusions
6. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Brooks, R.A.; Fleming, G.F.; Lastra, R.R.; Lee, N.K.; Moroney, J.W.; Son, C.H.; Tatebe, K.; Veneris, J.L. Current recommendations and recent progress in endometrial cancer. CA Cancer J. Clin. 2019, 69, 258–279. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Endometrial Cancer. Available online: https://www.cancer.org/cancer/endometrial-cancer.html (accessed on 13 August 2022).
- Amant, F.; Moerman, P.; Neven, P.; Timmerman, D.; Van Limbergen, E.; Vergote, I. Endometrial cancer. Lancet 2005, 366, 491–505. [Google Scholar] [CrossRef]
- Urick, M.E.; Bell, D.W. Clinical actionability of molecular targets in endometrial cancer. Nat. Cancer 2019, 19, 510–521. [Google Scholar] [CrossRef]
- Clarke, M.A.; Devesa, S.S.; Harvey, S.V.; Wentzensen, N. Hysterectomy-Corrected Uterine Corpus Cancer Incidence Trends and Differences in Relative Survival Reveal Racial Disparities and Rising Rates of Nonendometrioid Cancers. J. Clin. Oncol. 2019, 37, 1895–1908. [Google Scholar] [CrossRef]
- Henley, S.J.; Ward, E.M.; Scott, S.; Ma, J.; Anderson, R.N.; Firth, A.U.; Thomas, C.C.; Islami, F.; Weir, H.K.; Lewis, D.R.; et al. Annual Report to the Nation on the Status of Cancer, Part I: National Cancer Statistics. Cancer 2020, 126, 2225–2249. [Google Scholar] [CrossRef]
- Stewart, K.I.; Eska, J.S.; Harrison, R.F.; Suidan, R.; Abraham, A.; Chisholm, G.B.; Meyer, L.A.; Westin, S.N.; Fleming, N.D.; Frumovitz, M.; et al. Implementation of a sentinel lymph node mapping algorithm for endometrial cancer: Surgical outcomes and hospital charges. Int. J. Gynecol. Cancer 2020, 30, 352–357. [Google Scholar] [CrossRef]
- Terzic, M.; Aimagambetova, G.; Kunz, J.; Bapayeva, G.; Aitbayeva, B.; Terzic, S.; Laganà, A.S. Molecular Basis of Endometriosis and Endometrial Cancer: Current Knowledge and Future Perspectives. Int. J. Mol. Sci. 2021, 22, 9274. [Google Scholar] [CrossRef]
- Vermij, L.; Smit, V.; Nout, R.; Bosse, T. Incorporation of molecular characteristics into endometrial cancer management. Histopathology 2019, 76, 52–63. [Google Scholar] [CrossRef]
- Creasman, W.T.; Odicino, F.; Maisonneuve, P.; Quinn, M.A.; Beller, U.; Benedet, J.L.; Heintz, A.; Ngan, H.Y.S.; Pecorelli, S. Carcinoma of the Corpus Uteri. Int. J. Gynecol. Obstet. 2006, 95, S105–S143. [Google Scholar] [CrossRef]
- Murali, R.; Soslow, R.A.; Weigelt, B. Classification of endometrial carcinoma: More than two types. Lancet Oncol. 2014, 15, e268–e278. [Google Scholar] [CrossRef]
- Goebel, E.A.; Vidal, A.; Matias-Guiu, X.; Gilks, C.B. The evolution of endometrial carcinoma classification through application of immunohistochemistry and molecular diagnostics: Past, present and future. Virchows Arch. 2017, 472, 885–896. [Google Scholar] [CrossRef]
- Murali, R.; Davidson, B.; Fadare, O.; Carlson, J.; Crum, C.P.; Gilks, C.B.; Irving, J.A.; Malpica, A.; Matias-Guiu, X.; McCluggage, W.G.; et al. High-grade Endometrial Carcinomas. Int. J. Gynecol. Pathol. 2019, 38, S40–S63. [Google Scholar] [CrossRef]
- Bell, D.W.; Ellenson, L.H. Molecular Genetics of Endometrial Carcinoma. Annu. Rev. Pathol. Mech. Dis. 2019, 14, 339–367. [Google Scholar] [CrossRef]
- Morice, P.; Leary, A.; Creutzberg, C.; Abu-Rustum, N.; Darai, E. Endometrial cancer. Lancet 2015, 387, 1094–1108. [Google Scholar] [CrossRef]
- Bokhman, J.V. Two pathogenetic types of endometrial carcinoma. Gynecol. Oncol. 1983, 15, 10–17. [Google Scholar] [CrossRef]
- Lax, S.F.; Pizer, E.S.; Ronnett, B.M.; Kurman, R.J. Clear cell carcinoma of the endometrium is characterized by a distinctive profile of p53, Ki-67, estrogen, and progesterone receptor expression. Hum. Pathol. 1998, 29, 551–558. [Google Scholar] [CrossRef]
- Ni, J.; Zhu, T.; Zhao, L.; Che, F.; Chen, Y.; Shou, H.; Yu, A. Metabolic syndrome is an independent prognostic factor for endometrial adenocarcinoma. Clin. Transl. Oncol. 2015, 17, 835–839. [Google Scholar] [CrossRef]
