Neoadjuvant Efficacy of Three Targeted Therapy Strategies for HER2-Positive Breast Cancer Based on the Same Chemotherapy Regimen
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Comparison of Three Targeted Therapy Strategies by Univariate Analysis
3.3. Comparison of Three Targeted Therapy Strategies by Multivariate Analysis
3.4. Subgroup Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loibl, S.; Poortmans, P.; Morrow, M.; Denkert, C.; Curigliano, G. Breast cancer. Lancet 2021, 397, 1750–1769. [Google Scholar] [CrossRef]
- Gradishar, W.J.; Anderson, B.O.; Abraham, J.; Aft, R.; Agnese, D.; Allison, K.H.; Blair, S.L.; Burstein, H.J.; Dang, C.; Elias, A.D.; et al. Breast Cancer, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2020, 18, 452–478. [Google Scholar] [CrossRef]
- Cortazar, P.; Zhang, L.; Untch, M.; Mehta, K.; Costantino, J.P.; Wolmark, N.; Bonnefoi, H.; Cameron, D.; Gianni, L.; Valagussa, P.; et al. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. Lancet 2014, 384, 164–172. [Google Scholar] [CrossRef]
- Baselga, J.; Bradbury, I.; Eidtmann, H.; Di Cosimo, S.; de Azambuja, E.; Aura, C.; Gomez, H.; Dinh, P.; Fauria, K.; Van Dooren, V.; et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): A randomised, open-label, multicentre, phase 3 trial. Lancet 2012, 379, 633–640. [Google Scholar] [CrossRef]
- Jacobs, S.A.; Robidoux, A.; Abraham, J.; Perez-Garcia, J.M.; La Verde, N.; Orcutt, J.M.; Cazzaniga, M.E.; Piette, F.; Antolin, S.; Aguirre, E.; et al. NSABP FB-7: A phase II randomized neoadjuvant trial with paclitaxel + trastuzumab and/or neratinib followed by chemotherapy and postoperative trastuzumab in HER2(+) breast cancer. Breast Cancer Res. BCR 2019, 21, 133. [Google Scholar] [CrossRef]
- Shao, Z.; Pang, D.; Yang, H.; Li, W.; Wang, S.; Cui, S.; Liao, N.; Wang, Y.; Wang, C.; Chang, Y.C.; et al. Efficacy, Safety, and Tolerability of Pertuzumab, Trastuzumab, and Docetaxel for Patients With Early or Locally Advanced ERBB2-Positive Breast Cancer in Asia: The PEONY Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, e193692. [Google Scholar] [CrossRef] [PubMed]
- Gianni, L.; Pienkowski, T.; Im, Y.H.; Roman, L.; Tseng, L.M.; Liu, M.C.; Lluch, A.; Staroslawska, E.; de la Haba-Rodriguez, J.; Im, S.A.; et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): A randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 2012, 13, 25–32. [Google Scholar] [CrossRef]
- Hurvitz, S.A.; Martin, M.; Symmans, W.F.; Jung, K.H.; Huang, C.S.; Thompson, A.M.; Harbeck, N.; Valero, V.; Stroyakovskiy, D.; Wildiers, H.; et al. Neoadjuvant trastuzumab, pertuzumab, and chemotherapy versus trastuzumab emtansine plus pertuzumab in patients with HER2-positive breast cancer (KRISTINE): A randomised, open-label, multicentre, phase 3 trial. Lancet Oncol. 2018, 19, 115–126. [Google Scholar] [CrossRef]
