Surgical Site Infection after Bone Tumor Surgery: Risk Factors and New Preventive Techniques
Abstract
:Simple Summary
Abstract
1. Introduction
2. Diagnosis of SSI
3. Risk Factors for SSI
3.1. Age and Gender
3.2. Diabetes and Nutritional Condition
3.3. Tumor Location
3.4. Biomaterial
3.5. Intraoperative Blood Loss
3.6. Operative Time
3.7. Radiation Therapy
3.8. Chemotherapy
3.9. Other Factors
4. Current Practices in the Prophylaxis of SSI and Emerging Techniques
Study | N | Groups | Clinical Outcomes | Ref. |
---|---|---|---|---|
Silver-coated endoprosthesis | 170 | Silver: 85 Uncoated: 85 | Infection rate: 11.8% in the silver-coated group and 22.4% in the control group (p = 0.033) Success rate of DAIR: 70% in the silver-coated group and 31.6% in the control group (p = 0.048) | [67] |
Silver-coated endoprosthesis in patients with sarcoma | 125 | Silver: 51 Uncoated: 74 | Infection rate: 5.9% in the silver-coated group and 17.6% in the titanium group (p = 0.062) | [70] |
Silver-coated endoprosthesis in patients with sarcoma or GCTB | 394 | Silver: 89 Uncoated: 305 | Infection rates: 12.4% in the silver-coated group and 7.5% in the non-silver group (p = 0.154) | [75] |
Silver-coated endoprosthesis in two-stage revision for PJI | 68 | Silver: 29Uncoated: 39 | Reinfection rate: 10.3% in the silver-coated group and 17.5% in the uncoated group (p = 0.104) | [83] |
Silver-coated endoprosthesis in patients with proximal femur sarcoma | 99 | Silver: 64 patients Uncoated: 35 | Infection rates: 9.4% in the silver-coated group and 14.3% in the uncoated group | [84] |
Silver-coated endoprosthesis in patients with sarcoma or giant-cell tumor in the proximal tibia | 98 | Silver: 56 Uncoated: 42 | Infection rates: 8.9% in the silver-coated group and 16.7% in the uncoated group (p = 0.247) | [85] |
Silver-coated megaprosthesis in the proximal femur | 68 | Silver: 38 Uncoated: 30 | Infection rates: 7.9% in the silver-coated group and 16.7% in the uncoated group | [86] |
Iodine-coated implant in patients with malignant bone tumor | 100 | Iodine: 38 Uncoated: 62 | Deep infection rates: 3% in iodine-coated implants and 16% in non-coated implants (p = 0.032) | [79] |
Iodine-coated implant in patients with malignant bone tumor | 302 | Iodine: 66 Uncoated: 236 | Iodine-coated implants reduced the risk of SSI (OR = 0.3, p = 0.039) | [26] |
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jeys, L.; Grimer, R. The long-term risks of infection and amputation with limb salvage surgery using endoprostheses. Recent Results Cancer Res. 2009, 179, 75–84. [Google Scholar]
- Tsuchiya, H.; Tomita, K.; Minematsu, K.; Mori, Y.; Asada, N.; Kitano, S. Limb salvage using distraction osteogenesis. A classification of the technique. J. Bone Jt. Surg. Br. 1997, 79, 403–411. [Google Scholar] [CrossRef]
- Tsuchiya, H.; Wan, S.L.; Sakayama, K.; Yamamoto, N.; Nishida, H.; Tomita, K. Reconstruction using an autograft containing tumour treated by liquid nitrogen. J. Bone Jt. Surg. Br. 2005, 87, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Grimer, R.J. Surgical options for children with osteosarcoma. Lancet Oncol. 2005, 6, 85–92. [Google Scholar] [CrossRef]
- Miwa, S.; Takeuchi, A.; Shirai, T.; Yamamoto, N.; Hayashi, K.; Nishida, H.; Kimura, H.; Igarashi, K.; Tsuchiya, H. Outcomes and complications of reconstruction using tumor-bearing frozen autografts in patients with metastatic bone tumors. Anticancer Res. 2014, 34, 5569–5577. [Google Scholar] [PubMed]
