Metabolic Imaging in B-Cell Lymphomas during CAR-T Cell Therapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. [18F]FDG PET/CT in Lymphomas Treated with CAR-T Cells
2.1. Metabolic Parameters at Baseline [18F]FDG PET/CT
2.2. Unconventional Responses: Pseudoprogression
3. [18F]FDG PET/CT and Toxicity during CAR-T Cell Therapy
3.1. Cytokine Release Syndrome (CRS)
3.2. Immune Effector Cell Associated Neurotoxicity Syndrome (ICANS)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Scheuermann, R.H.; Racila, E. CD19 antigen in leukemia and lymphoma diagnosis and immunotherapy. Leuk. Lymphoma 1995, 18, 385–397. [Google Scholar] [CrossRef]
- Porter, D.L.; Levine, B.L.; Kalos, M.; Bagg, A.; June, C.H. Chimeric Antigen Receptor–Modified T Cells in Chronic Lymphoid Leukemia. N. Engl. J. Med. 2011, 365, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Porter, D.L.; Levine, B.L.; Kalos, M.; Bagg, A.; June, C.H. Chimeric Antigen Receptor–Modified T Cells in Chronic Lymphoid Leukemia; Chimeric Antigen Receptor–Modified T Cells for Acute Lymphoid Leukemia; Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia. N. Engl. J. Med. 2016, 374, 998. [Google Scholar]
- Brentjens, R.J.; Davila, M.L.; Riviere, I.; Park, J.; Wang, X.; Cowell, L.G.; Bartido, S.; Stefanski, J.; Taylor, C.; Olszewska, M.; et al. CD19-Targeted T Cells Rapidly Induce Molecular Remissions in Adults with Chemotherapy-Refractory Acute Lymphoblastic Leukemia. Sci. Transl. Med. 2013, 5, 177ra38. [Google Scholar] [CrossRef] [PubMed]
- Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 2017, 377, 2531–2544. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration: YESCARTA (Axicabtagene Ciloleucel). Available online: https://www.fda.gov/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/uc.2017 (accessed on 29 March 2022).
- Axicabtagene Ciloleucel, Applications for New Human Medicines under Evaluation by the Committee for Medicinal Products for Human Use (EMA/583158/2017), 2017 September. Available online: https://www.ema.europa.eu/en/medicines/human/paediatric-investigation-plans/emea-002010-pip01-16-m02 (accessed on 29 March 2022).
- U.S. Food & Drug Administration: KYMRIAH (Tisagenlecleucel). 2017. Available online: https://www.fda.gov/biologicsbloodvaccines/cellulargenetherapyproducts/approvedproducts/ucm (accessed on 29 March 2022).
- Tisagenlecleucel, Applications for New Human Medicines under Evaluation by the Committee for Medicinal Products for Human Use (EMA/789956/2017). December 2017. Available online: http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/document_listing/document_listing_000349.jsp&mid=WC0b01ac05805083eb (accessed on 29 March 2022).
- U.S. Food and Drug Administration FDA Approves First Cell-Based Gene Therapy for Adult Patients with Relapsed or Refractory MCL. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-cell-based-gene-therapy-adult-patients-relapsed-or-refractory-mcl (accessed on 25 October 2021).
- European Medicines Agency TECARTUS (Brexucabtagene Autoleucel). Available online: https://www.ema.europa.eu/en/documents/overview/tecartus-epar-medicine-overview_en.pdf (accessed on 11 December 2021).
- Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/breyanzi (accessed on 29 March 2022).
- Available online: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/breyanzi-lisocabtagene-maraleucel (accessed on 29 March 2022).
