Changing Threshold-Based Segmentation Has No Relevant Impact on Semi-Quantification in the Context of Structured Reporting for PSMA-PET/CT
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Preparation of 18F-PSMA-1007
2.3. Image Acquisition and Reconstruction
2.4. Image Analysis
2.5. Statistical Analysis
3. Results
3.1. Prevalence of PSMA-RADS-4 and -5 Lesions Was High
3.2. SUVmax of PSMA-RADS-5 Lesions Differed Significantly When Compared to All Other PSMA-RADS Categories
3.3. SUVmean and Volumetric Parameters of PSMA-RADS-5 Lesions Were Susceptible to MIT Changes of 40 to 50%, But Not 40 to 45% or 45 to 50%
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
PSMA-RADS Category & Compartment | Parameter | Threshold | Mean ± SD | Range |
---|---|---|---|---|
1A—Lung | SUVmax | 1.07 ± 0.50 | 0.54–1.72 | |
SUVpeak | 0.83 ± 0.26 | 0.57–1.13 | ||
SUVmean | 40% | 0.80 ± 0.29 | 0.49–1.18 | |
45% | 0.80 ± 0.29 | 0.49–1.19 | ||
50% | 0.83 ± 0.32 | 0.49–1.24 | ||
PSMA-TV | 40% | 0.51 ± 0.46 | 0.15–1.34 | |
45% | 0.50 ± 0.44 | 0.15–1.29 | ||
50% | 0.45 ± 0.39 | 0.15–1.14 | ||
TL-PSMA | 40% | 0.50 ± 0.61 | 0.08–1.58 | |
45% | 0.49 ± 0.59 | 0.08–1.54 | ||
50% | 0.45 ± 0.54 | 0.08–1.42 | ||
1B—Bone | SUVmax | 3.49 ± 1.08 | 2.73–4.26 | |
SUVpeak | 2.47 ± 0.64 | 2.02–2.93 | ||
SUVmean | 40% | 2.20 ± 0.77 | 1.66–2.75 | |
45% | 2.40 ± 0.82 | 1.82–2.98 | ||
50% | 2.49 ± 0.82 | 1.91–3.08 | ||
PSMA-TV | 40% | 2.16 ± 0.53 | 1.79–2.54 | |
45% | 1.69 ± 0.35 | 1.44–1.94 | ||
50% | 1.46 ± 0.24 | 1.29–1.64 | ||
TL-PSMA | 40% | 4.57 ± 0.50 | 4.22–4.93 | |
45% | 3.90 ± 0.54 | 3.52–4.29 | ||
50% | 3.56 ± 0.60 | 3.14–3.99 | ||
1B—Lymph Node | SUVmax | 1.46 ± 0.50 | 0.69–3.33 | |
SUVpeak | 0.87 ± 0.27 | 0.54–1.93 | ||
SUVmean | 40% | 1.02 ± 0.36 | 0.48–2.16 | |
45% | 1.05 ± 0.37 | 0.48–2.25 | ||
50% | 1.09 ± 0.39 | 0.48–2.47 | ||
PSMA-TV | 40% | 0.67 ± 0.57 | 0.10–3.09 | |
45% | 0.61 ± 0.48 | 0.10–2.41 | ||
50% | 0.53 ± 0.39 | 0.10–2.07 | ||
TL-PSMA | 40% | 0.64 ± 0.53 | 0.10–2.84 | |
45% | 0.60 ± 0.48 | 0.10–2.67 | ||
50% | 0.55 ± 0.43 | 0.10–2.36 | ||
1B—Liver | SUVmax | 11.05 ± 1.96 | 9.13–13.06 | |
SUVpeak | 10.62 ± 1.70 | 8.73–12.05 | ||
SUVmean | 40% | 10.42 ± 1.76 | 8.93–12.37 | |
45% | 10.42 ± 1.76 | 8.93–12.37 | ||
50% | 10.42 ± 1.76 | 8.93–12.37 | ||
PSMA-TV | 40% | 0.20 ± 0.04 | 0.17–0.25 | |
45% | 0.20 ± 0.04 | 0.17–0.25 | ||
50% | 0.20 ± 0.04 | 0.17–0.25 | ||