- Strony, J.; Brown, S.; Choong, P.; Ghert, M.; Jeys, L.; O’Donnell, R.J. Musculoskeletal Infection in Orthopaedic Oncology: Assessment of the 2018 International Consensus Meeting on Musculoskeletal Infection. J. Bone Jt. Surg. Am. 2019, 101, e107. [Google Scholar] [CrossRef] [PubMed]
- Morii, T.; Morioka, H.; Ueda, T.; Araki, N.; Hashimoto, N.; Kawai, A.; Mochizuki, K.; Ichimura, S. Deep infection in tumor endoprosthesis around the knee: A multi-institutional study by the Japanese musculoskeletal oncology group. BMC Musculoskelet. Disord. 2013, 14, 51. [Google Scholar] [CrossRef]
- Zhang, K.; Tian, Y.; Zhao, Y.; Tian, M.; Li, X.; Zhu, Y. Incidence and Risk Factors for Surgical Site Infection after Femoral Neck Fracture Surgery: An Observational Cohort Study of 2218 Patients. Biomed. Res. Int. 2022, 2022, 5456616. [Google Scholar] [CrossRef]
- Meng, J.; Zhu, Y.; Li, Y.; Sun, T.; Zhang, F.; Qin, S.; Zhao, H. Incidence and risk factors for surgical site infection following elective foot and ankle surgery: A retrospective study. J. Orthop. Surg. Res. 2020, 15, 449. [Google Scholar] [CrossRef]
- Pei, H.; Wang, H.; Chen, M.; Ma, L.; Liu, G.; Ding, W. Surgical site infection after posterior lumbar interbody fusion and instrumentation in patients with lumbar degenerative disease. Int. Wound J. 2021, 18, 608–615. [Google Scholar] [CrossRef]
- Shapiro, L.M.; Graham, L.A.; Hawn, M.T.; Kamal, R.N. Quality Reporting Windows May Not Capture the Effects of Surgical Site Infections After Orthopaedic Surgery. J. Bone Jt. Surg. Am. 2022, 104, 1281–1291. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, H.; Larson, E.L.; Warren, S.I.; Hammoor, B.T.; Bonsignore-Opp, L.; Troy, M.J.; Barrett, K.K.; Striano, B.M.; Li, G.; Terry, M.B.; et al. A Clinical Risk Model for Surgical Site Infection Following Pediatric Spine Deformity Surgery. J. Bone Jt. Surg. Am. 2022, 104, 364–375. [Google Scholar] [CrossRef] [PubMed]
- Bourget-Murray, J.; Bansal, R.; Soroceanu, A.; Piroozfar, S.; Railton, P.; Johnston, K.; Johnson, A.; Powell, J. Assessment of risk factors for early-onset deep surgical site infection following primary total hip arthroplasty for osteoarthritis. J. Bone Jt. Infect. 2021, 6, 443–450. [Google Scholar] [CrossRef]
- Staals, E.L.; Sambri, A.; Campanacci, D.A.; Muratori, F.; Leithner, A.; Gilg, M.M.; Gortzak, Y.; Van De Sande, M.; Dierselhuis, E.; Mascard, E.; et al. Expandable distal femur megaprosthesis: A European Musculoskeletal Oncology Society study on 299 cases. J. Surg. Oncol. 2020, 122, 760–765. [Google Scholar] [CrossRef] [PubMed]
- Pala, E.; Trovarelli, G.; Calabro, T.; Angelini, A.; Abati, C.N.; Ruggieri, P. Survival of modern knee tumor megaprostheses: Failures, functional results, and a comparative statistical analysis. Clin. Orthop. Relat. Res. 2015, 473, 891–899. [Google Scholar] [CrossRef]
- Lee, S.Y.; Jeon, D.G.; Cho, W.H.; Song, W.S.; Kim, B.S. Are Pasteurized Autografts Durable for Reconstructions After Bone Tumor Resections? Clin. Orthop. Relat. Res. 2018, 476, 1728–1737. [Google Scholar] [CrossRef]
- Araki, Y.; Yamamoto, N.; Hayashi, K.; Takeuchi, A.; Miwa, S.; Igarashi, K.; Higuchi, T.; Abe, K.; Taniguchi, Y.; Yonezawa, H.; et al. Clinical outcomes of frozen autograft reconstruction for the treatment of primary bone sarcoma in adolescents and young adults. Sci. Rep. 2021, 11, 17291. [Google Scholar] [CrossRef]