- Locke, F.L.; Ghobadi, A.; Jacobson, C.A.; Miklos, D.B.; Lekakis, L.J.; Oluwole, O.O.; Lin, Y.; Braunschweig, I.; Hill, B.T.; Timmerman, J.M.; et al. Long-Term Safety and Activity of Axicabtagene Ciloleucel in Refractory Large B-Cell Lymphoma (ZUMA-1): A Single-Arm, Multicentre, Phase 1-2 Trial. Lancet Oncol. 2019, 20, 31–42. [Google Scholar] [CrossRef]
- Schuster, S.J.; Bishop, M.R.; Tam, C.S.; Waller, E.K.; Borchmann, P.; McGuirk, J.P.; Jäger, U.; Jaglowski, S.; Andreadis, C.; Westin, J.R.; et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2019, 380, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Abramson, J.S.; Palomba, M.L.; Gordon, L.I.; Lunning, M.A.; Wang, M.; Arnason, J.; Mehta, A.; Purev, E.; Maloney, D.G.; Andreadis, C.; et al. Lisocabtagene Maraleucel for Patients With Relapsed or Refractory Large B-Cell Lymphomas (TRANSCEND NHL 001): A Multicentre Seamless Design Study. Lancet 2020, 396, 839–852. [Google Scholar] [CrossRef]
- Wang, M.; Munoz, J.; Goy, A.; Locke, F.L.; Jacobson, C.A.; Hill, B.T.; Timmerman, J.M.; Holmes, H.; Jaglowski, S.; Flinn, I.W.; et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle cell lymphoma. N. Engl. J. Med. 2020, 382, 1331–1342. [Google Scholar] [CrossRef]
- Muhammad, N.; Mao, Q.; Xia, H. CAR T-cells for cancer therapy. Biotechnol. Genet. Eng. Rev. 2017, 33, 190–226. [Google Scholar] [CrossRef]
- Maus, M.V.; Grupp, S.A.; Porter, D.L.; June, C.H. Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood 2014, 123, 2625–2635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, H.; Wang, Y.; Lu, X.; Han, W. Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy. J. Natl. Cancer Inst. 2016, 108, djv439. [Google Scholar] [CrossRef] [PubMed]
- Brentjens, R.J.; Santos, E.; Nikhamin, Y.; Yeh, R.; Matsushita, M.; La Perle, K.; Quintás-Cardama, A.; Larson, S.M.; Sadelain, M. Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clin. Cancer Res. 2007, 13, 5426–5435. [Google Scholar] [CrossRef] [PubMed]
- Song, D.G.; Ye, Q.; Poussin, M.; Harms, G.M.; Figini, M.; Powell, D.J. CD27 costimulation augments the survival and antitumor activity of redirected human T cells in vivo. Blood 2012, 119, 696–706. [Google Scholar] [CrossRef] [PubMed]
- Altvater, B.; Landmeier, S.; Pscherer, S.; Temme, J.; Juergens, H.; Pule, M.; Rossig, C. 2B4 (CD244) signaling via chimeric receptors costimulates tumor-antigen specific proliferation and in vitro expansion of human T cells. Cancer Immunol. Immunother. 2009, 58, 1991–2001. [Google Scholar] [CrossRef] [PubMed]
- Pegram, H.J.; Park, J.H.; Brentjens, R.J. CD28z CARs and armored CARs. Cancer J. 2014, 20, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Hayden, P.J.; Roddie, C.; Bader, P.; Basak, G.W.; Boning, H.; Bonini, C.; Chabannon, C.; Ciceri, F.; Corbacioglu, S.; Ellard, R.; et al. Management of adults and children receiving CAR T-cell therapy: 2021 best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE) and the European Haematology Association (EHA). Ann. Oncol. 2022, 33, 259–275. [Google Scholar]
- Lopci, E.; Meignan, M. Current Evidence on PET Response Assessment to Immunotherapy in Lymphomas. PET Clin. 2020, 15, 23–34. [Google Scholar] [CrossRef]