TL-PSMA | 40% | 2.14 ± 0.57 | 1.48–2.48 | |
45% | 2.14 ± 0.57 | 1.48–2.48 | ||
50% | 2.14 ± 0.57 | 1.48–2.48 | ||
1B—Lung | SUVmax | 1.40 ± 0.00 | 1.40–1.40 | |
SUVpeak | 1.29 ± 0.00 | 1.29–1.29 | ||
SUVmean | 40% | 1.25 ± 0.00 | 1.25–1.25 | |
45% | 1.25 ± 0.00 | 1.25–1.25 | ||
50% | 1.25 ± 0.00 | 1.25–1.25 | ||
PSMA-TV | 40% | 0.33 ± 0.00 | 0.33–0.33 | |
45% | 0.33 ± 0.00 | 0.33–0.33 | ||
50% | 0.33 ± 0.00 | 0.33–0.33 | ||
TL-PSMA | 40% | 0.42 ± 0.00 | 0.42–0.42 | |
45% | 0.42 ± 0.00 | 0.42–0.42 | ||
50% | 0.42 ± 0.00 | 0.42–0.42 | ||
1B—Soft Tissue | SUVmax | 9.14 ± 5.63 | 1.76–21.67 | |
SUVpeak | 8.54 ± 4.80 | 1.05–15.86 | ||
SUVmean | 40% | 6.30 ± 4.36 | 1.01–15.87 | |
45% | 6.63 ± 4.34 | 1.08–15.87 | ||
50% | 7.07 ± 4.62 | 1.16–17.04 | ||
PSMA-TV | 40% | 2.26 ± 2.96 | 0.10–7.96 | |
45% | 1.73 ± 2.22 | 0.10–6.39 | ||
50% | 1.33 ± 1.66 | 0.10–4.81 | ||
TL-PSMA | 40% | 6.11 ± 4.01 | 1.05–16.14 | |
45% | 5.14 ± 3.01 | 1.05–11.96 | ||
50% | 4.36 ± 2.31 | 0.76–9.09 | ||
2—Lymph Node | SUVmax | 3.13 ± 1.18 | 1.03–7.52 | |
SUVpeak | 1.88 ± 0.70 | 0.54–3.83 | ||
SUVmean | 40% | 2.09 ± 0.72 | 0.69–4.12 | |
45% | 2.17 ± 0.75 | 0.71–4.42 | ||
50% | 2.27 ± 0.81 | 0.74–5.03 | ||
PSMA-TV | 40% | 0.89 ± 0.69 | 0.15–3.68 | |
45% | 0.78 ± 0.59 | 0.15–3.28 | ||
50% | 0.67 ± 0.49 | 0.08–2.44 | ||
TL-PSMA | 40% | 1.90 ± 1.83 | 0.26–9.45 | |
45% | 1.74 ± 1.63 | 0.26–8.73 | ||
50% | 1.55 ± 1.41 | 0.21–7.05 | ||
3A—Lymph Node | SUVmax | 3.28 ± 0.97 | 1.40–8.58 | |
SUVpeak | 1.90 ± 0.62 | 0.89–4.47 | ||
SUVmean | 40% | 2.09 ± 0.60 | 0.97–5.03 | |
45% | 2.22 ± 0.64 | 1.04–5.41 | ||
50% | 2.33 ± 0.66 | 1.05–5.62 | ||
PSMA-TV | 40% | 1.03 ± 0.72 | 0.17–4.73 | |
45% | 0.85 ± 0.61 | 0.15–4.13 | ||
50% | 0.72 ± 0.50 | 0.15–3.48 | ||
TL-PSMA | 40% | 2.11 ± 1.53 | 0.35–10.79 | |
45% | 1.85 ± 1.36 | 0.31–9.81 | ||
50% | 1.63 ± 1.18 | 0.31–8.65 | ||
3B—Bone | SUVmax | 4.78 ± 0.78 | 3.11–5.88 | |
SUVpeak | 2.37 ± 0.31 | 1.86–3.29 | ||
SUVmean | 40% | 2.85 ± 0.51 | 1.73–3.67 | |
45% | 3.08 ± 0.53 | 2.06–4.00 | ||
50% | 3.29 ± 0.55 | 2.20–4.20 | ||
PSMA-TV | 40% | 1.38 ± 1.13 | 0.41–5.62 | |
45% | 1.03 ± 0.73 | 0.33–3.73 | ||
50% | 0.80 ± 0.57 | 0.25–3.04 | ||
TL-PSMA | 40% | 3.61 ± 2.42 | 1.41–12.94 | |
45% | 2.97 ± 1.77 | 1.05–9.54 | ||
50% | 2.48 ± 1.50 | 0.86–8.13 | ||
3C—Lymph Node | SUVmax | 5.09 ± 0.82 | 4.37–6.63 | |
SUVpeak | 3.66 ± 1.89 | 1.76–6.39 | ||
SUVmean | 40% | 3.11 ± 0.52 | 2.69–3.95 | |
