CD20 Expression as a Possible Novel Prognostic Marker in CLL: Application of EuroFlow Standardization Technique and Normalization Procedures in Flow Cytometric Expression Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Samples
2.2. Molecular Response Scoring
2.3. Flow Cytometric MRD Assessment
2.4. Determination of Flow Cytometric Measurement Variability
2.5. Statistical Analyses
3. Results
3.1. Longitudinal Variability of Fluorescence Intensities of Fluorochrome-Conjugated Beads
3.2. Bead-Based Normalization for Cantoii Data—Proof of Principle across MFI Range
3.3. Sources of Variance in Flow Cytometric Measurements
3.4. CD20 Expression before Therapy—Applying Normalization
3.5. CD20 Expression under Anti-CD20 Maintenance Therapy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pavlasova, G.; Mraz, M. The regulation and function of CD20: An “enigma” of B-cell biology and targeted therapy. Haematologica 2020, 105, 1494–1506. [Google Scholar] [CrossRef] [PubMed]
- Beers, S.A.; French, R.R.; Chan, H.T.C.; Lim, S.H.; Jarrett, T.C.; Vidal, R.M.; Wijayaweera, S.S.; Dixon, S.V.; Kim, H.; Cox, K.L.; et al. Antigenic modulation limits the efficacy of anti-CD20 antibodies: Implications for antibody selection. Blood 2010, 115, 5191–5201. [Google Scholar] [CrossRef] [PubMed]
- Patz, M.; Isaeva, P.; Forcob, N.; Müller, B.; Frenzel, L.P.; Wendtner, C.M.; Klein, C.; Umana, P.; Hallek, M.; Krause, G. Comparison of the in vitro effects of the anti-CD20 antibodies rituximab and GA101 on chronic lymphocytic leukaemia cells. Br. J. Haematol. 2011, 152, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Bologna, L.; Gotti, E.; Manganini, M.; Rambaldi, A.; Intermesoli, T.; Introna, M.; Golay, J. Mechanism of Action of Type II, Glycoengineered, Anti-CD20 Monoclonal Antibody GA101 in B-Chronic Lymphocytic Leukemia Whole Blood Assays in Comparison with Rituximab and Alemtuzumab. J. Immunol. 2011, 186, 3762–3769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bologna, L.; Gotti, E.; da Roit, F.; Intermesoli, T.; Rambaldi, A.; Introna, M.; Golay, J. Ofatumumab Is More Efficient than Rituximab in Lysing B Chronic Lymphocytic Leukemia Cells in Whole Blood and in Combination with Chemotherapy. J. Immunol. 2013, 190, 231–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jilani, I.; O’Brian, S.; Manshuri, T.; Thomas, D.A.; Thomazy, V.A.; Imam, M.; Naeem, S.; Verstovsek, S.; Kantarjian, H.; Giles, F.; et al. Transient down-modulation of CD20 by rituximab in patients with chronic lymphocytic leukemia. Blood 2003, 102, 3514–3520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, T.A.; Czerwinskim, D.K.; Levy, R. Therapy of B-cell lymphoma with anti-CD20 antibodies can result in the loss of CD20 antigen expression. Clin. Cancer Res. 1999, 5, 611–615. [Google Scholar]
- D’Auria, G.; Guariglia, R.; Villani, O.; Mansueto, G.; Grieco, V.; Zonno, A.; Bianchino, G.; Di Giovannantonio, L.; Vita, G.; Musot, P. Modulation of CD20 antigen expression after rituximab treatment: A retrospective study in patients with chronic lymphocytic leukemia. Clin. Ther. 2010, 32, 1911–1916. [Google Scholar] [CrossRef]