- Severyns, M.; Briand, S.; Waast, D.; Touchais, S.; Hamel, A.; Gouin, F. Postoperative infections after limb-sparing surgery for primary bone tumors of the pelvis: Incidence, characterization and functional impact. Surg. Oncol. 2017, 26, 171–177. [Google Scholar] [CrossRef]
- Abudu, A.; Grimer, R.J.; Cannon, S.R.; Carter, S.R.; Sneath, R.S. Reconstruction of the hemipelvis after the excision of malignant tumours. Complications and functional outcome of prostheses. J. Bone Jt. Surg. Br. 1997, 79, 773–779. [Google Scholar] [CrossRef]
- Jaiswal, P.K.; Aston, W.J.; Grimer, R.J.; Abudu, A.; Carter, S.; Blunn, G.; Briggs, T.W.; Cannon, S. Peri-acetabular resection and endoprosthetic reconstruction for tumours of the acetabulum. J. Bone Jt. Surg. Br. 2008, 90, 1222–1227. [Google Scholar] [CrossRef]
- Aljassir, F.; Beadel, G.P.; Turcotte, R.E.; Griffin, A.M.; Bell, R.S.; Wunder, J.S.; Isler, M.H. Outcome after pelvic sarcoma resection reconstructed with saddle prosthesis. Clin. Orthop. Relat. Res. 2005, 438, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Cottias, P.; Jeanrot, C.; Vinh, T.S.; Tomeno, B.; Anract, P. Complications and functional evaluation of 17 saddle prostheses for resection of periacetabular tumors. J. Surg. Oncol. 2001, 78, 90–100. [Google Scholar] [CrossRef]
- Ozaki, T.; Hillmann, A.; Bettin, D.; Wuisman, P.; Winkelmann, W. High complication rates with pelvic allografts. Experience of 22 sarcoma resections. Acta Orthop. Scand. 1996, 67, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Li, D.; Tang, X.; Ji, T. Surgical treatment of pelvic chondrosarcoma involving periacetabulum. J. Surg. Oncol. 2010, 101, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Ham, S.J.; Schraffordt Koops, H.; Veth, R.P.H.; van Horn, J.R.; Eisma, W.H.; Hoekstra, H.J. External and internal hemipelvectomy for sarcomas of the pelvic girdle: Consequences of limb-salvage treatment. Eur. J. Surg. Oncol. (EJSO) 1997, 23, 540–546. [Google Scholar] [CrossRef]
- Miwa, S.; Shirai, T.; Yamamoto, N.; Hayashi, K.; Takeuchi, A.; Tada, K.; Kajino, Y.; Higuchi, T.; Abe, K.; Aiba, H.; et al. Risk factors for surgical site infection after malignant bone tumor resection and reconstruction. BMC Cancer 2019, 19, 33. [Google Scholar] [CrossRef]
- Angelini, A.; Drago, G.; Trovarelli, G.; Calabro, T.; Ruggieri, P. Infection after surgical resection for pelvic bone tumors: An analysis of 270 patients from one institution. Clin. Orthop. Relat. Res. 2014, 472, 349–359. [Google Scholar] [CrossRef]
- Fujiwara, T.; Ogura, K.; Christ, A.; Bartelstein, M.; Kenan, S.; Fabbri, N.; Healey, J. Periacetabular reconstruction following limb-salvage surgery for pelvic sarcomas. J. Bone Oncol. 2021, 31, 100396. [Google Scholar] [CrossRef]
- Wu, J.; Xie, K.; Luo, D.; Wang, L.; Wu, W.; Yan, M.; Ai, S.; Dai, K.; Hao, Y. Three-dimensional printing-based personalized limb salvage and reconstruction treatment of pelvic tumors. J. Surg. Oncol. 2021, 124, 420–430. [Google Scholar] [CrossRef]
- Morii, T.; Morioka, H.; Ueda, T.; Araki, N.; Hashimoto, N.; Kawai, A.; Takeuchi, K.; Anazawa, U.; Mochizuki, K.; Ichimura, S. Functional analysis of cases of tumor endoprostheses with deep infection around the knee: A multi institutional study by the Japanese Musculoskeletal Oncology Group (JMOG). J. Orthop. Sci. 2013, 18, 605–612. [Google Scholar] [CrossRef]