45% | 3.36 ± 0.52 | 2.94–4.31 | ||
50% | 3.59 ± 0.64 | 3.05–4.75 | ||
PSMA-TV | 40% | 1.46 ± 0.80 | 0.35–2.59 | |
45% | 1.18 ± 0.70 | 0.25–2.19 | ||
50% | 0.95 ± 0.56 | 0.25–1.69 | ||
TL-PSMA | 40% | 4.61 ± 2.64 | 0.97–7.46 | |
45% | 4.01 ± 2.37 | 0.79–6.45 | ||
50% | 3.42 ± 1.99 | 0.79–5.30 | ||
3C—Lung | SUVmax | 5.15 ± 0.00 | 5.15–5.15 | |
SUVpeak | 2.79 ± 0.00 | 2.79–2.79 | ||
SUVmean | 40% | 3.27 ± 0.00 | 3.27–3.27 | |
45% | 3.44 ± 0.00 | 3.44–3.44 | ||
50% | 3.51 ± 0.00 | 3.51–3.51 | ||
PSMA-TV | 40% | 0.75 ± 0.00 | 0.75–0.75 | |
45% | 0.65 ± 0.00 | 0.65–0.65 | ||
50% | 0.60 ± 0.00 | 0.60–0.60 | ||
TL-PSMA | 40% | 2.44 ± 0.00 | 2.44–2.44 | |
45% | 2.22 ± 0.00 | 2.22–2.22 | ||
50% | 2.10 ± 0.00 | 2.10–2.10 | ||
3C—Soft Tissue | SUVmax | 5.78 ± 1.05 | 4.65–7.19 | |
SUVpeak | 4.02 ± 1.54 | 2.75–6.25 | ||
SUVmean | 40% | 3.62 ± 1.37 | 2.65–5.66 | |
45% | 3.87 ± 1.46 | 2.84–6.04 | ||
50% | 4.07 ± 1.32 | 3.18–6.04 | ||
PSMA-TV | 40% | 4.73 ± 4.10 | 0.40–9.21 | |
45% | 3.60 ± 3.03 | 0.35–6.62 | ||
50% | 2.61 ± 2.18 | 0.35–4.53 | ||
TL-PSMA | 40% | 14.54 ± 12.28 | 2.25–27.06 | |
45% | 11.92 ± 9.77 | 2.11–20.96 | ||
50% | 9.33 ± 7.49 | 2.11–16.12 | ||
3D—Lymph Node | SUVmax | 2.48 ± 0.86 | 1.54–3.24 | |
SUVpeak | 2.04 ± 0.47 | 1.65–2.57 | ||
SUVmean | 40% | 1.56 ± 0.39 | 1.11–1.81 | |
45% | 1.61 ± 0.45 | 1.11–1.97 | ||
50% | 1.70 ± 0.53 | 1.11–2.14 | ||
PSMA-TV | 40% | 1.69 ± 1.55 | 0.66–3.48 | |
45% | 1.38 ± 1.01 | 0.66–2.54 | ||
50% | 1.12 ± 0.64 | 0.58–1.84 | ||
TL-PSMA | 40% | 2.84 ± 3.00 | 1.05–6.31 | |
45% | 2.41 ± 2.25 | 1.05–5.01 | ||
50% | 2.02 ± 1.66 | 1.05–3.94 | ||
3D—Lung | SUVmax | 0.89 ± 0.55 | 0.42–2.54 | |
SUVpeak | 0.79 ± 0.38 | 0.38–1.63 | ||
SUVmean | 40% | 0.74 ± 0.39 | 0.39–1.76 | |
45% | 0.76 ± 0.44 | 0.39–2.11 | ||
50% | 0.76 ± 0.44 | 0.39–2.11 | ||
PSMA-TV | 40% | 0.26 ± 0.14 | 0.08–0.60 | |
45% | 0.26 ± 0.14 | 0.08–0.60 | ||
50% | 0.25 ± 0.13 | 0.08–0.55 | ||
TL-PSMA | 40% | 0.20 ± 0.16 | 0.04–0.68 | |
45% | 0.20 ± 0.16 | 0.04–0.68 | ||
50% | 0.20 ± 0.16 | 0.04–0.64 | ||
3D—Soft Tissue | SUVmax | 1.79 ± 0.00 | 1.79–1.79 | |
SUVpeak | 1.04 ± 0.00 | 1.04–1.04 | ||
SUVmean | 40% | 1.15 ± 0.00 | 1.15–1.15 | |
45% | 1.23 ± 0.00 | 1.23–1.23 | ||
50% | 1.32 ± 0.00 | 1.32–1.32 | ||
PSMA-TV | 40% | 0.60 ± 0.00 | 0.60–0.60 | |
45% | 0.50 ± 0.00 | 0.50–0.50 | ||
50% | 0.40 ± 0.00 | 0.40–0.40 | ||
TL-PSMA | 40% | 0.69 ± 0.00 | 0.69–0.69 | |
