Primary Chemoradiotherapy Treatment (PCRT) for HER2+ and Triple Negative Breast Cancer Patients: A Feasible Combination
Abstract
:Simple Summary
Abstract
1. Introduction:
2. Material and Methods
2.1. Systemic Treatment
2.2. Surgery
2.3. Evaluation and Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Treatment Tolerance and Adverse Effects
3.3. Response Analysis
3.4. Disease-Free Survival and Overall Survival
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, K.; Zhang, J.; Beeraka, N.M.; Sinelnikov, M.Y.; Zhang, X.; Cao, Y.; Lu, P. Robot-Assisted Minimally Invasive Breast Surgery: Recent Evidence with Comparative Clinical Outcomes. J. Clin. Med. 2022, 11, 1827. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; MBeeraka, N.; Zhang, J.; Reshetov, I.V.; Nikolenko, V.N.; Sinelnikov, M.Y.; Mikhaleva, L.M. Efficacy of da Vinci robot-assisted lymph node surgery than conventional axillary lymph node dissection in breast cancer—A comparative study. Int. J. Med. Robot. Comput. Assist. Surg. 2021, 17, e2307. [Google Scholar] [CrossRef] [PubMed]
- EBCTCG (Early Breast Cancer Trialists’ Collaborative Group); McGale, P.; Taylor, C.; Correa, C.; Cutter, D.; Duane, F.; Ewertz, M.; Wang, Y. Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: Meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet 2014, 383, 2127–2135. [Google Scholar] [CrossRef] [PubMed]
- Early Breast Cancer Trialists’ Collaborative Group (EBCTCG); Darby, S.; McGale, P.; Correa, C.; Taylor, C.; Arriagada, R.; Clarke, M.; Cutter, D.; Davies, C.; Ewertz, M.; et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: Meta-analysis of individual patient data for 10 801 women in 17 randomised trials. Lancet 2011, 378, 1707–1716. [Google Scholar] [CrossRef]
- Schegerin, M.; Tosteson, A.N.A.; Kaufman, P.A.; Paulsen, K.D.; Pogue, B.W. Prognostic imaging in neoadjuvant chemotherapy of locally-advanced breast cancer should be cost-effective. Breast Cancer Res. Treat. 2008, 114, 537–547. [Google Scholar] [CrossRef]
- Broglio, K.R.; Quintana, M.; Foster, M.; Olinger, M.; McGlothlin, A.; Berry, S.M.; Boileau, J.F.; Brezden-Masley, C.; Chia, S.; Dent, S.; et al. Association of Pathologic Complete Response to Neoadjuvant Therapy in HER2-Positive Breast Cancer With Long-Term Outcomes: A Meta-Analysis. JAMA Oncol. 2016, 2, 751–760. [Google Scholar] [CrossRef]
- Wang-Lopez, Q.; Chalabi, N.; Abrial, C.; Radosevic-Robin, N.; Durando, X.; Mouret-Reynier, M.-A.; Benmammar, K.-E.; Kullab, S.; Bahadoor, M.; Chollet, P.; et al. Can pathologic complete response (pCR) be used as a surrogate marker of survival after neoadjuvant therapy for breast cancer? Crit. Rev. Oncol. 2015, 95, 88–104. [Google Scholar] [CrossRef]
- Lightowlers, S.V.; Boersma, L.J.; Fourquet, A.; Kirova, Y.M.; Offersen, B.V.; Poortmans, P.; Scholten, A.N.; Somaiah, N.; Coles, C.E. Preoperative breast radiation therapy: Indications and perspectives. Eur. J. Cancer 2017, 82, 184–192. [Google Scholar] [CrossRef]