- Talhouk, A.; McAlpine, J.N. New classification of endometrial cancers: The development and potential applications of genomic-based classification in research and clinical care. Gynecol. Oncol. Res. Pract. 2016, 3, 14. [Google Scholar] [CrossRef]
- Wilczyński, M.; Danielska, J.; Wilczyński, J. An update of the classical Bokhman’s dualistic model of endometrial cancer. Menopausal Rev. 2016, 15, 63–68. [Google Scholar] [CrossRef]
- Wei, J.-J.; Paintal, A.; Keh, P. Histologic and Immunohistochemical Analyses of Endometrial Carcinomas: Experiences from Endometrial Biopsies in 358 Consultation Cases. Arch. Pathol. Lab. Med. 2013, 137, 1574–1583. [Google Scholar] [CrossRef]
- Conlon, N.; Leitao, M.M.; Abu-Rustum, N.R.; Soslow, R.A. Grading Uterine Endometrioid Carcinoma. Am. J. Surg. Pathol. 2014, 38, 1583–1587. [Google Scholar] [CrossRef]
- Benda, J.A.; Zaino, R. GOG Pathology Manual; Gynecologic Oncology Group: Buffalo, NY, USA, 1994. [Google Scholar]
- Gilks, C.B.; Oliva, E.; Soslow, R.A. Poor Interobserver Reproducibility in the Diagnosis of High-grade Endometrial Carcinoma. Am. J. Surg. Pathol. 2013, 37, 874–881. [Google Scholar] [CrossRef]
- Del Carmen, M.G.; Birrer, M.; Schorge, J.O. Uterine papillary serous cancer: A review of the literature. Gynecol. Oncol. 2012, 127, 651–661. [Google Scholar] [CrossRef]
- Levine, D.A.; The Cancer Genome Atlas Research Network. Integrated genomic characterization of endometrial carcinoma. Nature 2013, 497, 67–73, Erratum in Nature 2013, 500, 242. [Google Scholar] [CrossRef]
- Betella, I.; Fumagalli, C.; Raviele, P.R.; Schivardi, G.; De Vitis, L.A.; Achilarre, M.T.; Aloisi, A.; Garbi, A.; Maruccio, M.; Zanagnolo, V.; et al. A novel algorithm to implement the molecular classification according to the new ESGO/ESTRO/ESP 2020 guidelines for endometrial cancer. Int. J. Gynecol. Cancer 2022, 32, 993–1000. [Google Scholar] [CrossRef]
- Laganà, A.S.; Vitale, S.G.; Salmeri, F.M.; Triolo, O.; Frangež, H.B.; Vrtačnik-Bokal, E.; Stojanovska, L.; Apostolopoulos, V.; Granese, R.; Sofo, V. Unus pro omnibus, omnes pro uno: A novel, evidence-based, unifying theory for the pathogenesis of endometriosis. Med. Hypotheses 2017, 103, 10–20. [Google Scholar] [CrossRef]
- Dossus, L.; Rinaldi, S.; Becker, S.; Lukanova, A.; Tjonneland, A.; Olsen, A.; Stegger, J.; Overvad, K.; Chabbert-Buffet, N.; Jimenez-Corona, A.; et al. Obesity, inflammatory markers, and endometrial cancer risk: A prospective case–control study. Endocrine-Related Cancer 2010, 17, 1007–1019. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.; Brewer, M.A. Endometrial Cancer: Is This a New Disease? Am. Soc. Clin. Oncol. Educ. Book 2017, 37, 435–442. [Google Scholar] [CrossRef]
- Kalampokas, E.; McRobbie, S.; Payne, F.; Parkin, D.E. Endometrial cancer after endometrial ablation or resection for menorrhagia. Int. J. Gynecol. Obstet. 2018, 142, 84–90. [Google Scholar] [CrossRef]
- Passarello, K.; Kurian, S.; Villanueva, V. Endometrial Cancer: An Overview of Pathophysiology, Management, and Care. Semin. Oncol. Nurs. 2019, 35, 157–165. [Google Scholar] [CrossRef]
- Guo, J.-Z.; Wu, Q.-J.; Liu, F.-H.; Gao, C.; Gong, T.-T.; Li, G. Review of Mendelian Randomization Studies on Endometrial Cancer. Front. Endocrinol. 2022, 13, 783150. [Google Scholar] [CrossRef] [PubMed]
- Setiawan, V.W.; Yang, H.P.; Pike, M.C.; McCann, S.E.; Yu, H.; Xiang, Y.-B.; Wolk, A.; Wentzensen, N.; Weiss, N.S.; Webb, P.M.; et al. Type I and II Endometrial Cancers: Have They Different Risk Factors? J. Clin. Oncol. 2013, 31, 2607–2618. [Google Scholar] [CrossRef]
- Brinton, L.A.; Felix, A.S.; McMeekin, D.S.; Creasman, W.T.; Sherman, M.E.; Mutch, D.; Cohn, D.; Walker, J.L.; Moore, R.G.; Downs, L.S.; et al. Etiologic heterogeneity in endometrial cancer: Evidence from a Gynecologic Oncology Group trial. Gynecol. Oncol. 2013, 129, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Barakat, R.R.; Markman, M.; Randall, M. (Eds.) Principles and Practice of Gynecologic Oncology, 6th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013. [Google Scholar]