- Cheson, B.D.; Fisher, R.I.; Barrington, S.F.; Cavalli, F.; Schwartz, L.H.; Zucca, E.; Lister, T.A.; Alliance, Australasian Leukaemia and Lymphoma Group; Eastern Cooperative Oncology Group; European Mantle Cell Lymphoma Consortium; et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: The Lugano classification. J. Clin. Oncol. 2014, 32, 3059–3068. [Google Scholar] [CrossRef]
- Ruff, A.; Ballard, H.J.; Pantel, A.R.; Namoglu, E.C.; Hughes, M.E.; Nasta, S.D.; Chong, E.A.; Bagg, A.; Ruella, M.; Farwell, M.D.; et al. 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Following Chimeric Antigen Receptor T-cell Therapy in Large B-cell Lymphoma. Mol. Imaging Biol. 2021, 23, 818–826. [Google Scholar] [CrossRef]
- Jain, T.; Bar, M.; Kansagra, A.; Chong, E.A.; Hashmi, S.K.; Neelapu, S.S.; Byrne, M.; Jacoby, E.; Lazaryan, A.; Jacobson, C.A.; et al. Use of chimeric antigen receptor T cell therapy in clinical practice for relapsed/refractory aggressive B cell non-Hodgkin lymphoma: An expert panel opinion from the American Society for Transplantation and Cellular Therapy. Biol. Blood Marrow Transpl. 2019, 25, 2305–2321. [Google Scholar] [CrossRef]
- Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.G.; Giammarile, F.; Tatsch k Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; Stroobants, S.; et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 328–354. [Google Scholar] [CrossRef]
- Yakoub-Agha, I.; Chabannon, C.; Bader, P.; Basak, G.W.; Bonig, H.; Ciceri, F.; Corbacioglu, S.; Duarte, R.F.; Einsele, H.; Hudecek, M.; et al. Management of adults and children undergoing chimeric antigen receptor T-cell therapy: Best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE). Haematologica 2020, 105, 297–316. [Google Scholar] [CrossRef] [PubMed]
- Breen, W.G.; Hathcock, M.A.; Young, J.R.; Kowalchuk, R.O.; Bansal, R.; Khurana, A.; Bennani, N.N.; Paludo, J.; Villasboas Bisneto, J.C.; Wang, Y.; et al. Metabolic characteristics and prognostic differentiation of aggressive lymphoma using one-month post-CAR-T FDG PET/CT. J. Hematol. Oncol. 2022, 15, 36. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, C.; Hüttmann, A.; Müller, S.P.; Hanoun, M.; Boellaard, R.; Brinkmann, M.; Jöckel, K.H.; Dührsen, U.; Rekowski, J. Dynamic risk assessment based on positron emission tomography scanning in difuse large B-cell lymphoma: Post-hoc analysis from the PETAL trial. Eur. J. Cancer 2020, 1, 25–36. [Google Scholar] [CrossRef]
- Casasnovas, R.O.; Meignan, M.; Berriolo-Riedinger, A.; Bardet, S.; Julian, A.; Thieblemont, C.; Vera, P.; Bologna, S.; Brière, J.; Jais, J.P.; et al. SUVmax reduction improves early prognosis value of interim positron emission tomography scans in difuse large B-cell lymphoma. Blood J. Am. Soc. Hematol. 2011, 118, 37–43. [Google Scholar]
- Toledano, M.N.; Vera, P.; Tilly, H.; Jardin, F.; Becker, S. Comparison of therapeutic evaluation criteria in FDG PET/CT in patients with difuse large-cell B-cell lymphoma: Prognostic impact of tumor/ liver ratio. PLoS ONE 2019, 14, e0211649. [Google Scholar]
- Li, X.; Sun, X.; Li, J.; Liu, Z.; Mi, M.; Zhu, F.; Wu, G.; Lan, X.; Zhang, L. Interim PET/CT based on visual and semiquantitative analysis predicts survival in patients with difuse large B-cell lymphoma. Cancer Med. 2019, 8, 5012–5022. [Google Scholar] [CrossRef] [PubMed]