- Brackstone, M.; Palma, D.; Tuck, A.B.; Scott, L.; Potvin, K.; Vandenberg, T.; Perera, F.; D’Souza, D.; Taves, D.; Kornecki, A.; et al. Concurrent Neoadjuvant Chemotherapy and Radiation Therapy in Locally Advanced Breast Cancer. Int. J. Radiat. Oncol. 2017, 99, 769–776. [Google Scholar] [CrossRef]
- Kao, P.; Chi, M.-S.; Chi, K.-H.; Ko, H.-L. Primary chemo-radiotherapy for breast cancer patients who refused surgical treatment: A case series. Ther. Radiol. Oncol. 2019, 3, 24. [Google Scholar] [CrossRef]
- Woodward, W.A.; Fang, P.; Arriaga, L.; Gao, H.; Cohen, E.N.; Reuben, J.M.; Valero, V.; Le-Petross, H.; Middleton, L.P.; Babiera, G.V.; et al. A Phase 2 Study of Preoperative Capecitabine and Concomitant Radiation in Women With Advanced Breast Cancer. Int. J. Radiat. Oncol. 2017, 99, 777–783. [Google Scholar] [CrossRef]
- Poleszczuk, J.; Luddy, K.; Chen, L.; Lee, J.K.; Harrison, L.B.; Czerniecki, B.J.; Soliman, H.; Enderling, H. Neoadjuvant radiotherapy of early-stage breast cancer and long-term disease-free survival. Breast Cancer Res. 2017, 19, 1–7. [Google Scholar] [CrossRef]
- Sousa, C.; Cruz, M.; Neto, A.; Pereira, K.; Peixoto, M.; Bastos, J.; Henriques, M.; Roda, D.; Marques, R.; Miranda, C.; et al. Neoadjuvant radiotherapy in the approach of locally advanced breast cancer. ESMO Open 2020, 5, e000640. [Google Scholar] [CrossRef]
- Halloran, N.O.; McVeigh, T.; Martin, J.; Keane, M.; Lowery, A.; Kerin, M. Neoadjuvant chemoradiation and breast reconstruction: The potential for improved outcomes in the treatment of breast cancer. Ir. J. Med Sci. 2018, 188, 75–83. [Google Scholar] [CrossRef]
- Ciervide, R.; Montero, A.; Garcia-Aranda, M.; Vega, E.; Herrero, M. Neoadjuvant Chemoradiation for Unfavourable Breast Cancer Patients: A Prospective Cohort Study. J. Clin. Trials. 2019, 9, 2. [Google Scholar]
- Ogston, K.N.; Miller, I.D.; Payne, S.; Hutcheon, A.W.; Sarkar, T.K.; Smith, I.; Schofield, A.; Heys, S.D. A new histological grading system to assess response of breast cancers to primary chemotherapy: Prognostic significance and survival. Breast 2003, 12, 320–327. [Google Scholar] [CrossRef]
- Li, J.; Chen, S.; Chen, C.; Di, G.; Liu, G.; Wu, J.; Shao, Z. Pathological complete response as a surrogate for relapse-free survival in patients with triple negative breast cancer after neoadjuvant chemotherapy. Oncotarget 2016, 8, 18399–18408. [Google Scholar] [CrossRef]
- Spring, L.M.; Fell, G.; Arfe, A.; Sharma, C.; Greenup, R.A.; Reynolds, K.L.; Smith, B.L.; Alexander, B.M.; Moy, B.; Isakoff, S.J.; et al. Pathologic Complete Response after Neoadjuvant Chemotherapy and Impact on Breast Cancer Recurrence and Survival: A Comprehensive Meta-analysis. Clin. Cancer Res. 2020, 26, 2838–2848. [Google Scholar] [CrossRef]