- Hallek, M.; Cheson, B.D.; Catosky, D.; Caligaris-Cappio, F.; Dighiero, G.; Döhner, H.; Hillmen, P.; Keating, M.; Montserrat, E.; Chiorazzi, N.; et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood 2018, 31, 2745–2760. [Google Scholar] [CrossRef] [Green Version]
- Boettcher, S.; Stilgenbauer, S.; Busch, R.; Brüggemann, M.; Raff, T.; Pott, C.; Fischer, K.; Fingerle-Rowson, G.; Döhner, H.; Hallek, M.; et al. 2009 Standardized MRD flow and ASO IGH RQ-PCR for MRD quantification in CLL patients after rituximab-containing immunochemotherapy: A comparative analysis. Leukemia 2009, 23, 2007–2017. [Google Scholar] [CrossRef] [Green Version]
- Emond, B.; Sundaram, M.; Romdhani, H.; Lefebvre, P.; Wang, S.; Mato, A. Comparison of Time to Next Treatment, Health Care Resource Utilization, and Costs in Patients with Chronic Lymphocytic Leukemia Initiated on Front-line Ibrutinib or Chemoimmunotherapy. Clin. Lymphoma Myeloma Leuk. 2019, 19, 763–767. [Google Scholar] [CrossRef] [PubMed]
- Keeney, M.; Gratama, J.W.; Chin-yee, I.H.; Sutherland, D.R. Isotype controls in the analysis of lymphocytes and CD34+ stem and progenitor cells by flow cytometry--time to let go! Cytometry 1998, 34, 280–283. [Google Scholar] [CrossRef]
- D’harcourt, J.L. Quantitative Flow Cytometric Analysis of Membrane Antigen Expression. Curr. Protoc. Cytom. 2002, 22, 6–12. [Google Scholar] [CrossRef]
- Dendrou, C.A.; Fung, E.; Esposito, L.; Todd, J.A.; Wicker, L.S.; Plagnol, V. Fluorescence Intensity Normalisation: Correcting for Time Effects in Large-Scale Flow Cytometric Analysis. Adv. Bioinform. 2009, 2009, 476106. [Google Scholar] [CrossRef] [Green Version]
- Kalina, T.; Flores-Montero, J.; van der Velden, V.H.J.; Martin-Ayuso, M.; Böttcher, S.; Ritgen, M.; Almeida, J.; Lhermitte, L.; Asnafi, V.; Mendonça, A.; et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia 2012, 26, 1986–2010. [Google Scholar] [CrossRef] [Green Version]
- Novakova, M.; Glier, H.; Brdičková, N.; Vlková, M.; Santos, A.H.; Lima, M.; Roussel, M.; Flores-Montero, J.; Szczepanski, T.; Böttcher, S.; et al. How to make usage of the standardized EuroFlow 8-color protocols possible for instruments of different manufacturers. J. Immunol. Methods 2019, 475, 112388. [Google Scholar] [CrossRef]
- Le Lann, L.; Jouve, P.E.; Alarcón-Riquelme, M.; Jamin, C.; Pers, J.O. Standardization procedure for flow cytometry data harmonization in prospective multicenter studies. Sci. Rep. 2020, 10, 11567. [Google Scholar] [CrossRef]
- Finak, G.; Jiang, W.; Krouse, K.; Wei, C.; Sanz, I.; Phippard, D.; Asare, A.; De Rosa, S.C.; Self, S.; Gottardo, R. High-Throughput Flow Cytometry Data Normalization for Clinical Trials. Cytom. A 2014, 85A, 277–285. [Google Scholar] [CrossRef] [Green Version]
- Stuchly, J.; Kalina, T. Analyses of Large Flow Cytometry Datasets. Cytom. A 2014, 85 A, 203–205. [Google Scholar] [CrossRef] [Green Version]
- Rebhahn, J.A.; Quataert, S.A.; Sharma, G.; Mosmann, T.R. SwiftReg cluster registration automatically reduces flow cytometry data variability including batch effects. Commun. Biol. 2020, 3, 218. [Google Scholar] [CrossRef]