- Meignan, M.; Gallamini, A.; Meignan, M.; Gallamini, A.; Haioun, C. Report on the first international workshop on interim-PET scan in lymphoma. Leuk. Lymphoma 2009, 50, 1257–1260. [Google Scholar] [CrossRef]
- Ilyas, H.; Mikhaeel, N.G.; Dunn, J.T.; Rahman, F.; Møller, H.; Smith, D.; Barrington, S.F. Defining the optimal method for measuring baseline metabolic tumour volume in diffuse large B cell lymphoma. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1142–1154. [Google Scholar] [CrossRef]
- Cottereau, A.S.; Buvat, I.; Kanoun, S.; Versari, A.; Casasnovas, O.; Chauvie, S.; Clerc, J.; Gallamini, A.; Meignan, M. Is there an optimal method for measuring baseline metabolic tumor volume in diffuse large B cell lymphoma? Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1463–1464. [Google Scholar] [CrossRef]
- Shah, N.N.; Nagle, S.J.; Torigian, E.A.; Farwell, M.D.; Hwang, W.T.; Frey, N.; Nasta, S.D.; Landsburg, D.; Mato, A.; June, C.H.; et al. Early positron emission tomography/computed tomography as a predictor of response after CTL019 chimeric antigen receptor -T-cell therapy in B-cell non-Hodgkin lymphomas. Cytotherapy 2018, 20, 1415–1418. [Google Scholar] [CrossRef]
- Wang, J.; Hu, Y.; Yang, S.; Wei, G.; Zhao, X.; Wu, W.; Zhang, Y.; Zhang, Y.; Chen, D.; Wu, Z.; et al. Role of Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Predicting the Adverse Effects of Chimeric Antigen Receptor T Cell Therapy in Patients with Non-Hodgkin Lymphoma. Biol. Blood Marrow Transpl. 2019, 25, 1092–1098. [Google Scholar] [CrossRef]
- Dean, E.A.; Mhaskar, R.S.; Lu, H.; Mousa, M.S.; Krivenko, G.S.; Lazaryan, A.; Bachmeier, C.A.; Chavez, J.C.; Nishihori, T.; Davila, M.L.; et al. High metabolic tumor volume is associated with decreased efficacy of axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv. 2020, 4, 3268–3276. [Google Scholar] [CrossRef]
- Vercellino, L.; Di Blasi, R.; Kanoun, S.; Tessoulin, B.; Rossi, C.; D’Aveni-Piney, M.; Obéric, L.; Bodet-Milin, C.; Bories, P.; Olivier, P.; et al. Predictive factors of early progression after CAR T-cell therapy in relapsed/refractory diffuse large B-cell. Blood Adv. 2020, 4, 5607–5615. [Google Scholar] [CrossRef] [PubMed]
- Hong, R.; Tan Su Yin, E.; Wang, L.; Zhao, X.; Zhou, L.; Wang, G.; Zhang, M.; Zhao, H.; Wei, G.; Wang, Y.; et al. Tumor Burden Measured by 18F-FDG PET/CT in Predicting Efficacy and Adverse Effects of Chimeric Antigen Receptor T-Cell Therapy in Non-Hodgkin Lymphoma. Front. Oncol. 2021, 11, 713577. [Google Scholar] [CrossRef]
- Figura, N.B.; Robinson, T.; Sim, A.J.; Wang, X.; Cao, B.; Chavez, J.C.; Shah, B.D.; Khimani, F.; Lazaryan, A.; Davila, M.; et al. Patterns and Predictors of Failure in Recurrent or Refractory Large B-Cell Lymphomas After Chimeric Antigen Receptor T-Cell Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, 1145–1154. [Google Scholar] [CrossRef] [PubMed]
- Sesques, P.; Tordo, J.; Ferrant, E.; Safar, V.; Wallet, F.; Dhomps, A.; Brisou, G.; Bouafia, F.; Karlin, L.; Ghergus, D.; et al. Prognostic Impact of 18F-FDG PET/CT in Patients with Aggressive B-Cell Lymphoma Treated With Anti-CD19 Chimeric Antigen Receptor T Cells. Clin. Nucl. Med. 2021, 46, 627–634. [Google Scholar] [CrossRef]