- Lee, J.S.; Yost, S.E.; Yuan, Y. Neoadjuvant Treatment for Triple Negative Breast Cancer: Recent Progresses and Challenges. Cancers 2020, 12, 1404. [Google Scholar] [CrossRef]
- Poggio, F.; Bruzzone, M.; Ceppi, M.; Pondé, N.; La Valle, G.; Del Mastro, L.; de Azambuja, E.; Lambertini, M. Platinum-based neoadjuvant chemotherapy in triple-negative breast cancer: A systematic review and meta-analysis. Ann. Oncol. 2018, 29, 1497–1508. [Google Scholar] [CrossRef]
- Gupta, G.K.; Collier, A.L.; Lee, D.; Hoefer, R.A.; Zheleva, V.; Van Reesema, L.L.S.; Tang-Tan, A.M.; Guye, M.L.; Chang, D.Z.; Winston, J.S.; et al. Perspectives on Triple-Negative Breast Cancer: Current Treatment Strategies, Unmet Needs, and Potential Targets for Future Therapies. Cancers 2020, 12, 2392. [Google Scholar] [CrossRef]
- Hurvitz, S.A.; Gelmon, K.A.; Tolaney, S.M. Optimal Management of Early and Advanced HER2 Breast Cancer. Am. Soc. Clin. Oncol. Educ. Book 2017, 37, 76–92. [Google Scholar] [CrossRef]
- Valachis, A.; Mauri, D.; Polyzos, N.P.; Chlouverakis, G.; Mavroudis, D.; Georgoulias, V. Trastuzumab combined to neoadjuvant chemotherapy in patients with HER2-positive breast cancer: A systematic review and meta-analysis. Breast 2011, 20, 485–490. [Google Scholar] [CrossRef]
- Wang, C.; Chen, J.; Xu, X.; Hu, X.; Kong, D.; Liang, G.; Wang, X. Dual HER2 Blockade in Neoadjuvant Treatment of HER2+ Breast Cancer: A Meta-Analysis and Review. Technol. Cancer Res. Treat. 2020, 19, 1533033820960721. [Google Scholar] [CrossRef]
- Riet, F.G.; Fayard, F.; Arriagada, R.; Santos, M.A.; Bourgier, C.; Ferchiou, M.; Heymann, S.; Delaloge, S.; Mazouni, C.; Dunant, A.; et al. Preoperative radiotherapy in breast cancer patients: 32 years of follow-up. Eur. J. Cancer 2017, 76, 45–51. [Google Scholar] [CrossRef]
- Yee, C.; Alayed, Y.; Drost, L.; Karam, I.; Vesprini, D.; McCann, C.; Soliman, H.; Zhang, L.; Chow, E.; Chan, S.; et al. Radiotherapy for patients with unresected locally advanced breast cancer. Ann. Palliat. Med. 2018, 7, 373–384. [Google Scholar] [CrossRef]
- Shibamoto, Y.; Murai, T.; Suzuki, K.; Hashizume, C.; Ohta, K.; Yamada, Y.; Niwa, M.; Torii, A.; Shimohira, M. Definitive Radiotherapy With SBRT or IMRT Boost for Breast Cancer: Excellent Local Control and Cosmetic Outcome. Technol. Cancer Res. Treat. 2018, 17, 1533033818799355. [Google Scholar] [CrossRef]
- Bollet, M.A.; Belin, L.; Reyal, F.; Campana, F.; Dendale, R.; Kirova, Y.M.; Thibault, F.; Diéras, V.; Sigal-Zafrani, B.; Fourquet, A. Preoperative radio-chemotherapy in early breast cancer patients: Long-term results of a phase II trial. Radiother. Oncol. 2012, 102, 82–88. [Google Scholar] [CrossRef]
- Cai, G.; Cao, L.; Kirova, Y.M.; Feng, Y.; Chen, J.-Y. Prospective results of concurrent radiation therapy and weekly paclitaxel as salvage therapy for unresectable locoregionally recurrent breast cancer. Radiat. Oncol. 2019, 14, 1–9. [Google Scholar] [CrossRef]