- Dedes, K.J.; Wetterskog, D.; Ashworth, A.; Kaye, S.B.; Reis-Filho, J.S. Emerging therapeutic targets in endometrial cancer. Nat. Rev. Clin. Oncol. 2011, 8, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Ring, K.L.; Modesitt, S.C. Hereditary Cancers in Gynecology. Obstet. Gynecol. Clin. N. Am. 2018, 45, 155–173. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.L.; Medina, H.N.; Schlumbrecht, M.P.; Reis, I.; Kobetz, E.N.; Pinheiro, P.S. The role of histology on endometrial cancer survival disparities in diverse Florida. PLoS ONE 2020, 15, e0236402. [Google Scholar] [CrossRef]
- Lynch, H.T.; Snyder, C.L.; Shaw, T.G.; Heinen, C.D.; Hitchins, M.P. Milestones of Lynch syndrome: 1895–2015. Nat. Cancer 2015, 15, 181–194. [Google Scholar] [CrossRef]
- Palles, C.; Latchford, A.; Valle, L. Adenomatous Polyposis Syndromes: Polymerase Proofreading-Associated Polyposis; Springer: Cham, Switzerland, 2018; pp. 113–134. [Google Scholar] [CrossRef]
- Alexa, M.; Hasenburg, A.; Battista, M. The TCGA Molecular Classification of Endometrial Cancer and Its Possible Impact on Adjuvant Treatment Decisions. Cancers 2021, 13, 1478. [Google Scholar] [CrossRef]
- Concin, N.; Creutzberg, C.L.; Vergote, I.; Cibula, D.; Mirza, M.R.; Marnitz, S.; Ledermann, J.A.; Bosse, T.; Chargari, C.; Fagotti, A.; et al. ESGO/ESTRO/ESP Guidelines for the management of patients with endometrial carcinoma. Virchows Arch. 2021, 478, 153–190. [Google Scholar] [CrossRef]
- Jamieson, A.; Bosse, T.; McAlpine, J.N. The emerging role of molecular pathology in directing the systemic treatment of endometrial cancer. Ther. Adv. Med Oncol. 2021, 13, 17588359211035959. [Google Scholar] [CrossRef]
- Hoffman, B.L.; Schorge, J.O.; Bradshaw, K.D.; Halvorson, L.M.; Schaffer, J.I.; Corton, M.M. Williams Gynecology, 4th ed.; McGraw Hill: New York, NY, USA, 2020. [Google Scholar]
- Morrison, J.; Balega, J.; Buckley, L.; Clamp, A.; Crosbie, E.; Drew, Y.; Durrant, L.; Forrest, J.; Fotopoulou, C.; Gajjar, K.; et al. British Gynaecological Cancer Society (BGCS) uterine cancer guidelines: Recommendations for practice. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 270, 50–89. [Google Scholar] [CrossRef]
- Smith, D.; Stewart, C.J.; Clarke, E.M.; Lose, F.; Davies, C.; Armes, J.; Obermair, A.; Brennan, D.; Webb, P.M.; Nagle, C.M.; et al. ER and PR expression and survival after endometrial cancer. Gynecol. Oncol. 2018, 148, 258–266. [Google Scholar] [CrossRef]
- Chen, M.; Guo, P.; Tan, J.; Liu, D.; Yao, S. The role of omentectomy in the surgical treatment of uterine serous carcinoma. Eur. J. Obstet. Gynecol. Reprod. Biol. X 2019, 4, 100084. [Google Scholar] [CrossRef]
- Kaban, A.; Topuz, S.; Erdem, B.; Salihoglu, Y.; Sözen, H. Investigation of extra-uterine tumor dissemination of endometrial cancers with myometrial invasion less than 50% according to hystologic subtypes. SiSli Etfal Häst. Tip Bulteni/Med. Bull. Sisli Hosp. 2019, 53, 252–255. [Google Scholar] [CrossRef]
- Kovacevic, N. Surgical treatment and fertility perservation in endometrial cancer. Radiol. Oncol. 2021, 55, 144–149. [Google Scholar] [CrossRef]
- Walker, J.L.; Piedmonte, M.R.; Spirtos, N.M.; Eisenkop, S.M.; Schlaerth, J.B.; Mannel, R.S.; Spiegel, G.; Barakat, R.; Pearl, M.L.; Sharma, S.K. Laparoscopy Compared With Laparotomy for Comprehensive Surgical Staging of Uterine Cancer: Gynecologic Oncology Group Study LAP2. J. Clin. Oncol. 2009, 27, 5331–5336. [Google Scholar] [CrossRef]
- Janda, M.; Gebski, V.; Brand, A.; Hogg, R.; Jobling, T.W.; Land, R.; Manolitsas, T.; McCartney, A.; Nascimento, M.; Neesham, D.; et al. Quality of life after total laparoscopic hysterectomy versus total abdominal hysterectomy for stage I endometrial cancer (LACE): A randomised trial. Lancet Oncol. 2010, 11, 772–780. [Google Scholar] [CrossRef]