- Derlin, T.; Schultze-Florey, C.; Werner, R.A.; Möhn, N.; Skripuletz, T.; David, S.; Beutel, G.; Eder, M.; Ross, T.L.; Bengel, F.M.; et al. 18F-FDG PET/CT of of-target lymphoid organs in CD19-targeting chimeric antigen receptor T-cell therapy for relapsed or refractory diffuse large B-cell lymphoma. Ann. Nucl. Med. 2021, 35, 132–138. [Google Scholar] [CrossRef]
- Iacoboni, G.; Simò, M.; Villacampa, G.; Català, E.; Carpio, C.; Dìaz-Lagres, C.; Vidal-Jordana, Á.; Bobillo, S.; Marín-Niebla, A.; Pérez, A.; et al. Prognostic impact of total metabolic tumor volume in large B-cell lymphoma patients receiving CAR T-cell therapy. Ann. Hematol. 2021, 100, 2303–2310. [Google Scholar] [CrossRef]
- Cohen, D.; Luttwak, E.; Beyar-Katz, O.; Krauthammer, S.H.; Bar-On, Y.; Amit, O.; Amit, O.; Gold, R.; Perry, C.; Avivi, I.; et al. [18F]FDG PET/CT in patients with DLBCL treated with CAR-T cell therapy: A practical approach of reporting pre- and post-treatment studies. Eur. J. Nucl. Med. Mol. Imaging. 2022, 49, 953–962. [Google Scholar] [CrossRef]
- Kuhnl, A.; Roddie, C.; Kirkwood, A.A.; Menne, T.; Cuadrado, M.; Marzolini, M.; Osborne, W.; Sanderson, R.; O’Reilly, M.; Townsend, W.; et al. Early FDG-PET response predicts CAR-T failure in large B-cell lymphoma. Blood Adv. 2022, 6, 321–326. [Google Scholar] [CrossRef]
- Bailly, C.; Carlier, T.; Tessoulin, B.; Gastinne, T.; Kraeber-Bodere, F.; Le Gouill, S.; Bodet-Milin, C. Prognostic value of FDG-PET/CT response for patient selection before chimeric antigen receptor-T-cells therapy in non-Hodgkin lymphoma. Hematol. Oncol. 2022, 1–5. [Google Scholar] [CrossRef]
- Voorhees, T.J.; Zhao, B.; Oldan, J.; Hucks, G.; Khandani, A.; Dittus, C.; Smith, J.; Morrison, J.K.; Cheng, C.J.; Ivanova, A.; et al. Pretherapy metabolic tumor volume is associated with response to CD30 CAR T cells in Hodgkin lymphoma. Blood Adv. 2022, 6, 1255–1263. [Google Scholar] [CrossRef]
- Zhou, C.; Li, J.; Zhang, X.; Jia, T.; Zhang, B.; Dai, N.; Sang, S.; Deng, S. Prognostic Value of Radiomic Features of 18F-FDG PET/CT in Patients With B-Cell Lymphoma Treated with CD19/CD22 Dual-Targeted Chimeric Antigen Receptor T Cells. Front. Oncol. 2022, 12, 834288. [Google Scholar] [CrossRef]
- Galtier, J.; Vercellino, L.; Chartier, L.; Olivier, P.; Tabouret-Viaud, C.; Mesguich, C.; Di Blasi, R.; Durand, A.; Raffy, L.; Gros, F.X.; et al. PET-imaging assessment for guiding strategy in patients with relapsed/refractory large B-cell lymphoma receiving CAR T-cell. Haematologica, 2022; online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Al Zaki, A.; Feng, L.; Watson, G.; Ahmed, S.A.; Mistry, H.; Nastoupil, L.J.; Hawkins, M.; Nair, R.; Iyer, S.P.; Lee, H.J.; et al. Day 30 SUVmax predicts progression in patients with lymphoma achieving PR/SD after CAR T-cell therapy. Blood Adv. 2022, 6, 2867–2871. [Google Scholar] [CrossRef]
- Byrne, M.; Oluwole, O.O.; Savani, B.; Majhail, N.S.; Hill, B.T.; Locke, F.L. Understanding and Managing Large B Cell Lymphoma Relapses after Chimeric Antigen Receptor T Cell Therapy. Biol. Blood Marrow Transpl. 2019, 25, e344–e351. [Google Scholar] [CrossRef]