- Cramer, P.; von Tresckow, J.; Robrecht, S.; Bahlo, J.; Fürstenau, M.; Langerbeins, P.; Pflug, N.; Al-Sawaf, O.; Heinz, W.J.; Vehling-Kaiser, U.; et al. Bendamustine, followed by Ofatumumab and ibrutinib in chronic lymphocytic leukemia (CLL2-BIO): Primary endpoint analysis of a multicentre, open-label phase-II trial. Haematologica 2020, 106, 543–554. [Google Scholar] [CrossRef]
- Cramer, P.; von Tresckow, J.; Bahlo, J.; Robrecht, S.; Langerbeins, P.; Al-Sawaf, O.; Engelke, A.; Fink, A.M.; Fischer, K.; Tausch, E.; et al. Bendamustine followed by Obinutuzumab and venetoclax in chronic lymphocytic leukaemia (CLL2-BAG): Primary endpoint analysis of a multicentre, open-label, phase 2 trial. Lancet Oncol. 2018, 19, 1215–1228. [Google Scholar] [CrossRef]
- Von Tresckow, J.; Cramer, P.; Bahlo, J.; Robrecht, S.; Langerbeins, P.; Fink, A.M.; Al-Sawaf, O.; Illmer, T.; Klaproth, H.; Estenfelder, S.; et al. CLL2-BIG: Sequential treatment with bendamustine, ibrutinib and Obinutuzumab (GA101) in chronic lymphocytic leukemia. Leukemia 2019, 33, 1161–1172. [Google Scholar] [CrossRef] [PubMed]
- Cramer, P.; von Tresckow, J.; Fink, A.-M.; Braun, G.; Robrecht, S.; Zhang, C.; Tausch, E.; Müller, L.; Knauf, W.; Al-Sawaf, O.; et al. Bendamustine Followed by Obinutuzumab and Idelalisib in Patients with Chronic Lymphocytic Leukemia (CLL): CLL2-BCG Trial of the German CLL Study Group (GCLLSG). Blood 2020, 136 (Suppl. 1), 21–23. [Google Scholar] [CrossRef]
- Prevodnik, V.K.; Lavrenčak, J.; Horvat, M.; Novakovič, B.J. The predictive significance of CD20 expression in B-cell lymphomas. Diagn. Pathol. 2011, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Tam, C.S.; Otero-Palacios, J.; Abruzzo, L.V.; Jorgensen, J.L.; Ferrajoli, A.; Wierda, W.G.; Lerner, S.; O’Brian, S.; Keating, M.J. Chronic lymphocytic leukaemia CD20 expression is dependent on the genetic subtype: A study of quantitative flow cytometry and fluorescent in-situ hybridization in 510 patients. Br. J. Haematol. 2008, 141, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Hsi, E.D.; Kopecky, K.J.; Appelbaum, F.R.; Boldt, D.; Frey, T.; Loftus, M.; Hussein, M.A. Prognostic significance of CD38 and CD20 expression as assessed by quantitative flow cytometry in chronic lymphocytic leukaemia. Br. J. Haematol. 2003, 120, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Zhuang, Y.; Wang, L.; Fan, L.; Wu, Y.J.; Zhang, R.; Zou, Z.J.; Zhang, L.N.; Yang, S.; Xu, W.; et al. High levels of CD20 expression predict good prognosis in chronic lymphocytic leukemia. Cancer Sci. 2013, 104, 996–1001. [Google Scholar] [CrossRef] [PubMed]
- Rawstron, A.C.; Villamor, N.; Ritgen, M.; Böttcher, S.; Ghia, P.; Zehnder, J.L.; Lozanski, G.; Colomer, D.; Moreno, C.; Geuna, M.; et al. International standardized approach for flow cytometric residual disease monitoring in chronic lymphocytic leukaemia. Leukemia 2007, 21, 956–964. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 19 April 2022).
- RStudio Team. RStudio: Integrated Development Environment for R; RStudio, PBC: Boston, MA, USA, 2021; Available online: http://www.rstudio.com/ (accessed on 19 April 2022).