- Guarneri, V.; Frassoldati, A.; Bottini, A.; Cagossi, K.; Bisagni, G.; Sarti, S.; Ravaioli, A.; Cavanna, L.; Giardina, G.; Musolino, A.; et al. Preoperative chemotherapy plus trastuzumab, lapatinib, or both in human epidermal growth factor receptor 2-positive operable breast cancer: Results of the randomized phase II CHER-LOB study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2012, 30, 1989–1995. [Google Scholar] [CrossRef]
- Robidoux, A.; Tang, G.; Rastogi, P.; Geyer, C.E., Jr.; Azar, C.A.; Atkins, J.N.; Fehrenbacher, L.; Bear, H.D.; Baez-Diaz, L.; Sarwar, S.; et al. Lapatinib as a component of neoadjuvant therapy for HER2-positive operable breast cancer (NSABP protocol B-41): An open-label, randomised phase 3 trial. Lancet Oncol. 2013, 14, 1183–1192. [Google Scholar] [CrossRef]
- Wang, J.; Xu, B. Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal Transduct. Target. Ther. 2019, 4, 34. [Google Scholar] [CrossRef] [PubMed]
- Blair, H.A. Pyrotinib: First Global Approval. Drugs 2018, 78, 1751–1755. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, C.; Wan, H.; Zhang, G.; Feng, J.; Zhang, L.; Chen, X.; Zhong, D.; Lou, L.; Tao, W.; et al. Discovery and development of pyrotinib: A novel irreversible EGFR/HER2 dual tyrosine kinase inhibitor with favorable safety profiles for the treatment of breast cancer. Eur. J. Pharm. Sci. 2017, 110, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Valabrega, G.; Montemurro, F.; Aglietta, M. Trastuzumab: Mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2007, 18, 977–984. [Google Scholar] [CrossRef] [PubMed]
- Junttila, T.T.; Akita, R.W.; Parsons, K.; Fields, C.; Lewis Phillips, G.D.; Friedman, L.S.; Sampath, D.; Sliwkowski, M.X. Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell 2009, 15, 429–440. [Google Scholar] [CrossRef]
- Xu, B.; Yan, M.; Ma, F.; Hu, X.; Feng, J.; Ouyang, Q.; Tong, Z.; Li, H.; Zhang, Q.; Sun, T.; et al. Pyrotinib plus capecitabine versus lapatinib plus capecitabine for the treatment of HER2-positive metastatic breast cancer (PHOEBE): A multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 2021, 22, 351–360. [Google Scholar] [CrossRef]
- Yan, M.; Bian, L.; Hu, X.; Zhang, Q.; Ouyang, Q.; Feng, J.; Yin, Y.; Sun, T.; Tong, Z.; Wang, X.; et al. Pyrotinib plus capecitabine for human epidermal factor receptor 2-positive metastatic breast cancer after trastuzumab and taxanes (PHENIX): A randomized, double-blind, placebo-controlled phase 3 study. Transl. Breast Cancer Res. 2020, 1, 13. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, C.; Chen, X.; Zhu, J.; Sun, X.; Xia, Q.; Lu, Z.; Qiao, J.; Zhou, Y.; Wang, H.; et al. Pathological response and predictive role of tumour-infiltrating lymphocytes in HER2-positive early breast cancer treated with neoadjuvant pyrotinib plus trastuzumab and chemotherapy (Panphila): A multicentre phase 2 trial. Eur. J. Cancer 2022, 165, 157–168. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Z.; Yang, H.; Tang, J.; Wang, K.; Liu, Y.; Wang, H.; Fu, P.; Zhang, S.; Liu, Q.; et al. Abstract PD8-08: Pyrotinib in combination with trastuzumab and docetaxel as neoadjuvant treatment for HER2-positive early or locally advanced breast cancer (PHEDRA): A randomized, double-blind, multicenter, phase 3 study. Cancer Res. 2022, 82, PD8-08-PD08-08. [Google Scholar] [CrossRef]
- Dowsett, M.; Nielsen, T.O.; A’Hern, R.; Bartlett, J.; Coombes, R.C.; Cuzick, J.; Ellis, M.; Henry, N.L.; Hugh, J.C.; Lively, T.; et al. Assessment of Ki67 in breast cancer: Recommendations from the International Ki67 in Breast Cancer working group. J. Natl. Cancer Inst. 2011, 103, 1656–1664. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Jiao, D.; Yan, M.; Chen, X.; Wang, C.; Lu, Z.; Li, L.; Sun, X.; Qin, L.; Guo, X.; et al. Establishment and Verification of a Predictive Model for Node Pathological Complete Response After Neoadjuvant Chemotherapy for Initial Node Positive Early Breast Cancer. Front. Oncol. 2021, 11, 675070. [Google Scholar] [CrossRef] [PubMed]
- Gianni, L.; Eiermann, W.; Semiglazov, V.; Lluch, A.; Tjulandin, S.; Zambetti, M.; Moliterni, A.; Vazquez, F.; Byakhov, M.J.; Lichinitser, M.; et al. Neoadjuvant and adjuvant trastuzumab in patients with HER2-positive locally advanced breast cancer (NOAH): Follow-up of a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet Oncol. 2014, 15, 640–647. [Google Scholar] [CrossRef]
- Untch, M.; Rezai, M.; Loibl, S.; Fasching, P.A.; Huober, J.; Tesch, H.; Bauerfeind, I.; Hilfrich, J.; Eidtmann, H.; Gerber, B.; et al. Neoadjuvant treatment with trastuzumab in HER2-positive breast cancer: Results from the GeparQuattro study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2010, 28, 2024–2031. [Google Scholar] [CrossRef] [PubMed]
- Bria, E.; Carbognin, L.; Furlanetto, J.; Pilotto, S.; Bonomi, M.; Guarneri, V.; Vicentini, C.; Brunelli, M.; Nortilli, R.; Pellini, F.; et al. Impact of neoadjuvant single or dual HER2 inhibition and chemotherapy backbone upon pathological complete response in operable and locally advanced breast cancer: Sensitivity analysis of randomized trials. Cancer Treat. Rev. 2014, 40, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, J.; Xu, X.; Hu, X.; Kong, D.; Liang, G.; Wang, X. Dual HER2 Blockade in Neoadjuvant Treatment of HER2+ Breast Cancer: A Meta-Analysis and Review. Technol. Cancer Res. Treat. 2020, 19, 1533033820960721. [Google Scholar] [CrossRef]
- Schneeweiss, A.; Chia, S.; Hickish, T.; Harvey, V.; Eniu, A.; Hegg, R.; Tausch, C.; Seo, J.H.; Tsai, Y.F.; Ratnayake, J.; et al. Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: A randomized phase II cardiac safety study (TRYPHAENA). Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2013, 24, 2278–2284. [Google Scholar] [CrossRef]