- Lopci, E.; Hicks, R.J.; Dimitrakopoulou-Strauss, A.; Dercle, L.; Iravani, A.; Seban, R.D.; Sachpekidis, C.; Humbert, O.; Gheysens, O.; Glaudemans, A.W.J.M.; et al. Joint EANM/SNMMI/ANZSNM practice guidelines/procedure standards on recommended use of [18F]FDG PET/CT imaging during immunomodulatory treatments in patients with solid tumors version 1.0. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2323–2341. [Google Scholar] [CrossRef]
- Danyelesko, I.; Shouval, R.; ShemTov, N.; Yeryshalmi, R.; Jacoby, E.; Besser, M.J.; Shimoni, A.; Davidson, T.; Beider, K.; Mevorach, D.; et al. Immune imitation of tumor progression after anti-CD19 chimeric antigen receptor T cells treatment in aggressive B-cell. Bone Marrow Transpl. 2021, 56, 1134–1143. [Google Scholar] [CrossRef]
- Sanmamed, M.F.; Carranza-Rua, O.; Alfaro, C.; Onate, C.; MartinAlgarra, S.; Perez, G.; Landazuri, S.F.; Gonzalez, A.; Gross, S.; Rodriguez, I.; et al. Serum interleukin-8 reflects tumor burden and treatment response across malignancies of multiple tissue origins. Clin. Cancer Res. 2014, 20, 5697–5707. [Google Scholar] [CrossRef]
- Sanmamed, M.F.; Perez-Gracia, J.L.; Schalper, K.A.; Fusco, J.P.; Gonzalez, A.; Rodriguez-Ruiz, M.E.; Oñate, C.; Perez, G.; Alfaro, C.; Martín-Algarra, S.; et al. Changes in serum interleukin-8 (IL-8) levels reflect and predict response to anti-PD1 treatment in melanoma and non-small-cell lung cancer patients. Ann. Oncol. 2017, 28, 1988–1995. [Google Scholar] [CrossRef]
- Boursier, C.; Perrin, M.; Bordonne, M.; Campidelli, A.; Verger, A. Early 18F-FDG PET Flare-up Phenomenon After CAR T-Cell Therapy in Lymphoma. Clin. Nucl. Med. 2022, 47, e152–e153. [Google Scholar] [CrossRef]
- Choen, D.; Beyar-Katz, O.; Even-Sapir, E.; Perry, C.; Perry, C. Lymphoma pseudoprogression observed on [18F]FDG PET-CT scan 15 days after CAR-T infusion. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2447–2449. [Google Scholar]
- June, C.H.; Sadelain, M. Chimeric Antigen Receptor Therapy. N. Eng. J. Med. 2018, 379, 64–73. [Google Scholar] [CrossRef]
- Muller, P.Y.; Milton, M.N. The determination and interpretation of the therapeutic index in drug development. Nat. Rev. Drug. Discov. 2012, 11, 751–761. [Google Scholar] [CrossRef]
- Sheth, V.; Gauthier, J. Taming the Beast: CRS and ICANS after CAR T-cell therapy for ALL. Bone Marrow Transpl. 2021, 56, 552–566. [Google Scholar] [CrossRef]
- Wu, X.; Pertovaara, H.; Korkola, P.; Vornanen, M.; Eskola, H.; Kellokumpu-Lehtinen, P.-L. Glucose metabolism correlated with cellular proliferation in diffuse large B-cell lymphoma. Leuk. Lymphoma 2012, 53, 400–405. [Google Scholar] [CrossRef]
- Giavridis, T.; Van Der Stegen, S.J.C.; Eyquem, J.; Hamieh, M.; Piersigilli, A.; Sadelain, M. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat. Med. 2018, 24, 731–738. [Google Scholar] [CrossRef]
- Brudno, J.N.; Kochenderfer, J.N. Recent advances in CAR T-cell toxicity: Mechanisms, manifestations and management. Blood Rev. 2019, 34, 45–55. [Google Scholar] [CrossRef]