- Chavent, M.; Kuentz-Simonet, V.; Labenne, A.; Saracco, J. Multivariate analysis of mixed data: The PCAmixdata R package. arXiv 2014. [CrossRef]
- El Hentati, F.Z.; Gruy, F.; Iobagiu, C.; Lambert, C. Variability of CD3 Membrane Expression and T Cell Activation Capacity. Cytometry B 2010, 78B, 105–114. [Google Scholar] [CrossRef]
- D’Arena, G.; Musto, P.; Cascavilla, N.; Dell’Olio, M.; Di Renzo, N.; Carotenuto, M. Quantitative Flow Cytometry for the Differential Diagnosis of Leukemic B-Cell Chronic Lymphoproliferative Disorders. Am. J. Hematol. 2000, 64, 275–281. [Google Scholar] [CrossRef]
- Pozzo, F.; Bittolo, T.; Arruga, F.; Bulian, P.; Macor, P.; Tissino, E.; Gizdic, G.; Rossi, F.M.; Bomben, R.; Zucchetto, A.; et al. NOTCH1 mutations associate with low CD20 level in chronic lymphocytic leukemia: Evidence for a NOTCH1 mutation-driven epigenetic dysregulation. Leukemia 2016, 30, 182–189. [Google Scholar] [CrossRef]
- Bittolo, T.; Pozzo, F.; Bomben, R.; D’Agaro, T.; Bravin, V.; Bulian, P.; Rossi, F.M.; Zucchetto, A.; Degan, M.; Macor, P.; et al. Mutations in the 3′ untranslated region of NOTCH1 are associated with low CD20 expression levels chronic lymphocytic leukemia. Haematologica 2017, 102, e305–e309. [Google Scholar] [CrossRef] [PubMed]
- Kalina, T.; Flores-Montero, J.; Lecrevisse, Q.; Pedreira, C.E.; van der Velden, V.H.J.; Novakova, M.; Mejstrikova, E.; Hrusak, O.; Böttcher, S.; Karsch, D.; et al. Quality Assessment Program for EuroFlowProtocols: Summary Results of Four-Year (2010–2013) Quality Assurance Rounds. Cytometry A 2015, 87A, 145–156. [Google Scholar] [CrossRef]
- Bikoue, A.; George, F.; Poncelet, P.; Mutin, M.; Janossy, G.; Sampol, J. Quantitative Analysis of Leukocyte Membrane Antigen Expression: Normal Adult Values. Cytometry 1996, 26, 137–147. [Google Scholar] [CrossRef]
- Wang, L.; Stebbings, R.; Gaigalas, A.K.; Sutherland, J.; Kammel, M.; John, M.; Roemer, B.; Kuhne, M.; Schneider, R.J.; Braun, M.; et al. Quantification of Cells with Specific Phenotypes II: Determination of CD4 Expression Level on Reconstituted Lyophilized Human PBMC Labelled with Anti-CD4 FITC Antibody. Cytometry A 2015, 87A, 254–261. [Google Scholar] [CrossRef]
- Mizrahi, O.; Shalom, E.I.; Baniyash, M.; Klieger, Y. Quantitative Flow Cytometry: Concerns and Recommendations in Clinic and Research. Cytometry B 2018, 94B, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Yosifov, D.Y.; Wolf, C.; Stilgenbauer, S.; Mertens, D. From Biology to Therapy: The CLL Success Story. HemaSphere 2019, 3, 2. [Google Scholar] [CrossRef] [PubMed]
- Skarzynksi, M.; Niemann, C.U.; Shan Lee, Y.; Martyr, S.; Maric, I.; Salem, D.; Stetler-Stevenson, M.; Marti, G.E.; Calvo, K.R.; Yuan, C.; et al. Interactions between Ibrutinib and Anti-CD20 Antibodies: Competing Effects on the Outcome of Combination Therapy. Clin. Cancer Res. 2016, 22, 86–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyoshi, H.; Arakawa, F.; Sato, K.; Kimura, Y.; Kiyasu, J.; Takeuchi, M.; Yoshida, M.; Ichikawa, A.; Ishibahsi, Y.; Nakamura, Y.; et al. Comparison of CD20 expression in B-cell lymphoma between newly diagnosed, untreated cases and those after rituximab treatment. Cancer Sci. 2012, 103, 1567–1573. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Yoshida, T.; Wang, G.; Togano, T.; Miyamoto, S.; Miyazaki, K.; Iwabuchi, K.; Nakayama, M.; Horie, R.; Niitsu, N.; et al. Association of CD20 levels with clinicopathological parameters and its prognostic significance for patients with DLBCL. Ann. Hematol. 2012, 91, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Ginaldi, L.; de Martinis, M.; Matutes, E.; Farahat, N.; Morilla, N.; Catovsky, D. Levels of expression of CD19 and CD20 in chronic B cell leukaemias. J. Clin. Pathol. 1998, 51, 364–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olejniczak, S.H.; Stewart, C.C.; Donohue, K.; Czuczman, M.S. A quantitative exploration of surface antigen expression in common B-cell malignancies using flow cytometry. Immunol. Invest. 2006, 35, 93–114. [Google Scholar] [CrossRef] [PubMed]
- Freeman, C.L.; Dixon, M.; Houghton, R.; Kreuzer, K.A.; Fingerle-Rowson, G.; Herling, C.; Humphrey, K.; Böttcher, S.; de Costa, C.S.; Iglesias, V.; et al. Role of CD20 expression and other pre-treatment risk factors in the development of infusion-related reactions in patients with CLL treated with Obinutuzumab. Leukemia 2016, 30, 1763–1766. [Google Scholar] [CrossRef] [Green Version]
- Maddy, A.H.; Sanderson, A.; Mackie, M.J.; Smith, S.K. The role of cell maturation in the generation of phenotypic heterogeneity in B-cell chronic lymphocytic leukaemia. Immunology 1989, 68, 346–352. [Google Scholar] [PubMed]
- Bojarczuk, K.; Siernicka, M.; Dwojak, M.; Bobrowicz, M.; Pyrzynska, B.; Gaj, P.; Karp, M.; Giannopoulos, K.; Efremeov, D.G.; Fauriat, C.; et al. B-cell receptor pathway inhibitors affect CD20 levels and impair antitumor activity of anti-CD20 monoclonal antibodies. Leukemia 2014, 28, 1163–1167. [Google Scholar] [CrossRef]
- Herter, S.; Herting, F.; Mundigl, O.; Waldhauer, I.; Weinzierl, T.; Fauti, T.; Muth, G.; Ziegler-Landesberger, D.; van Puijenbroek, E.; Lang, S.; et al. Preclinical Activity of the Type II CD20 Antibody GA101 (Obinutuzumab) Compared with Rituximab and Ofatumumab In Vitro and in Xenograft Models. Mol. Cancer Ther. 2013, 12, 2031–2042. [Google Scholar] [CrossRef] [Green Version]
- Golay, J.; Lazzari, M.; Facchinetti, V.; Bernasconi, S.; Borleri, G.; Barbui, T.; Rambaldi, A.; Introna, M. CD20 levels determine the in vitro susceptibility to rituximab and complement of B-cell chronic lymphocytic leukemia: Further regulation by CD55 and CD59. Blood 2001, 98, 3383–3389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bondza, S.; ten Broeke, T.; Nestor, M.; Leusen, J.H.W.; Buijs, J. Bivalent binding on cells varies between anti-CD20 antibodies and is dose-dependent. MAbs 2020, 12, 1792673. [Google Scholar] [CrossRef] [PubMed]