- Gaur, A.H.; Liu, T.; Knapp, K.M.; Daw, N.C.; Rao, B.N.; Neel, M.D.; Rodriguez-Galindo, C.; Brand, D.; Adderson, E.E. Infections in children and young adults with bone malignancies undergoing limb-sparing surgery. Cancer 2005, 104, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Busscher, H.J.; van der Mei, H.C.; Subbiahdoss, G.; Jutte, P.C.; van den Dungen, J.J.; Zaat, S.A.; Schultz, M.J.; Grainger, D.W. Biomaterial-associated infection: Locating the finish line in the race for the surface. Sci. Transl. Med. 2012, 4, 153rv10. [Google Scholar] [CrossRef] [PubMed]
- Garner, J.S.; Jarvis, W.R.; Emori, T.G.; Horan, T.C.; Hughes, J.M. CDC definitions for nosocomial infections, 1988. Am. J. Infect. Control. 1988, 16, 128–140. [Google Scholar] [CrossRef]
- Ayliffe, G.A.; Casewell, M.W.; Cookson, B.D.; Emmerson, A.M.; Falkiner, F.R.; French, G.L.; Gray, J.; Howard, A.J.; Kelsey, M.C.; Mehtar, S.; et al. National prevalence survey of hospital acquired infections: Definitions. J. Hosp. Infect. 1993, 24, 69–76. [Google Scholar]
- Peel, A.L.; Taylor, E.W. Proposed definitions for the audit of postoperative infection: A discussion paper. Surgical Infection Study Group. Ann. R. Coll. Surg. Engl. 1991, 73, 385–388. [Google Scholar]
- Bruce, J.; Russell, E.M.; Mollison, J.; Krukowski, Z.H. The quality of measurement of surgical wound infection as the basis for monitoring: A systematic review. J. Hosp. Infect. 2001, 49, 99–108. [Google Scholar] [CrossRef]
- Horan, T.C.; Gaynes, R.P.; Martone, W.J.; Jarvis, W.R.; Emori, T.G. CDC definitions of nosocomial surgical site infections, 1992: A modification of CDC definitions of surgical wound infections. Infect. Control Hosp. Epidemiol. 1992, 13, 606–608. [Google Scholar] [CrossRef]
- Mangram, A.J.; Horan, T.C.; Pearson, M.L.; Silver, L.C.; Jarvis, W.R. Guideline for Prevention of Surgical Site Infection, 1999. Am. J. Infect. Control 1999, 27, 97–134. [Google Scholar] [CrossRef]
- Copanitsanou, P. Recognising and preventing surgical site infection after orthopaedic surgery. Int. J. Orthop. Trauma Nurs. 2020, 37, 100751. [Google Scholar] [CrossRef]
- Glenister, H.M.; Taylor, L.J.; Cooke, E.M.; Bartlett, C.L.R. A study of surveillance methods for detecting hospital infection. Public Health Lab. Serv. 1992, 1–98. [Google Scholar]
- Gradl, G.; de Witte, P.B.; Evans, B.T.; Hornicek, F.; Raskin, K.; Ring, D. Surgical site infection in orthopaedic oncology. J. Bone Jt. Surg. Am. 2014, 96, 223–230. [Google Scholar] [CrossRef]
- Anatone, A.J.; Danford, N.C.; Jang, E.S.; Smartt, A.; Konigsberg, M.; Tyler, W.K. Risk Factors for Surgical Site Infection in Orthopaedic Oncology. J. Am. Acad. Orthop. Surg. 2020, 28, e923–e928. [Google Scholar] [CrossRef] [PubMed]
- Miwa, S.; Shirai, T.; Yamamoto, N.; Hayashi, K.; Takeuchi, A.; Tada, K.; Kajino, Y.; Inatani, H.; Higuchi, T.; Abe, K.; et al. Risk factors for postoperative deep infection in bone tumors. PLoS ONE 2017, 12, e0187438. [Google Scholar] [CrossRef] [PubMed]
- Langit, M.B.; Miwa, S.; Yamamoto, N.; Hayashi, K.; Takeuchi, A.; Igarashi, K.; Tada, K.; Higuchi, T.; Yonezawa, H.; Morinaga, S.; et al. Risk Factors for Postoperative Deep Infection After Malignant Bone Tumor Surgery of the Extremities. Anticancer Res. 2020, 40, 3551–3557. [Google Scholar] [CrossRef]
- Fujiwara, T.; Ebihara, T.; Kitade, K.; Setsu, N.; Endo, M.; Iida, K.; Matsumoto, Y.; Matsunobu, T.; Oda, Y.; Iwamoto, Y.; et al. Risk Factors of Periprosthetic Infection in Patients with Tumor Prostheses Following Resection for Musculoskeletal Tumor of the Lower Limb. J. Clin. Med. 2020, 9, 3133. [Google Scholar] [CrossRef]