- Schuster, S.J.; Svoboda, J.; Chong, E.A.; Nasta, S.D.; Mato, A.R.; Anak, O.; Brogdon, J.L.; Pruteanu-Malinici, I.; Bhoj, V.; Landsburg, D.; et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N. Engl. J. Med. 2017, 377, 2545–2554. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.W.; Santomasso, B.D.; Locke, F.L.; Ghobadi, A.; Turtle, C.J.; Brudno, J.N.; Maus, M.V.; Park, J.H.; Mead, E.; Pavletic, S.; et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol. Blood. Marrow Transpl. 2019, 25, 625–638. [Google Scholar] [CrossRef]
- Tallantyre, E.C.; Evans, N.A.; Parry-Jones, J.; Morgan, M.P.G.; Jones, C.H.; Ingram, W. Neurological updates: Neurological complications of CAR-T therapy. J. Neurol. 2021, 268, 1544–1554. [Google Scholar] [CrossRef]
- Lotan, E.; Friedman, K.P.; Davidson, T.; Shepherd, T.M. Brain 18F-FDG PET/CT: Utility in the Diagnosis of Dementia and Epilepsy. Isr. Med. Assoc. J. 2022, 22, 178–184. [Google Scholar]
- Nestor, P.J.; Altomare, D.; Festari, C.; Drzezga, A.; Rivolta, J.; Walker, Z.; Bouwman, F.; Orini, S.; Law, I.; Agosta, F.; et al. Clinical Utility of FDG PET/CT for the differential diagnosis among the mail forms of dementia. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1509–1525. [Google Scholar] [CrossRef] [PubMed]
- Daniel, B.R.; Danish, H.H.; Ali, A.B.; Li, K.; LaRose, S.; Monk, A.D.; Cote, D.J.; Spendley, L.; Kim, A.H.; Robertson, M.S.; et al. Neurological toxicities associated with chimeric antigen receptor T-cell therapy. Brain 2019, 142, 1334–1348. [Google Scholar]
- Paccagnella, A.; Farolf, A.; Casadei, B.; Garibotto, V.; Zinzani, P.; Fanti, S. [18F]FDG PET/CT for early response and brain metabolic pattern assessment after CAR-T cell therapy in a difuse large B cell lymphoma patient with ICANS. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 1090–1091. [Google Scholar] [CrossRef]
- Vernier, V.; Ursu, R.; Belin, C.; Maillet, D.; Thieblemont, C.; Carpentier, A.F. Hypometabolism on brain FDG PET/CT as a marker for neurotoxicity after CAR T-cell therapy: A case report. Rev. Neurol. 2022, 178, 282–284. [Google Scholar] [CrossRef]
- ACR Guidelines and Standards Committee. ACR-SPR Practice Parameter for Performing FDG-PET/CT in Oncology. American College of Radiology; 2014. Available online: http://www.acr.org/~/media/71B746780F934F6D8A1BA5CCA5167EDB.pdf (accessed on 29 March 2022).
Agency | Drug | Product/Campany | Indications |
---|---|---|---|
FDA | Tisagenlecleucel | Kymriah (Novartis Pharmaceuticals Corp.) |
|
Axicabtagene ciloleucel | Yescarta (Kite Pharma, Inc.) |
| |
Brexucabtagene autoleucel | Tecartus (Kite Pharma, Inc.) |
| |
Lisocabtagene maraleucel | Breyanzi (Therapeutics, Inc.) |
| |
EMA | Tisagenlecleucel | Kymriah (Novartis Pharmaceuticals Corp.) |
|
Axicabtagene ciloleucel | Yescarta (Kite Pharma, Inc.) |
| |
Brexucabtagene autoleucel | Tecartus (Kite Pharma, Inc.) |
| |
Lisocabtagene maraleucel | Breyanzi (Therapeutics, Inc.) |
|
Authors | Study Type | Patients Number | Histologic Subtype | Treatment | Response Criteria | Main Findings |
---|---|---|---|---|---|---|
Shah et al. [40] 2018 | Prospective | 7 | DLBCL, FL | CTL019 CAR-T | Lugano | Patients with no residual MTV at M1 PET/CT remained in remission > 2 years post-treatment |
Wang et al. [41] 2019 | Retrospective | 19 | DLBCL, FL | CD19 CAR-T | PERCIST | Higher disease burden at baseline (MTV and TLG) was associted with a higher risk of severe CRS (grade 3 to 4) |