- Engelberts, P.J.; Voorhorst, M.; Schuurman, J.; van Merten, T.; Bakker, J.M.; Vink, T.; Mackus, W.J.M.; Breij, E.C.W.; Derer, S.; Valerius, T.; et al. Type I CD20 Antibodies Recruit the B Cell Receptor for Complement-Dependent Lysis of Malignant B Cells. J. Immunol. 2016, 197, 4829–4837. [Google Scholar] [CrossRef] [PubMed]
Patient Groups Based on Molecular Response up to 1.5 Years of Maintenance Therapy in the Different Trial Schemes | ||||
---|---|---|---|---|
Deep Responder (uMRD) | Intermediate Responder (IR) | Limited Responder (LR) | Non-Responder (NR) | |
Sustained undetectable MRD (<10−4, uMRD) before/during 1.5 years maintenance therapy | Yes | No | No | No |
MRD reduction compared to timepoint before treatment | >4 LOG | 2–4 LOG | >1–3 LOG | ≤1 LOG |
Increasing MRD under maintenance therapy | Yes, patient in low-risk group MRD < 10−4 | Yes, Moderate, patients in medium-risk group MRD ≥ 10−4; <10−2 | Yes, faster MRD increase, patients in high-risk group MRD ≥ 10−2 | Patients in high-risk group MRD ≥ 10−2 |
Marker | Grand Mean MFI | Donor | Instrument | Day | |||
---|---|---|---|---|---|---|---|
CV [%] | η2 | CV [%] | η2 | CV [%] | η2 | ||
CD22 | 7090 | 37.29 | 0.792 | 7.19 | 0.015 | 15.76 | 0.071 |
CD38 | 1758 | 115.7 | 0.954 | 6.36 | 0.001 | 9.07 | 0.003 |
CD56 | 651 | 26.71 | 0.263 | 9.37 | 0.016 | 42.21 | 0.328 |
CD79b | 5805 | 88.50 | 0.670 | 8.91 | 0.003 | 62.97 | 0.170 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schilhabel, A.; Walter, P.J.; Cramer, P.; von Tresckow, J.; Kohlscheen, S.; Szczepanowski, M.; Laqua, A.; Fischer, K.; Eichhorst, B.; Böttcher, S.; et al. CD20 Expression as a Possible Novel Prognostic Marker in CLL: Application of EuroFlow Standardization Technique and Normalization Procedures in Flow Cytometric Expression Analysis. Cancers 2022, 14, 4917. https://doi.org/10.3390/cancers14194917
Schilhabel A, Walter PJ, Cramer P, von Tresckow J, Kohlscheen S, Szczepanowski M, Laqua A, Fischer K, Eichhorst B, Böttcher S, et al. CD20 Expression as a Possible Novel Prognostic Marker in CLL: Application of EuroFlow Standardization Technique and Normalization Procedures in Flow Cytometric Expression Analysis. Cancers. 2022; 14(19):4917. https://doi.org/10.3390/cancers14194917
Chicago/Turabian StyleSchilhabel, Anke, Peter Jonas Walter, Paula Cramer, Julia von Tresckow, Saskia Kohlscheen, Monika Szczepanowski, Anna Laqua, Kirsten Fischer, Barbara Eichhorst, Sebastian Böttcher, and et al. 2022. "CD20 Expression as a Possible Novel Prognostic Marker in CLL: Application of EuroFlow Standardization Technique and Normalization Procedures in Flow Cytometric Expression Analysis" Cancers 14, no. 19: 4917. https://doi.org/10.3390/cancers14194917
APA StyleSchilhabel, A., Walter, P. J., Cramer, P., von Tresckow, J., Kohlscheen, S., Szczepanowski, M., Laqua, A., Fischer, K., Eichhorst, B., Böttcher, S., Schneider, C., Tausch, E., Brüggemann, M., Kneba, M., Hallek, M., & Ritgen, M. (2022). CD20 Expression as a Possible Novel Prognostic Marker in CLL: Application of EuroFlow Standardization Technique and Normalization Procedures in Flow Cytometric Expression Analysis. Cancers, 14(19), 4917. https://doi.org/10.3390/cancers14194917