- Uwins, C.; Patel, H.; Bhandoria, G.P.; Butler-Manuel, S.; Tailor, A.; Ellis, P.; Chatterjee, J. Laparoscopic and Robotic Surgery for Endometrial and Cervical Cancer. Clin. Oncol. 2021, 33, e372–e382. [Google Scholar] [CrossRef]
- Stämpfli, C.A.L.; Papadia, A.; Mueller, M.D. From systematic lymphadenectomy to sentinel lymph node mapping: A review on transitions and current practices in endometrial cancer staging. Chin. Clin. Oncol. 2021, 10, 22. [Google Scholar] [CrossRef]
- Galaal, K.; Donkers, H.; Bryant, A.; Lopes, A.D. Laparoscopy versus laparotomy for the management of early stage endometrial cancer. Cochrane Database Syst. Rev. 2018, 2018, CD006655. [Google Scholar] [CrossRef]
- Papadia, A.; Garbade, A.; Gasparri, M.L.; Wang, J.; Radan, A.P.; Mueller, M.D. Minimally invasive surgery does not impair overall survival in stage IIIC endometrial cancer patients. Arch. Gynecol. Obstet. 2019, 301, 585–590. [Google Scholar] [CrossRef]
- Mäenpää, M.M.; Nieminen, K.; Tomás, E.I.; Laurila, M.; Luukkaala, T.; Mäenpää, J.U. Robotic-assisted vs traditional laparoscopic surgery for endometrial cancer: A randomized controlled trial. Am. J. Obstet. Gynecol. 2016, 215, 588.e1–588.e7. [Google Scholar] [CrossRef]
- Kakkos, A.; Eecke, C.V.; Ongaro, S.; Traen, K.; Peeters, F.; Van Trappen, P.; Laenen, A.; Despierre, E.; Van Nieuwenhuysen, E.; Vergote, I.; et al. Robot-assisted surgery for women with endometrial cancer: Surgical and oncologic outcomes within a Belgium gynaecological oncology group cohort. Eur. J. Surg. Oncol. (EJSO) 2020, 47, 1117–1123. [Google Scholar] [CrossRef]
- Argenta, P.A.; Mattson, J.; Rivard, C.L.; Luther, E.; Schefter, A.; Vogel, R.I. Robot-assisted versus laparoscopic minimally invasive surgery for the treatment of stage I endometrial cancer. Gynecol. Oncol. 2022, 165, 347–352. [Google Scholar] [CrossRef]
- Moss, E.L.; Morgan, G.; Martin, A.P.; Sarhanis, P.; Ind, T. Surgical trends, outcomes and disparities in minimal invasive surgery for patients with endometrial cancer in England: A retrospective cohort study. BMJ Open 2020, 10, e036222. [Google Scholar] [CrossRef]
- Alcazar, J.L.; Dominguez-Piriz, J.; Juez, L.; Caparros, M.; Jurado, M. Intraoperative Gross Examination and Intraoperative Frozen Section in Patients With Endometrial Cancer for Detecting Deep Myometrial Invasion. Int. J. Gynecol. Cancer 2016, 26, 407–415. [Google Scholar] [CrossRef]
- Jónsdóttir, B.; Marcickiewicz, J.; Borgfeldt, C.; Bjurberg, M.; Dahm-Kähler, P.; Flöter-Rådestad, A.; Hellman, K.; Holmberg, E.; Kjølhede, P.; Rosenberg, P.; et al. Preoperative and intraoperative assessment of myometrial invasion in endometrial cancer—A Swedish Gynecologic Cancer Group (SweGCG) study. Acta Obstet. Gynecol. Scand. 2021, 100, 1526–1533. [Google Scholar] [CrossRef] [PubMed]
- Santoro, A.; Angelico, G.; Travaglino, A.; Inzani, F.; Arciuolo, D.; Valente, M.; D’Alessandris, N.; Scaglione, G.; Fiorentino, V.; Raffone, A.; et al. New Pathological and Clinical Insights in Endometrial Cancer in View of the Updated ESGO/ESTRO/ESP Guidelines. Cancers 2021, 13, 2623. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, M.M.; Lamaita, R.M.; Ferreira, M.C.F.; Silva-Filho, A.L. Fertility-preservation in endometrial cancer: Is it safe? Review of the literature. JBRA Assist. Reprod. 2016, 20, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Kalogiannidis, I.; Agorastos, T. Conservative management of young patients with endometrial highly-differentiated adenocarcinoma. J. Obstet. Gynaecol. 2011, 31, 13–17. [Google Scholar] [CrossRef]
- De Felice, F.; Marchetti, C.; Di Pinto, A.; Musella, A.; Palaia, I.; Porpora, M.G.; Muzii, L.; Tombolini, V.; Panici, P.B.; Tomao, F. Fertility preservation in gynaecologic cancers. Ecancermedicalscience 2018, 12, 798. [Google Scholar] [CrossRef]
- Cleveland Clinic. Fertility Preservation Options Abound for Women with Endometriosis, Cancer. Available online: https://consultqd.clevelandclinic.org/fertility-preservation-options-abound-for-women-with-endometriosis-cancer/ (accessed on 14 August 2022).