Dean et al. [42] 2020 | Retrospective | 96 | LBCL, PMBCL | CD19 CAR-T | Clinical response | Baseline MTV is associated with OS and PFS |
Vercellino et al. [43] 2020 | Retrospective | 116 | DLBCL | CD19 CAR T | Lugano | TMTV resulted as one of the risk factors for early progression |
Hong et al. [44] 2021 | Retrospective | 41 | NHL | CD19 CAR-T | Lugano | Early post-therapy SUVavg and MTV resulted independent risk factors to OS and PFS. High baseline tumor burdens resulted significantly associated to increased CRS and cytokine levels. |
Figura et al. [45] 2021 | Retrospective | 63 | DLBCL, FL, PMBCL | CD19 CAR-T | Cheson | Lesions at increased risk of local failure resulted with diameter ≥ 5 cm, SUVmax ≥ 10, or extranodal |
Sesques et al. [46] 2021 | Retrospective | 72 | DLBCL, PMBCL, trFL, trMZL | CD19 CAR-T | Lugano | Metabolic volume kinetics before CAR T resulted superior to initial tumor bulk for the prediction of the PFS, whereas SUVmax (cut-off 14) at first post-CAR-T evaluation resulted independently related to OS. |
Derlin et al. [47] 2021 | Retrospective | 10 | DLBCL, trFL, | CD19 CAR-T | Lugano | To obtain remission an early metabolic response at M1 is required. Poor outcome was associated with an early suppression of the metabolic activity in lymphoid organs, such as spleen or lymph nodes |
Iacoboni et al. [48] 2021 | Retrospective | 35 | LBCL | CD19 CAR-T | Lugano | High baseline TMTV (≥25 cm3) was associated with shorter PFS |
Ruff et al. [28] 2021 | Retrospective | 43 | LBCL | CD19 CAR-T | Lugano | At the time of first response assessment, lesional sensitivity and specificity were 99% and 100%, respectively |
Cohen et al. [49] 2022 | Retrospective | 48 | DLBCL | CD19 CAR-T | N/A | At M1 post-CAR-T DS > 3 and ΔSUVmax ≤ 66% were predictive to OS. |
Kuhnl et al. [50] 2022 | Retrospective | 171 | LBCL | CD19 CAR-T | DS | DS response at M1 PET/CT was independent predictor to time to relapse |
Bailly et al. [51] 2022 | Retrospective | 40 | NHL | CD19 CAR-T | Lugano, | FDG-PET pre-infusion predicted EFS and CAR-T cells response. |
Voorhees et al. [52] 2022 | Prospective | 27 | HL | CD30 CAR-T | Lugano | Shorter PFS was associated with a high MTV before lymphodepletion and CD30 CAR-T cell infusion. |
Zhou et al. [53] 2022 | Retrospective | 24 | DLBCL, BL, trFL | CD19/CD22 CAR-T | N/A | Radiomic features at baseline could predict the PFS and OS. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Linguanti, F.; Abenavoli, E.M.; Berti, V.; Lopci, E. Metabolic Imaging in B-Cell Lymphomas during CAR-T Cell Therapy. Cancers 2022, 14, 4700. https://doi.org/10.3390/cancers14194700
Linguanti F, Abenavoli EM, Berti V, Lopci E. Metabolic Imaging in B-Cell Lymphomas during CAR-T Cell Therapy. Cancers. 2022; 14(19):4700. https://doi.org/10.3390/cancers14194700
Chicago/Turabian StyleLinguanti, Flavia, Elisabetta Maria Abenavoli, Valentina Berti, and Egesta Lopci. 2022. "Metabolic Imaging in B-Cell Lymphomas during CAR-T Cell Therapy" Cancers 14, no. 19: 4700. https://doi.org/10.3390/cancers14194700
APA StyleLinguanti, F., Abenavoli, E. M., Berti, V., & Lopci, E. (2022). Metabolic Imaging in B-Cell Lymphomas during CAR-T Cell Therapy. Cancers, 14(19), 4700. https://doi.org/10.3390/cancers14194700