- Morii, T.; Yabe, H.; Morioka, H.; Beppu, Y.; Chuman, H.; Kawai, A.; Takeda, K.; Kikuta, K.; Hosaka, S.; Yazawa, Y.; et al. Postoperative deep infection in tumor endoprosthesis reconstruction around the knee. J. Orthop. Sci. 2010, 15, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Aponte-Tinao, L.A.; Ayerza, M.A.; Muscolo, D.L.; Farfalli, G.L. What Are the Risk Factors and Management Options for Infection After Reconstruction With Massive Bone Allografts? Clin. Orthop. Relat. Res. 2016, 474, 669–673. [Google Scholar] [CrossRef] [PubMed]
- Richards, J.E.; Kauffmann, R.M.; Zuckerman, S.L.; Obremskey, W.T.; May, A.K. Relationship of hyperglycemia and surgical-site infection in orthopaedic surgery. J. Bone Jt. Surg. Am. 2012, 94, 1181–1186. [Google Scholar] [CrossRef]
- Fei, Q.; Li, J.; Lin, J.; Li, D.; Wang, B.; Meng, H.; Wang, Q.; Su, N.; Yang, Y. Risk Factors for Surgical Site Infection After Spinal Surgery: A Meta-Analysis. World Neurosurg. 2016, 95, 507–515. [Google Scholar] [CrossRef]
- Morris, C.D.; Sepkowitz, K.; Fonshell, C.; Margetson, N.; Eagan, J.; Miransky, J.; Boland, P.J.; Healey, J. Prospective identification of risk factors for wound infection after lower extremity oncologic surgery. Ann. Surg. Oncol. 2003, 10, 778–782. [Google Scholar] [CrossRef]
- Lozano-Calderon, S.A.; Swaim, S.O.; Federico, A.; Anderson, M.E.; Gebhardt, M.C. Predictors of soft-tissue complications and deep infection in allograft reconstruction of the proximal tibia. J. Surg. Oncol. 2016, 113, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Anaya, D.A.; Cormier, J.N.; Xing, Y.; Koller, P.; Gaido, L.; Hadfield, D.; Chemaly, R.F.; Feig, B.W. Development and validation of a novel stratification tool for identifying cancer patients at increased risk of surgical site infection. Ann. Surg. 2012, 255, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Karaca, M.O.; Ozbek, E.A.; Ozyildiran, M.; Merter, A.; Basarir, K.; Yildiz, H.Y.; Saglik, Y. External and internal hemipelvectomy: A retrospective analysis of 68 cases. Jt. Dis. Relat. Surg. 2022, 33, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Khal, A.A.; Zucchini, R.; Giannini, C.; Sambri, A.; Donati, D.M.; De Paolis, M. Distal Fibula Reconstruction in Primary Malignant Tumours. Curr. Oncol. 2021, 28, 3463–3473. [Google Scholar] [CrossRef]
- Ikuta, K.; Nishida, Y.; Tsukushi, S.; Sakai, T.; Koike, H.; Imagama, S. Reconstruction of the extensor mechanism augmented with reverse transferred iliotibial band after proximal tibia tumor resection and mega-prosthetic replacement. Knee 2021, 33, 102–109. [Google Scholar] [CrossRef]
- Capanna, R.; Scoccianti, G.; Frenos, F.; Vilardi, A.; Beltrami, G.; Campanacci, D.A. What was the survival of megaprostheses in lower limb reconstructions after tumor resections? Clin. Orthop. Relat. Res. 2015, 473, 820–830. [Google Scholar] [CrossRef]
- Peel, T.; May, D.; Buising, K.; Thursky, K.; Slavin, M.; Choong, P. Infective complications following tumour endoprosthesis surgery for bone and soft tissue tumours. Eur. J. Surg. Oncol. 2014, 40, 1087–1094. [Google Scholar] [CrossRef]
- Healey, J.H. CORR Insights: High infection rate outcomes in long-bone tumor surgery with endoprosthetic reconstruction in adults: A systematic review. Clin. Orthop. Relat. Res. 2013, 471, 2028–2029. [Google Scholar] [CrossRef]
- Bus, M.P.; Szafranski, A.; Sellevold, S.; Goryn, T.; Jutte, P.C.; Bramer, J.A.; Fiocco, M.; Streitburger, A.; Kotrych, D.; van de Sande, M.A.; et al. LUMiC((R)) Endoprosthetic Reconstruction After Periacetabular Tumor Resection: Short-term Results. Clin. Orthop. Relat. Res. 2017, 475, 686–695. [Google Scholar] [CrossRef]