- Frost, J.A.; Webster, K.E.; Bryant, A.; Morrison, J. Lymphadenectomy for the management of endometrial cancer. Cochrane Database Syst. Rev. 2017, 10, CD007585. [Google Scholar] [CrossRef]
- Rossi, E.C.; Kowalski, L.D.; Scalici, J.; Cantrell, L.; Schuler, K.; Hanna, R.K.; Method, M.; Ade, M.; Ivanova, A.; Boggess, J.F. A comparison of sentinel lymph node biopsy to lymphadenectomy for endometrial cancer staging (FIRES trial): A multicentre, prospective, cohort study. Lancet Oncol. 2017, 18, 384–392. [Google Scholar] [CrossRef]
- Tung, H.-J.; Huang, H.-J.; Lai, C.-H. Adjuvant and post-surgical treatment in endometrial cancer. Best Pract. Res. Clin. Obstet. Gynaecol. 2021, 78, 52–63. [Google Scholar] [CrossRef]
- De Boer, S.M.; Powell, M.E.; Mileshkin, L.; Katsaros, D.; Bessette, P.; Haie-Meder, C.; Ottevanger, P.B.; Ledermann, J.A.; Khaw, P.; Colombo, A.; et al. Adjuvant chemoradiotherapy versus radiotherapy alone for women with high-risk endometrial cancer (PORTEC-3): Final results of an international, open-label, multicentre, randomised, phase 3 trial. Lancet Oncol. 2018, 19, 295–309. [Google Scholar] [CrossRef]
- Boothe, D.; Wolfson, A.; Christensen, M.; Francis, S.; Werner, T.L.; Gaffney, D.K. Lymphovascular Invasion in Endometrial Cancer. Am. J. Clin. Oncol. 2019, 42, 549–554. [Google Scholar] [CrossRef]
- Hamilton, C.A.; Pothuri, B.; Arend, R.C.; Backes, F.J.; Gehrig, P.A.; Soliman, P.T.; Thompson, J.S.; Urban, R.R.; Burke, W.M. Endometrial cancer: A society of gynecologic oncology evidence-based review and recommendations. Gynecol. Oncol. 2021, 160, 817–826. [Google Scholar] [CrossRef]
- Reijnen, C.; Küsters-Vandevelde, H.V.; Prinsen, C.F.; Massuger, L.F.; Snijders, M.P.; Kommoss, S.; Brucker, S.Y.; Kwon, J.S.; McAlpine, J.N.; Pijnenborg, J.M. Mismatch repair deficiency as a predictive marker for response to adjuvant radiotherapy in endometrial cancer. Gynecol. Oncol. 2019, 154, 124–130. [Google Scholar] [CrossRef]
- Mohammadi, H.; Prince, A.; Figura, N.B.; Peacock, J.S.; Fernandez, D.C.; Montejo, M.E.; Chon, H.S.; Wenham, R.M.; Eschrich, S.A.; Torres-Roca, J.F.; et al. Using the Radiosensitivity Index (RSI) to Predict Pelvic Failure in Endometrial Cancer Treated With Adjuvant Radiation Therapy. Int. J. Radiat. Oncol. 2019, 106, 496–502. [Google Scholar] [CrossRef]
- Randall, M.E.; Filiaci, V.; McMeekin, D.S.; Von Gruenigen, V.; Huang, H.; Yashar, C.M.; Mannel, R.S.; Kim, J.-W.; Salani, R.; DiSilvestro, P.A.; et al. Phase III Trial: Adjuvant Pelvic Radiation Therapy Versus Vaginal Brachytherapy Plus Paclitaxel/Carboplatin in High-Intermediate and High-Risk Early-Stage Endometrial Cancer. J. Clin. Oncol. 2019, 37, 1810–1818. [Google Scholar] [CrossRef]
- Matei, D.; Filiaci, V.; Randall, M.E.; Mutch, D.; Steinhoff, M.M.; DiSilvestro, P.A.; Moxley, K.M.; Kim, Y.M.; Powell, M.A.; O’Malley, D.M.; et al. Adjuvant Chemotherapy plus Radiation for Locally Advanced Endometrial Cancer. N. Engl. J. Med. 2019, 380, 2317–2326. [Google Scholar] [CrossRef]
- Mirza, M.R.; Lundgren, C.; Kridelka, F.; Ferrero, A.; Greggi, S.; Christensen, R.D.; Santaballa, A.; Soliman, P.T.; Levy, T.; Sehouli, J.; et al. Postoperative chemotherapy or no further treatment for patients with node-negative stage I-II intermediate or high risk endometrial cancer: The ENGOT-EN2/DGCG trial. J. Clin. Oncol. 2017, 35, TPS5613. [Google Scholar] [CrossRef]
- Miller, D.S.; Filiaci, V.L.; Mannel, R.S.; Cohn, D.E.; Matsumoto, T.; Tewari, K.S.; DiSilvestro, P.; Pearl, M.L.; Argenta, P.A.; Powell, M.A.; et al. Carboplatin and Paclitaxel for Advanced Endometrial Cancer: Final Overall Survival and Adverse Event Analysis of a Phase III Trial (NRG Oncology/GOG0209). J. Clin. Oncol. 2020, 38, 3841–3850. [Google Scholar] [CrossRef]
- Paclitaxel and Carboplatin with or Without Metformin Hydrochloride in Treating Patients with Stage III, IV, or Recurrent Endometrial Cancer; Gynecologic Oncology Group: Philadelphia, PA, USA, 2023.
- Lee, Y.C.; Lheureux, S.; Oza, A.M. Treatment strategies for endometrial cancer: Current practice and perspective. Curr. Opin. Obstet. Gynecol. 2017, 29, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Jamieson, A.; Morrison, J.; Taylor, A.; Ganesan, R. BAGP POLE NGS Testing Guidance; British Gynaecological Cancer Society: London, UK, 8 April 2022. [Google Scholar]
- Cao, W.; Ma, X.; Fischer, J.V.; Sun, C.; Kong, B.; Zhang, Q. Immunotherapy in endometrial cancer: Rationale, practice and perspectives. Biomark. Res. 2021, 9, 1–30. [Google Scholar] [CrossRef]
- O’Malley, D.M.; Bariani, G.M.; Cassier, P.A.; Marabelle, A.; Hansen, A.R.; De Jesus Acosta, A.; Miller, W.H.; Safra, T.; Italiano, A.; Mileshkin, L.; et al. Pembrolizumab in Patients With Microsatellite Instability–High Advanced Endometrial Cancer: Results From the KEYNOTE-158 Study. J. Clin. Oncol. 2022, 40, 752–761. [Google Scholar] [CrossRef] [PubMed]
- Lheureux, S.; Matei, D.E.; Konstantinopoulos, P.A.; Wang, B.X.; Gadalla, R.; Block, M.S.; Jewell, A.; Gaillard, S.L.; McHale, M.; McCourt, C.; et al. Translational randomized phase II trial of cabozantinib in combination with nivolumab in advanced, recurrent, or metastatic endometrial cancer. J. Immunother. Cancer 2022, 10, e004233. [Google Scholar] [CrossRef]
- Colombo, N.; Barretina-Ginesta, M.P.; Beale, P.J.; Harano, K.; Hudson, E.; Marmé, F.; Marth, C.; Radaglio, M.; Secord, A.A.; Fossati, R.; et al. AtTEnd/ENGOT-en7: A multicenter phase III double-blind randomized controlled trial of atezolizumab in combination with paclitaxel and carboplatin in women with advanced/recurrent endometrial cancer. J. Clin. Oncol. 2019, 37, TPS5608. [Google Scholar] [CrossRef]
- Atezolizumab Trial in Endometrial Cancer—AtTEnd; Mario Negri Institute for Pharmacological Research: Milano, Italy, 2022.