- Harbeck, N.; Gluz, O.; Christgen, M.; Kates, R.E.; Braun, M.; Kuemmel, S.; Schumacher, C.; Potenberg, J.; Kraemer, S.; Kleine-Tebbe, A.; et al. De-Escalation Strategies in Human Epidermal Growth Factor Receptor 2 (HER2)-Positive Early Breast Cancer (BC): Final Analysis of the West German Study Group Adjuvant Dynamic Marker-Adjusted Personalized Therapy Trial Optimizing Risk Assessment and Therapy Response Prediction in Early BC HER2- and Hormone Receptor-Positive Phase II Randomized Trial-Efficacy, Safety, and Predictive Markers for 12 Weeks of Neoadjuvant Trastuzumab Emtansine with or without Endocrine Therapy (ET) Versus Trastuzumab Plus ET. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2017, 35, 3046–3054. [Google Scholar] [CrossRef]
- Nitz, U.A.; Gluz, O.; Christgen, M.; Grischke, E.M.; Augustin, D.; Kuemmel, S.; Braun, M.; Potenberg, J.; Kohls, A.; Krauss, K.; et al. De-escalation strategies in HER2-positive early breast cancer (EBC): Final analysis of the WSG-ADAPT HER2+/HR- phase II trial: Efficacy, safety, and predictive markers for 12 weeks of neoadjuvant dual blockade with trastuzumab and pertuzumab +/- weekly paclitaxel. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2017, 28, 2768–2772. [Google Scholar] [CrossRef]
- Nagayama, A.; Hayashida, T.; Jinno, H.; Takahashi, M.; Seki, T.; Matsumoto, A.; Murata, T.; Ashrafian, H.; Athanasiou, T.; Okabayashi, K.; et al. Comparative effectiveness of neoadjuvant therapy for HER2-positive breast cancer: A network meta-analysis. J. Natl. Cancer Inst. 2014, 106, dju203. [Google Scholar] [CrossRef]
- Gogia, A.; Arora, S.; Deo, S.; Mathur, S.; Sharma, D. Efficacy and safety of neoadjuvant docetaxel, carboplatin, trastuzumab, and pertuzumab (TCH-P) in HER2-positive breast cancer: An Indian experience. J. Clin. Oncol. 2021, 39, e12619. [Google Scholar] [CrossRef]
- van Ramshorst, M.S.; van der Voort, A.; van Werkhoven, E.D.; Mandjes, I.A.; Kemper, I.; Dezentje, V.O.; Oving, I.M.; Honkoop, A.H.; Tick, L.W.; van de Wouw, A.J.; et al. Neoadjuvant chemotherapy with or without anthracyclines in the presence of dual HER2 blockade for HER2-positive breast cancer (TRAIN-2): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2018, 19, 1630–1640. [Google Scholar] [CrossRef]
- Lv, M.; Guo, H.; Wang, C.; Tian, P.; Ma, Y.; Chen, X.; Luo, S. Neoadjuvant docetaxel with or without carboplatin plus dual HER2 blockade for HER2-positive breast cancer: A retrospective multi-center Chinese study. Gland. Surg. 2020, 9, 2079–2090. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.F.; Beca, J.M.; Nagamuthu, C.; Liu, N.; de Oliveira, C.; Earle, C.C.; Trudeau, M.; Chan, K.K.W. Cost-effectiveness Analysis of Pertuzumab with Trastuzumab in Patients With Metastatic Breast Cancer. JAMA Oncol. 2022, 8, 597–606. [Google Scholar] [CrossRef]