- Dierselhuis, E.F.; Gerbers, J.G.; Ploegmakers, J.J.; Stevens, M.; Suurmeijer, A.J.; Jutte, P.C. Local Treatment with Adjuvant Therapy for Central Atypical Cartilaginous Tumors in the Long Bones: Analysis of Outcome and Complications in One Hundred and Eight Patients with a Minimum Follow-up of Two Years. J. Bone Jt. Surg. Am. 2016, 98, 303–313. [Google Scholar] [CrossRef]
- Verdegaal, S.H.; Brouwers, H.F.; van Zwet, E.W.; Hogendoorn, P.C.; Taminiau, A.H. Low-grade chondrosarcoma of long bones treated with intralesional curettage followed by application of phenol, ethanol, and bone-grafting. J. Bone Jt. Surg. Am. 2012, 94, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- National Nosocomial Infections Surveillance, S. National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am. J. Infect. Control 2004, 32, 470–485. [Google Scholar]
- Lee, J.; Singletary, R.; Schmader, K.; Anderson, D.J.; Bolognesi, M.; Kaye, K.S. Surgical site infection in the elderly following orthopaedic surgery. Risk factors and outcomes. J. Bone Jt. Surg. Am. 2006, 88, 1705–1712. [Google Scholar] [CrossRef] [PubMed]
- Parvizi, J.; Gehrke, T. Proceedings of the Second International Consensus Meeting on Musculoskeletal Infection; Data Trace Publishing Company: Brooklandville, MD, USA, 2018. [Google Scholar]
- Racano, A.; Pazionis, T.; Farrokhyar, F.; Deheshi, B.; Ghert, M. High infection rate outcomes in long-bone tumor surgery with endoprosthetic reconstruction in adults: A systematic review. Clin. Orthop. Relat. Res. 2013, 471, 2017–2027. [Google Scholar] [CrossRef] [PubMed]
- Prophylactic Antibiotic Regimens in Tumor Surgery, I.; Ghert, M.; Schneider, P.; Guyatt, G.; Thabane, L.; Velez, R.; O’Shea, T.; Randall, R.L.; Turcotte, R.; Wilson, D.; et al. Comparison of Prophylactic Intravenous Antibiotic Regimens After Endoprosthetic Reconstruction for Lower Extremity Bone Tumors: A Randomized Clinical Trial. JAMA Oncol. 2022, 8, 345–353. [Google Scholar] [CrossRef]
- Wafa, H.; Grimer, R.J.; Reddy, K.; Jeys, L.; Abudu, A.; Carter, S.R.; Tillman, R.M. Retrospective evaluation of the incidence of early periprosthetic infection with silver-treated endoprostheses in high-risk patients: Case-control study. Bone Jt. J. 2015, 97, 252–257. [Google Scholar] [CrossRef]
- Shirai, T.; Tsuchiya, H.; Terauchi, R.; Tsuchida, S.; Mizoshiri, N.; Mori, Y.; Takeuchi, A.; Hayashi, K.; Yamamoto, N.; Ikoma, K.; et al. A retrospective study of antibacterial iodine-coated implants for postoperative infection. Medicine 2019, 98, e17932. [Google Scholar] [CrossRef]
- Tsuchiya, H.; Shirai, T.; Nishida, H.; Murakami, H.; Kabata, T.; Yamamoto, N.; Watanabe, K.; Nakase, J. Innovative antimicrobial coating of titanium implants with iodine. J. Orthop. Sci. 2012, 17, 595–604. [Google Scholar] [CrossRef]
- Hardes, J.; von Eiff, C.; Streitbuerger, A.; Balke, M.; Budny, T.; Henrichs, M.P.; Hauschild, G.; Ahrens, H. Reduction of periprosthetic infection with silver-coated megaprostheses in patients with bone sarcoma. J. Surg. Oncol. 2010, 101, 389–395. [Google Scholar] [CrossRef]
- Romano, C.L.; Tsuchiya, H.; Morelli, I.; Battaglia, A.G.; Drago, L. Antibacterial coating of implants: Are we missing something? Bone Jt. Res. 2019, 8, 199–206. [Google Scholar] [CrossRef]