- Persson, J.; Salehi, S.; Bollino, M.; Lönnerfors, C.; Falconer, H.; Geppert, B. Pelvic Sentinel lymph node detection in High-Risk Endometrial Cancer (SHREC-trial)—The final step towards a paradigm shift in surgical staging. Eur. J. Cancer 2019, 116, 77–85. [Google Scholar] [CrossRef]
- Colombo, N.; Creutzberg, C.; Amant, F.; Bosse, T.; González-Martín, A.; Ledermann, J.; Marth, C.; Nout, R.; Querleu, D.; Mirza, M.R.; et al. ESMO-ESGO-ESTRO Consensus Conference on Endometrial Cancer: Diagnosis, treatment and follow-up. Ann. Oncol. 2016, 27, 16–41. [Google Scholar] [CrossRef]
- Bogani, G.; Murgia, F.; Ditto, A.; Raspagliesi, F. Sentinel node mapping vs. lymphadenectomy in endometrial cancer: A systematic review and meta-analysis. Gynecol. Oncol. 2019, 153, 676–683. [Google Scholar] [CrossRef]
- Ji, Q.; Wang, X.; Jiang, J.; Chen, L. Sentinel lymph node mapping in high-risk endometrial cancer: A systematic review and meta-analysis. Gland Surg. 2020, 9, 2091–2105. [Google Scholar] [CrossRef]
- Cusimano, M.C.; Vicus, D.; Pulman, K.; Maganti, M.; Bernardini, M.Q.; Bouchard-Fortier, G.; Laframboise, S.; May, T.; Hogen, L.F.; Covens, A.L.; et al. Assessment of Sentinel Lymph Node Biopsy vs Lymphadenectomy for Intermediate- and High-Grade Endometrial Cancer Staging. JAMA Surg. 2021, 156, 157. [Google Scholar] [CrossRef]
- Smith, A.J.B.; Fader, A.N.; Tanner, E.J. Sentinel lymph node assessment in endometrial cancer: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2017, 216, 459–476.e10. [Google Scholar] [CrossRef]
- Naoura, I.; Canlorbe, G.; Bendifallah, S.; Ballester, M.; Daraï, E. Relevance of sentinel lymph node procedure for patients with high-risk endometrial cancer. Gynecol. Oncol. 2015, 136, 60–64. [Google Scholar] [CrossRef]
- Baiocchi, G.; Mantoan, H.; Kumagai, L.Y.; Gonçalves, B.T.; Badiglian-Filho, L.; Menezes, A.N.D.O.; Faloppa, C.C.; De Brot, L.; Da Costa, A.A.B.A. The Impact of Sentinel Node-Mapping in Staging High-Risk Endometrial Cancer. Ann. Surg. Oncol. 2017, 24, 3981–3987. [Google Scholar] [CrossRef]
- Paley, P.J.; Veljovich, D.S.; Press, J.Z.; Isacson, C.; Pizer, E.; Shah, C. A prospective investigation of fluorescence imaging to detect sentinel lymph nodes at robotic-assisted endometrial cancer staging. Am. J. Obstet. Gynecol. 2015, 215, 117.e1–117.e7. [Google Scholar] [CrossRef]
- Ehrisman, J.; Secord, A.A.; Berchuck, A.; Lee, P.S.; Di Santo, N.; Lopez-Acevedo, M.; Broadwater, G.; Valea, F.A.; Havrilesky, L.J. Performance of sentinel lymph node biopsy in high-risk endometrial cancer. Gynecol. Oncol. Rep. 2016, 17, 69–71. [Google Scholar] [CrossRef] [Green Version]
- Soliman, P.T.; Westin, S.N.; Dioun, S.; Sun, C.C.; Euscher, E.; Munsell, M.F.; Fleming, N.D.; Levenback, C.; Frumovitz, M.; Ramirez, P.T.; et al. A prospective validation study of sentinel lymph node mapping for high-risk endometrial cancer. Gynecol. Oncol. 2017, 146, 234–239. [Google Scholar] [CrossRef]
- Touhami, O.; Grégoire, J.; Renaud, M.-C.; Sebastianelli, A.; Plante, M. Performance of sentinel lymph node (SLN) mapping in high-risk endometrial cancer. Gynecol. Oncol. 2017, 147, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Papadia, A.; Gasparri, M.L.; Radan, A.P.; Stämpfli, C.A.L.; Rau, T.T.; Mueller, M.D. Retrospective validation of the laparoscopic ICG SLN mapping in patients with grade 3 endometrial cancer. J. Cancer Res. Clin. Oncol. 2018, 144, 1385–1393. [Google Scholar] [CrossRef] [PubMed]
- Rajanbabu, A.; Agarwal, R. A prospective evaluation of the sentinel node mapping algorithm in endometrial cancer and correlation of its performance against endometrial cancer risk subtypes. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018, 224, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, R.; Gorostidi, M.; Jaunarena, I.; Goiri, C.; Aguerre, J.; Lekuona, A. Sentinel Node Biopsy in Endometrial Cancer With Dual Cervical and Fundal Indocyanine Green Injection. Int. J. Gynecol. Cancer 2018, 28, 139–144. [Google Scholar] [CrossRef]
- Togami, S.; Kawamura, T.; Fukuda, M.; Yanazume, S.; Kamio, M.; Kobayashi, H. Prospective study of sentinel lymph node mapping for endometrial cancer. Int. J. Gynecol. Obstet. 2018, 143, 313–318. [Google Scholar] [CrossRef]