- Shaughnessy, J.N.; Meena, R.A.; Dunlap, N.E.; Jain, D.; Riley, E.C.; Quillo, A.R.; Dragun, A.E. Efficacy of Concurrent Chemoradiotherapy for Patients With Locally Recurrent or Advanced Inoperable Breast Cancer. Clin. Breast Cancer 2015, 15, 135–142. [Google Scholar] [CrossRef]
- Kao, J.; Conzen, S.D.; Jaskowiak, N.T.; Song, D.H.; Recant, W.; Singh, R.; Masters, G.A.; Fleming, G.F.; Heimann, R. Concomitant radiation therapy and paclitaxel for unresectable locally advanced breast cancer: Results from two consecutive Phase I/II trials. Int. J. Radiat. Oncol. 2005, 61, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Semiglazov, V.E.; Topuzov, E.E.; Bavli, J.L.; Moiseyenko, V.M.; Ivanova, O.A.; Seleznev, I.K.; Orlov, A.A.; Barash, N.Y.; Golubeva, O.M.; Chepic, O.F. Primary (neoadjuvant) chemotherapy and radiotherapy compared with primary radiotherapy alone in stage IIb-IIIa breast cancer. Ann. Oncol. 1994, 5, 591–595. [Google Scholar] [CrossRef] [PubMed]
- Formenti, S.C.; Dunnington, G.; Uzieli, B.; Lenz, H.; Keren-Rosenberg, S.; Silberman, H.; Spicer, D.; Denk, M.; Leichman, G.; Groshen, S.; et al. Original p53 status predicts for pathological response in locally advanced breast cancer patients treated preoperatively with continuous infusion 5-Fluorouracil and radiation therapy. Int. J. Radiat. Oncol. 1997, 39, 1059–1068. [Google Scholar] [CrossRef]
- Skinner, K.A.; Silberman, H.; Florentine, B.; Lomis, T.J.; Corso, F.; Spicer, D.; Formenti, S.C. Preoperative paclitaxel and radiotherapy for locally advanced breast cancer: Surgical aspects. Ann. Surg. Oncol. 2000, 7, 145–149. [Google Scholar] [CrossRef]
- Formenti, S.C.; Volm, M.; Skinner, K.A.; Spicer, D.; Cohen, D.; Perez, E.; Bettini, A.C.; Groshen, S.; Gee, C.; Florentine, B.; et al. Preoperative Twice-Weekly Paclitaxel With Concurrent Radiation Therapy Followed by Surgery and Postoperative Doxorubicin-Based Chemotherapy in Locally Advanced Breast Cancer: A Phase I/II Trial. J. Clin. Oncol. 2003, 21, 864–870. [Google Scholar] [CrossRef]
- Chakravarthy, A.B.; Kelley, M.C.; McLaren, B.; Truica, C.I.; Billheimer, D.; Mayer, I.A.; Grau, A.M.; Johnson, D.H.; Simpson, J.F.; Beauchamp, R.D.; et al. Cancer Therapy: Clinical Neoadjuvant Concurrent Paclitaxel and Radiation in Stage II/III Breast Cancer. Clin. Cancer Res. 2006, 12, 1570–1577. [Google Scholar] [CrossRef]
- Bollet, M.A.; Sigal-Zafrani, B.; Gambotti, L.; Extra, J.-M.; Meunier, M.; Nos, C.; Dendale, R.; Campana, F.; Kirova, Y.M.; Diéras, V.; et al. Pathological response to preoperative concurrent chemo-radiotherapy for breast cancer: Results of a phase II study. Eur. J. Cancer 2006, 42, 2286–2295. [Google Scholar] [CrossRef]