- Patel, T.A.; Ensor, J.E.; Creamer, S.L.; Boone, T.; Rodriguez, A.A.; Niravath, P.A.; Darcourt, J.G.; Meisel, J.L.; Li, X.; Zhao, J.; et al. A randomized, controlled phase II trial of neoadjuvant ado-trastuzumab emtansine, lapatinib, and nab-paclitaxel versus trastuzumab, pertuzumab, and paclitaxel in HER2-positive breast cancer (TEAL study). Breast Cancer Res. BCR 2019, 21, 100. [Google Scholar] [CrossRef]
- Veeraraghavan, J.; Gutierrez, C.; Sethunath, V.; Mehravaran, S.; Giuliano, M.; Shea, M.J.; Mitchell, T.; Wang, T.; Nanda, S.; Pereira, R.; et al. Neratinib plus trastuzumab is superior to pertuzumab plus trastuzumab in HER2-positive breast cancer xenograft models. NPJ Breast Cancer 2021, 7, 63. [Google Scholar] [CrossRef] [PubMed]
- Saura, C.; Oliveira, M.; Feng, Y.H.; Dai, M.S.; Chen, S.W.; Hurvitz, S.A.; Kim, S.B.; Moy, B.; Delaloge, S.; Gradishar, W.; et al. Neratinib Plus Capecitabine Versus Lapatinib Plus Capecitabine in HER2-Positive Metastatic Breast Cancer Previously Treated with >/= 2 HER2-Directed Regimens: Phase III NALA Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 3138–3149. [Google Scholar] [CrossRef] [PubMed]
- Pizzamiglio, S.; Ciniselli, C.M.; Triulzi, T.; Gargiuli, C.; De Cecco, L.; de Azambuja, E.; Fumagalli, D.; Sotiriou, C.; Harbeck, N.; Izquierdo, M.; et al. Integrated Molecular and Immune Phenotype of HER2-Positive Breast Cancer and Response to Neoadjuvant Therapy: A NeoALTTO Exploratory Analysis. Clin. Cancer Res. 2021, 27, 6307–6313. [Google Scholar] [CrossRef]
- Madani Tonekaboni, S.A.; Beri, G.; Haibe-Kains, B. Pathway-Based Drug Response Prediction Using Similarity Identification in Gene Expression. Front. Genet. 2020, 11, 1016. [Google Scholar] [CrossRef]
- Bianchini, G.; Pusztai, L.; Pienkowski, T.; Im, Y.H.; Bianchi, G.V.; Tseng, L.M.; Liu, M.C.; Lluch, A.; Galeota, E.; Magazzu, D.; et al. Immune modulation of pathologic complete response after neoadjuvant HER2-directed therapies in the NeoSphere trial. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2015, 26, 2429–2436. [Google Scholar] [CrossRef]
Characteristics | Total (N = 545) | TCH + Py (N = 63) | TCH (N = 284) | TCHP (N = 198) | p | |
---|---|---|---|---|---|---|
Age (years) | <50 | 302 (55.4) | 35 (55.6) | 161 (56.7) | 106 (53.5) | 0.790 |
≥50 | 243 (44.6) | 28 (44.4) | 123 (43.3) | 92 (46.5) | ||
Menopausal status | Premenopausal | 315 (57.8) | 36 (57.1) | 167 (58.8) | 112 (56.6) | 0.882 |
Postmenopausal | 230 (42.2) | 27 (42.9) | 117 (41.2) | 86 (43.4) | ||
T | T1 | 38 (7.0) | 0 | 26 (9.2) | 12 (6.1) | 0.001 |
T2 | 415 (76.1) | 58 (92.1) | 204 (71.8) | 153 (77.3) | ||
T3 | 64 (11.7) | 5 (7.9) | 37 (13.0) | 22 (11.1) | ||
T4 | 28 (5.1) | 0 | 17 (6.0) | 11 (5.6) | ||
N | N0 | 115 (21.1) | 18 (28.6) | 54 (19.0) | 43 (21.7) | 0.003 |
N1 | 248 (45.5) | 34 (54) | 135 (47.5) | 79 (39.9) | ||