- Backes, F.J.; Cohen, D.; Salani, R.; Cohn, D.E.; O’Malley, D.M.; Fanning, E.; Suarez, A.A.; Fowler, J.M. Prospective clinical trial of robotic sentinel lymph node assessment with isosulfane blue (ISB) and indocyanine green (ICG) in endometrial cancer and the impact of ultrastaging (NCT01818739). Gynecol. Oncol. 2019, 153, 496–499. [Google Scholar] [CrossRef]
- Wang, T.; Hu, Y.; He, Y.; Sun, P.; Guo, Z. A retrospective validation study of sentinel lymph node mapping for high-risk endometrial cancer. Arch. Gynecol. Obstet. 2019, 299, 1429–1435. [Google Scholar] [CrossRef]
- Ye, L.; Li, S.; Lu, W.; He, Q.; Li, Y.; Li, B.; Wang, X.; Yan, Q.; Wan, X. A Prospective Study of Sentinel Lymph Node Mapping for Endometrial Cancer: Is It Effective in High-Risk Subtypes? Oncologist 2019, 24, e1381–e1387. [Google Scholar] [CrossRef]
- Bogani, G.; Papadia, A.; Buda, A.; Casarin, J.; Di Donato, V.; Gasparri, M.L.; Plotti, F.; Pinelli, C.; Paderno, M.C.; Lopez, S.; et al. Sentinel node mapping vs. sentinel node mapping plus back-up lymphadenectomy in high-risk endometrial cancer patients: Results from a multi-institutional study. Gynecol. Oncol. 2021, 161, 122–129. [Google Scholar] [CrossRef]
TCGA Subgroup | Mutated Genes | Genetic Abberation | Surrogate Marker | Prevalence | Histology | FIGO Grade | Stage | Risk Group | Recurrence Status | Prognosis |
---|---|---|---|---|---|---|---|---|---|---|
Hypermutated MSI/MSI-H/MMRd | MLH1, MSH2, MSH6, PMS2 | Microsatellite instability, somatic or germline mutations in MMR genes and epigenetic changes (i.e., MSH1 silencing) | MSH6, PMS2 IHC expression | 24.7% of G1–2 tumors | EEC | Low (G1–2) | IA | Low risk | LVSI (−) or focal | Variable |
IB | Intermediate | |||||||||
High (G3) | IA | |||||||||
IB | High-intermediate | Regardless of LVSI status | ||||||||
39.7% of G3 tumors | Regardless of the grade | I | Substanial LVSI | |||||||
II | (−) | |||||||||
High | III–IVA | High risk | No RD | |||||||
Non-EEC * | I–IVA | MI, no RD | ||||||||
Copy-number-low (CNL)/non specific molecular profile (NSMP) | TP53 wild type | Low number of mutations, microsatellite stability | Normal p53 IHC expression | 63.5% of G1–2 tumors | EEC | Low | IA | Low risk | LVSI (−) or focal | Variable |
IB | Intermediate | |||||||||
High | IA | |||||||||
28% of G3 tumors | IB | High-intermediate | Regardless of LVSI status | |||||||
Regardless of the grade | I | Substanial LVSI | ||||||||
II | (−) | |||||||||
High | III–IVA | High risk | No RD | |||||||
Non-EEC * | I–IVA | MI, no RD | ||||||||
Copy-number-high (CNH)/p53abn | TP53 | TP53 somatic mutation (91% of cases) | Aberrant p53 IHC expression or aneuploidy with simultaneous testing to exclude MSI-H or POLE | 4.7% of G1–2 tumors | Non-EEC * | N/A | IA | Intermediate | Without MI | Unfavorable |
25% of G3 EEC | EEC or non-EEC * | I–IVA | High | MI, no RD | ||||||
POLE ultramutated (POLEmut) | POLE | Somatic mutation of POLE, TP53 mutation in 35% of cases | Exonuclease domain POLE gene/molecular analysis | 6.2% of G1–2 tumors | EEC or non-EEC * | Low (G1–2) | I–II | Low | No RD | Excellent |
12.1% of G3 tumors | High (G3) |
Study | Reference Standard | Conclusion |
---|---|---|
Naoura, 2015 [95] | Systematic bilateral pelvic lymphadenectomy +/− para-aortic lymphadenectomy | High-risk EC patients had a higher false negative rate, meaning its use is still doubtful in this population. |
Baiocchi, 2016 [96] | Systematic pelvic +/- para-aortic lymphadenectomy | SLN-mapping + ultra-staging has a higher detection rate of node metastases. Para-aortic lymphadenectomy is not necessary for patients with negative SLN mapping. |
Paley, 2016 [97] | Bilateral pelvic and periaortic lymphadenectomy | SLN-ICG is feasible and has high detection rates. Low false negative rates are promising and if confirmed in larger studies, SLN mapping could alter the surgical management of patients with EC. |
Ehrisman, 2017 [98] | Complete pelvic lymphadenectomy | High-risk EC has a slightly lower detection rate when using the SLN mapping method, compared to lower risk cancers. However, using an SLN algorithm raises the Negative Predictive Value of SLN mapping alone from 92% to 100%. |