- Gaui, M.D.; Amorim, G.; Arcuri, R.A.; Pereira, G.; Moreira, D.; Djahjah, C.; Biasoli, I.; Spector, N. A phase II study of second-line neoadjuvant chemotherapy with capecitabine and radiation therapy for anthracycline-resistant locally advanced breast cancer. Am. J. Clin. Oncol. 2007, 30, 78–81. [Google Scholar] [CrossRef]
- Shanta, V.; Swaminathan, R.; Rama, R.; Radhika, R. Retrospective Analysis of Locally Advanced Noninflammatory Breast Cancer From Chennai, South India, 1990–1999. Int. J. Radiat. Oncol. 2008, 70, 51–58. [Google Scholar] [CrossRef]
- Alvarado-miranda, A.; Arrieta, O.; Gamboa-vignolle, C.; Saavedra-perez, D.; Morales-barrera, R.; Bargallo-rocha, E.; Zinser-sierraet, J.; Perez-sanchezal, V.; Ramirez-ugalde, T.; Lara-medina, F.; et al. Chemotherapy in locally advanced breast cancer. Radiat. Oncol. 2009, 8, 1–8. [Google Scholar]
- Adams, S.; Chakravarthy, A.B.; Donach, M.; Spicer, D.; Lymberis, S.; Singh, B.; Bauer, J.A.; Hochman, T.; Goldberg, J.D.; Muggia, F.; et al. Preoperative concurrent paclitaxel-radiation in locally advanced breast cancer: Pathologic response correlates with five-year overall survival. Breast Cancer Res. Treat. 2010, 124, 723–732. [Google Scholar] [CrossRef]
- Monrigal, E.; Dauplat, J.; Gimbergues, P.; Le Bouedec, G.; Peyronie, M.; Achard, J.; Chollet, P.; Mouret-Reynier, M.; Nabholtz, J.; Pomel, C. Mastectomy with immediate breast reconstruction after neoadjuvant chemotherapy and radiation therapy. A new option for patients with operable invasive breast cancer. Results of a 20 years single institution study. Eur. J. Surg. Oncol. (EJSO) 2011, 37, 864–870. [Google Scholar] [CrossRef] [Green Version]
- Matuschek, C.; Boelke, E.; Roth, S.L.; Orth, K.; Lang, I.; Bojar, H.; Janni, J.W.; Audretsch, W.; Nestle-Kraemling, C.; Lammering, G.; et al. Long-term outcome after neoadjuvant radiochemotherapy in locally advanced noninflammatory breast cancer and predictive factors for a pathologic complete remission Results of a multivariate analysis. Strahlenther. Und Onkol. 2012, 188, 777–781. [Google Scholar] [CrossRef]
- Gianni, L.; Pienkowski, T.; Im, Y.-H.; Tseng, L.-M.; Liu, M.-C.; Lluch, A.; Starosławska, E.; De La Haba-Rodríguez, J.R.; Im, S.-A.; Pedrini, J.L.; et al. 5-year analysis of neoadjuvant pertuzumab and trastuzumab in patients with locally advanced, inflammatory, or early-stage HER2-positive breast cancer (NeoSphere): A multicentre, open-label, phase 2 randomised trial. Lancet Oncol. 2016, 17, 791–800. [Google Scholar] [CrossRef]
N | Frequency | |||
---|---|---|---|---|
Number of patients | 58 | |||
Age (median) | 52 (31–78) | |||
Breast side | Right side | 35 | 60% | |
Left side | 23 | 40% | ||
Histology | Ductal infiltrating carcinoma | 58 | 100% | |
Grade | G2 | 24 | 41% | |
G3 | 34 | 59% | ||
Tumor size (median) | 28 mm (16–90) | |||
Staging at diagnosis | ||||
T | T1 | 2 | 3% | |
T2 | 43 | 74% | ||
T3 | 12 | 21% | ||
T4 | 1 | 2% | ||
N | cN+ | 26 | 45% | |
cN0 (SNLB negative) | 28 | 48% | ||