N2 | 77 (14.1) | 9 (14.3) | 44 (15.5) | 24 (12.1) | ||
N3 | 105 (19.3) | 2 (3.2) | 51 (18.0) | 52 (26.3) | ||
HR status | Negative | 211 (38.7) | 20 (31.7) | 111 (39.1) | 80 (40.4) | 0.462 |
Positive | 334 (61.3) | 43 (68.3) | 173 (60.9) | 118 (59.6) | ||
HER2 status | IHC 2+ | 108 (19.8) | 12 (19.0) | 53 (18.7) | 43 (21.7) | 0.701 |
IHC 3+ | 437 (80.2) | 51 (81.0) | 231 (81.3) | 155 (78.3) | ||
Ki-67 | Low expression | 117 (21.5) | 13 (20.6) | 63 (22.2) | 41 (20.7) | 0.914 |
High expression | 428 (78.5) | 50 (79.4) | 221 (77.8) | 157 (79.3) |
Characteristics | N | Non-pCR | pCR | p | |
---|---|---|---|---|---|
Age (years) | <50 | 302 | 179 (59.3) | 123 (40.7) | 0.083 |
≥50 | 243 | 126 (51.9) | 117 (48.1) | ||
Menopausal status | Premenopausal | 315 | 185 (58.7) | 130 (41.3) | 0.128 |
Postmenopausal | 230 | 120 (52.2) | 110 (47.8) | ||
T | T1 | 38 | 17 (44.7) | 21 (55.3) | 0.023 |
T2 | 415 | 224 (54.0) | 191 (46.0) | ||
T3 | 64 | 45 (70.3) | 19 (29.7) | ||
T4 | 28 | 19 (67.9) | 9 (32.1) | ||
N | N0 | 115 | 52 (45.2) | 63 (54.8) | 0.036 |
N1 | 248 | 145 (58.5) | 103 (41.5) | ||
N2 | 77 | 50 (64.9) | 27 (35.1) | ||
N3 | 105 | 58 (55.2) | 47 (44.8) | ||
HR status | Negative | 211 | 94 (44.5) | 117 (55.5) | <0.001 |
Positive | 334 | 211 (63.2) | 123 (36.8) | ||
HER2 status | IHC 2+ | 108 | 88 (81.5) | 20 (18.5) | <0.001 |
IHC 3+ | 437 | 217 (49.7) | 220 (50.3) | ||
Ki-67 | Low expression | 117 | 77 (65.8) | 40 (34.2) | 0.015 |
High expression | 428 | 228 (53.3) | 200 (46.7) | ||
Regimen | TCH + Py | 63 | 28 (44.4) | 35 (55.6) | <0.001 |
TCH | 284 | 191 (67.3) | 93 (32.7) | ||
TCHP | 198 | 86 (43.4) | 112 (56.6) | ||
Total | 545 | 305 (56.0) | 240 (44.0) |
Variables | OR | 95%CI | p | |
---|---|---|---|---|
T | T1 | 1 | 0.018 | |
T2 | 0.537 | 0.252–1.144 | 0.107 | |
T3 | 0.252 | 0.100–0.631 | 0.003 | |
T4 | 0.365 | 0.120–1.116 | 0.077 | |
N | N0 | 1 | 0.055 | |
N1 | 0.557 | 0.340–0.913 | 0.020 | |
N2 | 0.442 | 0.231–0.847 | 0.014 | |
N3 | 0.639 | 0.351–1.162 | 0.142 | |
HR status | Positive | 1 | 1.377–2.994 | |
Negative | 2.033 | 1.377–2.994 | <0.001 | |
HER2 status | IHC 2+ | 1 | ||
IHC 3+ | 4.726 | 2.706–8.253 | <0.001 | |
Ki-67 | Low expression | 1 | ||
High expression | 1.670 | 1.043–2.673 | 0.033 | |
Regimen | TCH + Py | 1 | <0.001 | |
TCH | 0.334 | 0.181–0.619 | <0.001 | |
TCHP | 1.043 | 0.554–1.964 | 0.896 |
Variables | HR Negative | HR Positive | |||||
---|---|---|---|---|---|---|---|
OR | 95%CI | p | OR | 95%CI | p | ||
T | T1 | 1 | 0.297 | 1 | 0.066 | ||
T2 | 0.860 | 0.286–2.588 | 0.788 | 0.372 | 0.132–1.049 | 0.061 | |
T3 | 0.385 | 0.101–1.467 | 0.162 | 0.175 | 0.048–0.638 | 0.008 | |
T4 | 0.442 | 0.069–2.838 | 0.389 | 0.297 | 0.071–1.246 | 0.097 | |
N | N0 | 1 | 0.706 | 1 | 0.098 | ||
N1 | 0.653 | 0.275–1.550 | 0.334 | 0.515 | 0.278–0.955 | 0.035 | |