- Alt, V. Antimicrobial coated implants in trauma and orthopaedics-A clinical review and risk-benefit analysis. Injury 2017, 48, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Braekling, T.; Streitbuerger, A.; Gosheger, G.; Boettner, F.; Nottrott, M.; Ahrens, H.; Dieckmann, R.; Guder, W.; Andreou, D.; Hauschild, G.; et al. Silver-coated megaprostheses: Review of the literature. Eur. J. Orthop. Surg. Traumatol. 2017, 27, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Fiore, M.; Sambri, A.; Zucchini, R.; Giannini, C.; Donati, D.M.; De Paolis, M. Silver-coated megaprosthesis in prevention and treatment of peri-prosthetic infections: A systematic review and meta-analysis about efficacy and toxicity in primary and revision surgery. Eur. J. Orthop. Surg. Traumatol. 2021, 31, 201–220. [Google Scholar] [CrossRef] [PubMed]
- Parry, M.C.; Laitinen, M.K.; Albergo, J.I.; Gaston, C.L.; Stevenson, J.D.; Grimer, R.J.; Jeys, L.M. Silver-coated (Agluna(R)) tumour prostheses can be a protective factor against infection in high risk failure patients. Eur. J. Surg. Oncol. 2019, 45, 704–710. [Google Scholar] [CrossRef]
- Mijnendonckx, K.; Leys, N.; Mahillon, J.; Silver, S.; Van Houdt, R. Antimicrobial silver: Uses, toxicity and potential for resistance. Biometals 2013, 26, 609–621. [Google Scholar] [CrossRef]
- Trentinaglia, M.T.; Van Der Straeten, C.; Morelli, I.; Logoluso, N.; Drago, L.; Romano, C.L. Economic Evaluation of Antibacterial Coatings on Healthcare Costs in First Year Following Total Joint Arthroplasty. J. Arthroplast. 2018, 33, 1656–1662. [Google Scholar] [CrossRef]
- Shirai, T.; Shimizu, T.; Ohtani, K.; Zen, Y.; Takaya, M.; Tsuchiya, H. Antibacterial iodine-supported titanium implants. Acta Biomater. 2011, 7, 1928–1933. [Google Scholar] [CrossRef]
- Shirai, T.; Tsuchiya, H.; Terauchi, R.; Tsuchida, S.; Mizoshiri, N.; Igarashi, K.; Miwa, S.; Takeuchi, A.; Kimura, H.; Hayashi, K.; et al. The outcomes of reconstruction using frozen autograft combined with iodine-coated implants for malignant bone tumors: Compared with non-coated implants. Jpn. J. Clin. Oncol. 2016, 46, 735–740. [Google Scholar] [CrossRef]
- Fuchs, T.; Stange, R.; Schmidmaier, G.; Raschke, M.J. The use of gentamicin-coated nails in the tibia: Preliminary results of a prospective study. Arch. Orthop. Trauma Surg. 2011, 131, 1419–1425. [Google Scholar] [CrossRef]
- Metsemakers, W.J.; Reul, M.; Nijs, S. The use of gentamicin-coated nails in complex open tibia fracture and revision cases: A retrospective analysis of a single centre case series and review of the literature. Injury 2015, 46, 2433–2437. [Google Scholar] [CrossRef]
- Schmidmaier, G.; Kerstan, M.; Schwabe, P.; Sudkamp, N.; Raschke, M. Clinical experiences in the use of a gentamicin-coated titanium nail in tibia fractures. Injury 2017, 48, 2235–2241. [Google Scholar] [CrossRef] [PubMed]
- Sambri, A.; Zucchini, R.; Giannini, C.; Zamparini, E.; Viale, P.; Donati, D.M.; De Paolis, M. Silver-coated (PorAg((R))) endoprosthesis can be protective against reinfection in the treatment of tumor prostheses infection. Eur. J. Orthop. Surg. Traumatol. 2020, 30, 1345–1353. [Google Scholar] [CrossRef] [PubMed]
- Streitbuerger, A.; Henrichs, M.P.; Hauschild, G.; Nottrott, M.; Guder, W.; Hardes, J. Silver-coated megaprostheses in the proximal femur in patients with sarcoma. Eur. J. Orthop. Surg. Traumatol. 2019, 29, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Hardes, J.; Henrichs, M.P.; Hauschild, G.; Nottrott, M.; Guder, W.; Streitbuerger, A. Silver-Coated Megaprosthesis of the Proximal Tibia in Patients With Sarcoma. J. Arthroplast. 2017, 32, 2208–2213. [Google Scholar] [CrossRef]