cNX (no migration) | 4 | 7% | ||
Molecular subtype | HR+/HER2+ HR−/HER2+ HR−/HER2− | 22 11 25 | 38% 19% 43% | |
Ki 67 index | Median 43%; average 47% | |||
<20% >20% | 5 53 | 9% 91% |
G0-1-2 | G3 | G4 | ||||
---|---|---|---|---|---|---|
n | % | n | % | n | % | |
Dermitis | 53 | 91.4 | 5 | 8.6 | 0 | 0.0 |
Cytopenia | 36 | 62.1 | 15 | 25.9 | 7 | 12.1 |
Alopecia | 58 | 100 | 0 | 0.0 | 0 | 0.0 |
Nauseas | 57 | 98.3 | 1 | 1.7 | 0 | 0.0 |
Mucositis | 57 | 98.3 | 1 | 1.7 | 0 | 0.0 |
Diarrhea | 54 | 93 | 3 | 5.2 | 1 | 1.7 |
Neurotoxicity | 58 | 100 | 0 | 0.0 | 0 | 0.0 |
G1-2 | G3 | G4 | G5 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Total | % | n | % | n | % | n | % | n | % | |
TN | 25 | 43 | 0 | 0 | 4 | 16.7 | 3 | 12.5 | 17 | 70.8 |
HER-2+ | 33 | 57 | 0 | 0 | 3 | 9.4 | 12 | 37.5 | 17 | 53.1 |
HER-2+ HH+ | 22 | 38 | 0 | 0 | 2 | 9.5 | 9 | 42.9 | 10 | 47.6 |
HER-2+ HH− | 11 | 19 | 0 | 0 | 1 | 9.1 | 3 | 27.3 | 7 | 63.6 |
Total | 58 | 100 | 0 | 0 | 7 | 12.5 | 15 | 26.8 | 34 | 60.7 |
Pathological Complete Response(pCR) | Pearson’s Chi-Square p | |
---|---|---|
Age | <52 vs. ≥52 | 0.06 |
Grade | G3 vs. G2 | 0.02 |
Size | <28 mm vs. ≥28 mm | 0.09 |
ki 67 | <43 vs. ≥43 | 0.01 |
Phenotype | TN vs. Her2+ | 0.03 |
Phenotype | Her2+ HH+ vs. Her2+ HH− | 0.05 |
PET (SUV value) | <7.2 vs. ≥7.2 | 0.07 |
Author | N | Type of Study | HER2+/TNBC | Preoperative Radiotherapy | Preoperative Systemic Treatment | pCR (%) | Acute Cutaneous Toxicity | Post-Surgical Complications |
---|---|---|---|---|---|---|---|---|
Semiglazov 1994 [32] | 271 | Randomized neoadjuvant chemoradiotherapy (CTRT) vs. neoadjuvant radiotherapy (RT) | HER2+: NS TNBC: NS | WBI: 60 Gy (2 Gy) RNI: 40 Gy (2 Gy) | Concurrent: TMF vs. No CT | pCR 29.1% (CTRT) vs. pCR19.4% (RT) p < 0.05 | G1-2: 6.5% (CTRT) vs. 8.9% (RT) | 22.5% |
Formenti 1997 [33] | 35 | Prospective | HER2+: 82.8% TNBC: NS | WBI+RNI 50 Gy (2 Gy) | Pre-RT: 5-FU → Concurrent: 5-FU | pCR: 20% | G2: 26% | NR |
Skinner 2000 [34] | 28 | Prospective | NS | WBI + RNI 45 Gy (1.8 Gy) | Concurrent: paclitaxel | pCR 26% | G2: 30% | 41% |
Formenti 2003 [35] | 44 | Prospective | HER2+: NS TNBC: NS | WBI + RNI 45–46 Gy (1.8–2 Gy) | Pre-RT: docetaxel → Concurrent: docetaxel | pCR 34% | G2: 45% G3: 6.8% | 14% |
Chakravarthy 2006 [36] | 38 | Prospective | HER2+: 34% TNBC: NS | WBI + RNI 45 Gy (1.8 Gy) | Pre-RT: Paclitaxel → Concurrent: Paclitaxel | pCR 34% | G3: 2.6% G4: 2–6% | NR |
Bollet 2006 [37] 2012 [28] | 60 | Prospective | HER2+: 14% TNBC: 20% | WBI: 50 Gy (2 Gy) ± boost 10 Gy RNI: 46 Gy (2 Gy) | Concurrent: Vinorelbine + 5-FU | pCR 27% | G2: 19% G3: 14% | 36.6% |
Gaui 2007 [38] | 28 | Retrospective | HER2+: NS TNBC: NS | WBI + RNI 50 Gy (2 Gy) | Concurrent: Capecitabine | pCR 9% | G1: 35% G2: 11% | 3.6% |
Shanta 2008 [39] | 1117 | Retrospective | HER2+: NS TNBC: NS | WBI + RNI 40 Gy (2 Gy) | Concurrent: CMF/ECF/FAC | pCR 45.1% | NR | 20.8% |