N2 | 0.571 | 0.184–1.774 | 0.333 | 0.413 | 0.184–0.927 | 0.032 | |
N3 | 0.592 | 0.217–1.62 | 0.307 | 0.695 | 0.326–1.481 | 0.345 | |
HER2 status | IHC 2+ | 1 | 1 | ||||
IHC 3+ | 3.577 | 1.296–9.872 | 0.014 | 5.689 | 2.811–11.512 | <0.001 | |
Ki-67 | Low expression | 1 | 1 | ||||
High expression | 2.722 | 1.204–6.152 | 0.016 | 1.240 | 0.692–2.223 | 0.470 | |
Regimen | TCH + Py | 1 | <0.001 | 1 | 0.003 | ||
TCH | 0.108 | 0.027–0.424 | 0.001 | 0.527 | 0.247–1.124 | 0.097 | |
TCHP | 0.469 | 0.115–1.908 | 0.290 | 1.337 | 0.616–2.900 | 0.462 |
Variables | HER2 IHC 2+ | HER2 IHC 3+ | |||||
---|---|---|---|---|---|---|---|
OR | 95%CI | p | OR | 95%CI | p | ||
T | T1 | 1 | 0.606 | 1 | 0.042 | ||
T2 | 0.311 | 0.035–2.750 | 0.293 | 0.592 | 0.266–1.320 | 0.200 | |
T3 | 0.151 | 0.010–2.329 | 0.176 | 0.273 | 0.103–0.723 | 0.009 | |
T4 | 0.000 | 0.999 | 0.429 | 0.134–1.379 | 0.155 | ||
N | N0 | 1 | 0.130 | 1 | 0.200 | ||
N1 | 0.283 | 0.070–1.148 | 0.077 | 0.638 | 0.377–1.081 | 0.095 | |
N2 | 0.212 | 0.028–1.603 | 0.133 | 0.509 | 0.256–1.013 | 0.054 | |
N3 | 0.178 | 0.034–0.919 | 0.039 | 0.797 | 0.416–1.527 | 0.494 | |
HR status | Negative | 1 | 1 | ||||
Positive | 0.273 | 0.081–0.918 | 0.036 | 0.539 | 0.357–0.815 | 0.003 | |
Ki-67 | Low expression | 1 | 1 | ||||
High expression | 1.687 | 0.414–6.873 | 0.465 | 1.691 | 1.023–2.797 | 0.041 | |
Regimen | TCH + Py | 1 | 0.077 | 1 | <0.001 | ||
TCH | 0.188 | 0.031–1.137 | 0.069 | 0.371 | 0.192–0.716 | 0.003 | |
TCHP | 0.764 | 0.144–4.061 | 0.752 | 1.096 | 0.552–2.173 | 0.794 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Jiao, D.; Wang, C.; Lu, Z.; Chen, X.; Li, L.; Sun, X.; Qin, L.; Guo, X.; Zhang, C.; et al. Neoadjuvant Efficacy of Three Targeted Therapy Strategies for HER2-Positive Breast Cancer Based on the Same Chemotherapy Regimen. Cancers 2022, 14, 4508. https://doi.org/10.3390/cancers14184508
Zhu J, Jiao D, Wang C, Lu Z, Chen X, Li L, Sun X, Qin L, Guo X, Zhang C, et al. Neoadjuvant Efficacy of Three Targeted Therapy Strategies for HER2-Positive Breast Cancer Based on the Same Chemotherapy Regimen. Cancers. 2022; 14(18):4508. https://doi.org/10.3390/cancers14184508
Chicago/Turabian StyleZhu, Jiujun, Dechuang Jiao, Chengzheng Wang, Zhenduo Lu, Xiuchun Chen, Lianfang Li, Xianfu Sun, Li Qin, Xuhui Guo, Chongjian Zhang, and et al. 2022. "Neoadjuvant Efficacy of Three Targeted Therapy Strategies for HER2-Positive Breast Cancer Based on the Same Chemotherapy Regimen" Cancers 14, no. 18: 4508. https://doi.org/10.3390/cancers14184508
APA StyleZhu, J., Jiao, D., Wang, C., Lu, Z., Chen, X., Li, L., Sun, X., Qin, L., Guo, X., Zhang, C., Qiao, J., Yan, M., Cui, S., & Liu, Z. (2022). Neoadjuvant Efficacy of Three Targeted Therapy Strategies for HER2-Positive Breast Cancer Based on the Same Chemotherapy Regimen. Cancers, 14(18), 4508. https://doi.org/10.3390/cancers14184508