- Donati, F.; Di Giacomo, G.; D’Adamio, S.; Ziranu, A.; Careri, S.; Rosa, M.; Maccauro, G. Silver-Coated Hip Megaprosthesis in Oncological Limb Savage Surgery. Biomed. Res. Int. 2016, 2016, 9079041. [Google Scholar] [CrossRef] [Green Version]
Criterion | CDC [38] | SISG [35] | NPS [34] | PHLS [40] |
---|---|---|---|---|
Purulent drainage | SI/DI/OS | ✓ | ✓ | |
Painful spreading erythema indicative of cellulitis | ✓ | |||
Isolation of bacteria from cultures | SI/OS | ✓ | ✓ | |
Deliberate opening of the incision by the surgeon | SI/DI | |||
Spontaneous incisional wound dehiscence | DI | |||
Fever | DI | ✓ | ✓ | |
Pain | SI/DI | ✓ | ✓ | |
Tenderness | SI/DI | ✓ | ||
Swelling or redness | SI | ✓ | ||
Heat | SI | |||
Persisting elevation of the erythrocyte sedimentation rate | ✓ | ✓ | ||
Abscess or other evidence of infection | DI/OS | |||
Surgeon’s/physician’s diagnosis | SI/DI/OS |
Patients | N | Risk Factors | Ref. |
---|---|---|---|
Bone tumors | 844 | Pelvic tumor (OR = 3.42, p = 0.044) and use of an implant (OR = 9.28, p = 0.006) | [43] |
Malignant bone tumors | 302 | Pelvic tumor (OR = 3.4, p = 0.044) and operative time (OR = 3.4, p = 0.022) | [26] |
Pelvic tumors | 270 | Pelvic reconstruction (OR = 0.51, p = 0.033) | [27] |
Musculoskeletal tumors | 1521 | Age (OR = 1.18, p < 0.001), total number of preceding procedures (OR = 1.2, p < 0.01), preexisting implants (OR = 1.94, p = 0.001), infection at another site on the date of the surgery (OR = 4.13, p < 0.01), hip region affected (OR = 1.96, p < 0.001), and duration of the procedure (OR = 1.2, p < 0.01) | [41] |
Malignant bone tumors of the extremities | 256 | Tibial tumor (OR = 6.04, p < 0.001) and operative time (OR = 3.3, p = 0.027) | [44] |
Allograft reconstruction after proximal tibia resection | 32 | BMI (OR = 1.40, p < 0.05) and preoperative WBC (OR = 0.30, p < 0.05) | [51] |
Reconstruction with massive allograft in long bones | 673 | Tibia allograft (OR = 3.17, p < 0.001), male patients (OR = 1.92, p < 0.029), procedures performed in a conventional operating room (OR = 3.15, p < 0.002), and the long-term use of postoperative antibiotics (OR = 2.25, p < 0.041) | [47] |
Musculoskeletal tumors | 110 | Blood transfusion (p = 0.007) and obesity (p = 0.016) | [50] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miwa, S.; Yamamoto, N.; Hayashi, K.; Takeuchi, A.; Igarashi, K.; Tsuchiya, H. Surgical Site Infection after Bone Tumor Surgery: Risk Factors and New Preventive Techniques. Cancers 2022, 14, 4527. https://doi.org/10.3390/cancers14184527
Miwa S, Yamamoto N, Hayashi K, Takeuchi A, Igarashi K, Tsuchiya H. Surgical Site Infection after Bone Tumor Surgery: Risk Factors and New Preventive Techniques. Cancers. 2022; 14(18):4527. https://doi.org/10.3390/cancers14184527
Chicago/Turabian StyleMiwa, Shinji, Norio Yamamoto, Katsuhiro Hayashi, Akihiko Takeuchi, Kentaro Igarashi, and Hiroyuki Tsuchiya. 2022. "Surgical Site Infection after Bone Tumor Surgery: Risk Factors and New Preventive Techniques" Cancers 14, no. 18: 4527. https://doi.org/10.3390/cancers14184527
APA StyleMiwa, S., Yamamoto, N., Hayashi, K., Takeuchi, A., Igarashi, K., & Tsuchiya, H. (2022). Surgical Site Infection after Bone Tumor Surgery: Risk Factors and New Preventive Techniques. Cancers, 14(18), 4527. https://doi.org/10.3390/cancers14184527