Soliman, 2017 [99] | Full pelvic and para-aortic lymphadenectomy up to the renal vessels | SLN biopsy alone accurately identified 95% of patients with positive lymph nodes. Combined with side-specific lymph node dissection SLN biopsy had a false negative rate of 4.3% and a false negative predictive value of 1.4%, thus supporting the use of SLN mapping in high-risk EC, along with a side-specific lymphadenectomy algorithm if an SLN cannot be obtained. |
Touhami, 2017 [100] | Complete pelvic lymphadenectomy ± para-aortic lymphadenectomy | SLN mapping using cervical injection in high-risk EC has high sensitivity and high negative predictive value, with only one false negative case occurring. SLN mapping, as a result, seems to be a suitable choice in this specific population. |
Papadia, 2018 [101] | Full pelvic and para- aortic lymphadenectomy up to the renal vessels | NIR-ICG SLN mapping is a safe alternative to systematic lymphadenectomy in women with poorly differentiated EC. |
Rajanbabu, 2018 [102] | Bilateral pelvic and paraaortic lymphadenectomy where SLN’s were not detected | SLN mapping surgical algorithm yielded a detection rate of 100% with no false negative cases in various EC risk-groups. |
Ruiz, 2018 [103] | Pelvic and para-aortic lymphadenectomy | SLN had detection rates of 89.19% in the pelvic area and 59.46% in the para-aortic area, with an overall detection rate was 92.79%. As a result, SLN biopsy is an efficient compromise between systematic lymphadenectomy and no dissection. |
Togami, 2018 [104] | Pelvic lymphadenectomy with or without para- aortic lymphadenectomy | SLN biopsy could help avoid, if not necessary, systematic lymphadenectomy and adverse effects, though the use of it in high-risk patients must be decided after careful thought. |
Backes, 2019 [105] | Pelvic and para-aortic lymphadenectomy at the surgeon’s discretion | SLN mapping is feasible and a safe alternative for complete lymph node dissection |
Wang, 2019 [106] | Pelvic with or without paraaortic lymphadenectomy | SLN mapping was successful in 86.7% of patients, with a false negative rate of 11.8% and a negative predictive value of 97.3%. SLN biopsy could be used to diagnose high-risk EC. |
Ye, 2019 [107] | Complete bilateral lymphadenectomy ± paraaortic lymphadenectomy to the inferior mesenteric artery | SLN-ICG has a low sensitivity and a high false negative rate in high-risk EC and therefore is unacceptable in clinical practice. |
Cusimano, 2021 [93] | Pelvic lymphadenectomy +/− para-aortic lymphadenectomy | SLN biopsy had allowable diagnostic accuracy and improved the detection of node-positive cases compared with lymphadenectomy in women with high-risk EC, thus supporting its viability as a method of surgical staging of high-risk EC. |
Bogani, 2021 [108] | SLNM plus back-up lymphadenectomy | Back-up lymphadenectomy did not improve disease-free and overall survival in high-risk EC. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalampokas, E.; Giannis, G.; Kalampokas, T.; Papathanasiou, A.-A.; Mitsopoulou, D.; Tsironi, E.; Triantafyllidou, O.; Gurumurthy, M.; Parkin, D.E.; Cairns, M.; et al. Current Approaches to the Management of Patients with Endometrial Cancer. Cancers 2022, 14, 4500. https://doi.org/10.3390/cancers14184500
Kalampokas E, Giannis G, Kalampokas T, Papathanasiou A-A, Mitsopoulou D, Tsironi E, Triantafyllidou O, Gurumurthy M, Parkin DE, Cairns M, et al. Current Approaches to the Management of Patients with Endometrial Cancer. Cancers. 2022; 14(18):4500. https://doi.org/10.3390/cancers14184500
Chicago/Turabian StyleKalampokas, Emmanouil, Georgios Giannis, Theodoros Kalampokas, Angeliki-Astero Papathanasiou, Dimitra Mitsopoulou, Evangelia Tsironi, Olga Triantafyllidou, Mahalakshmi Gurumurthy, David E. Parkin, Mary Cairns, and et al. 2022. "Current Approaches to the Management of Patients with Endometrial Cancer" Cancers 14, no. 18: 4500. https://doi.org/10.3390/cancers14184500
APA StyleKalampokas, E., Giannis, G., Kalampokas, T., Papathanasiou, A. -A., Mitsopoulou, D., Tsironi, E., Triantafyllidou, O., Gurumurthy, M., Parkin, D. E., Cairns, M., & Vlahos, N. F. (2022). Current Approaches to the Management of Patients with Endometrial Cancer. Cancers, 14(18), 4500. https://doi.org/10.3390/cancers14184500