Alvarado- Miranda 2009 [40] | 112 | Retrospective | HER2+: 1.7% TNBC: 60% | WBI + RNI 50 Gy (2 Gy) + boost 10 Gy | Concurrent: Mytomicin + 5Fu or Gemcitabine + cDDP | pCR29.5% | G3: 22.4% | NR |
Adams 2010 [41] | 105 | Pooled analysis from 3 prospective trials, including [28] and [Formenti2003] | HER2+: 32% TNBC: 22.8% | WBI + RNI 45 Gy (1.8 Gy) ± boost 14 Gy | Concurrent:Paclitaxel± Trastuzumab | pCR 23% | NR | NR |
Monrigal 2011 [42] | 210 | Retrospective | HER2+: 9% TNBC: NS | WBI + RNI 50 Gy (2 Gy) + boost 10 Gy | Concurrent: Anthracyclin based CT ± Paclitaxel ± Trastuzumab | pCR 35.2% | NR | 21.6% |
Matuscheck 2012 [43] | 315 | Retrospective | HER2+: NS TNBC: NS | WBI + RNI 50 Gy (2 Gy) + boost 10 Gy | EC/CMF/AC/Mitoxantrone Pre-RT: 61% or Concurrent: 36% or No CHT: 3% | pCR 29.2% | NR | NR |
Brackstone 2017 [9] | 32 | Prospective | HER2+: 11.1% TNBC: 18.5% | WBI + RNI 45 Gy (1.8 Gy) ± boost 5.4 Gy | Pre-RT: FEC → Concurrent: Docetaxel | pCR 22.6% | G3: 25% | 3% |
Current series 2022 | 58 | Prospective | HER2+: 57% TNBC: 43% | WBI + RNI 40.5 Gy (2.7 Gy) + SIB 54 Gy (3.6 Gy) | Concurrent: Pertuzumab–Trastuzumab–Paclitaxel → AC in HER2+ Concurrent: CBDCA-Paclitaxel → AC in TNBC | TN: 71% HER2+ 53% HR+: 48% HR−: 64% | G1: 78% G2: 14% G3: 5% | 16% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciérvide, R.; Montero, Á.; García-Rico, E.; García-Aranda, M.; Herrero, M.; Skaarup, J.; Benassi, L.; Barrera, M.J.; Vega, E.; Rojas, B.; et al. Primary Chemoradiotherapy Treatment (PCRT) for HER2+ and Triple Negative Breast Cancer Patients: A Feasible Combination. Cancers 2022, 14, 4531. https://doi.org/10.3390/cancers14184531
Ciérvide R, Montero Á, García-Rico E, García-Aranda M, Herrero M, Skaarup J, Benassi L, Barrera MJ, Vega E, Rojas B, et al. Primary Chemoradiotherapy Treatment (PCRT) for HER2+ and Triple Negative Breast Cancer Patients: A Feasible Combination. Cancers. 2022; 14(18):4531. https://doi.org/10.3390/cancers14184531
Chicago/Turabian StyleCiérvide, Raquel, Ángel Montero, Eduardo García-Rico, Mariola García-Aranda, Mercedes Herrero, Jessica Skaarup, Leticia Benassi, Maria José Barrera, Estela Vega, Beatriz Rojas, and et al. 2022. "Primary Chemoradiotherapy Treatment (PCRT) for HER2+ and Triple Negative Breast Cancer Patients: A Feasible Combination" Cancers 14, no. 18: 4531. https://doi.org/10.3390/cancers14184531
APA StyleCiérvide, R., Montero, Á., García-Rico, E., García-Aranda, M., Herrero, M., Skaarup, J., Benassi, L., Barrera, M. J., Vega, E., Rojas, B., Bratos, R., Luna, A., Parras, M., López, M., Delgado, A., Quevedo, P., Castilla, S., Feyjoo, M., Higueras, A., ... Rubio, C. (2022). Primary Chemoradiotherapy Treatment (PCRT) for HER2+ and Triple Negative Breast Cancer Patients: A Feasible Combination. Cancers, 14(18), 4531. https://doi.org/10.3390/cancers14184531