45% | 0.61 ± 0.00 | 0.61–0.61 | ||
50% | 0.53 ± 0.00 | 0.53–0.53 | ||
4—Bone | SUVmax | 8.55 ± 3.76 | 4.49–14.98 | |
SUVpeak | 3.44 ± 1.02 | 2.47–5.27 | ||
SUVmean | 40% | 5.35 ± 2.67 | 2.83–10.02 | |
45% | 5.82 ± 2.90 | 3.06–10.99 | ||
50% | 6.22 ± 2.94 | 3.11–10.99 | ||
PSMA-TV | 40% | 0.81 ± 0.49 | 0.41–1.74 | |
45% | 0.63 ± 0.40 | 0.33–1.41 | ||
50% | 0.52 ± 0.40 | 0.30–1.33 | ||
TL-PSMA | 40% | 3.59 ± 0.91 | 2.36–4.93 | |
45% | 3.05 ± 0.91 | 1.91–4.31 | ||
50% | 2.66 ± 1.02 | 1.74–4.13 | ||
4—Lymph Node | SUVmax | 15.64 ± 15.98 | 3.13–74.57 | |
SUVpeak | 6.08 ± 5.72 | 1.43–33.17 | ||
SUVmean | 40% | 10.24 ± 10.83 | 2.04–49.97 | |
45% | 11.09 ± 11.81 | 2.40–57.06 | ||
50% | 11.77 ± 12.60 | 2.72–57.33 | ||
PSMA-TV | 40% | 0.64 ± 0.42 | 0.10–2.29 | |
45% | 0.53 ± 0.35 | 0.05–2.14 | ||
50% | 0.42 ± 0.27 | 0.05–1.84 | ||
TL-PSMA | 40% | 4.89 ± 4.06 | 0.81–23.55 | |
45% | 4.30 ± 3.69 | 0.62–22.35 | ||
50% | 3.73 ± 3.19 | 0.59–19.59 | ||
5—Bone | SUVmax | 30.27 ± 25.79 | 4.28–157.80 | |
SUVpeak | 15.26 ± 12.58 | 1.67–77.70 | ||
SUVmean | 40% | 18.84 ± 16.47 | 2.63–101.10 | |
45% | 20.25 ± 17.55 | 2.73–112.90 | ||
50% | 21.70 ± 19.52 | 2.84–113.10 | ||
PSMA-TV | 40% | 3.55 ± 4.52 | 0.10–20.60 | |
45% | 2.83 ± 3.55 | 0.10–16.12 | ||
50% | 2.28 ± 2.79 | 0.05–11.59 | ||
TL-PSMA | 40% | 69.29 ± 106.80 | 1.18–662.10 | |
45% | 59.66 ± 93.39 | 1.09–598.00 | ||
50% | 50.35 ± 76.10 | 0.99–463.60 | ||
5—Lymph Node | SUVmax | 34.12 ± 28.88 | 4.63–120.30 | |
SUVpeak | 18.05 ± 14.82 | 2.81–58.54 | ||
SUVmean | 40% | 21.00 ± 18.13 | 2.57–73.98 | |
45% | 22.35 ± 19.15 | 2.73–76.67 | ||
50% | 23.73 ± 20.05 | 3.28–79.29 | ||
PSMA-TV | 40% | 4.13 ± 11.00 | 0.40–66.09 | |
45% | 3.11 ± 7.62 | 0.33–46.88 | ||
50% | 2.26 ± 4.99 | 0.10–31.15 | ||
TL-PSMA | 40% | 65.12 ± 127.00 | 2.72–695.90 | |
45% | 53.78 ± 96.57 | 2.57–529.60 | ||
50% | 43.32 ± 70.85 | 1.13–377.30 | ||
5—Soft Tissue | SUVmax | 32.32 ± 8.81 | 23.32–40.93 | |
SUVpeak | 15.12 ± 10.32 | 8.15–26.98 | ||
SUVmean | 40% | 20.15 ± 3.57 | 16.65–23.79 | |
45% | 21.27 ± 4.13 | 16.65–24.63 | ||
50% | 20.20 ± 16.31 | 5.95–37.99 | ||
PSMA-TV | 40% | 0.95 ± 1.06 | 0.33–2.19 | |
45% | 0.84 ± 0.95 | 0.25–1.94 | ||
50% | 1.50 ± 1.20 | 0.33–2.74 | ||
TL-PSMA | 40% | 21.52 ± 26.47 | 5.52–52.08 | |
45% | 19.64 ± 24.38 | 5.52–47.79 | ||
50% | 25.54 ± 25.92 | 5.52–54.82 | ||
5—Primary | SUVmax | 32.66 ± 21.91 | 5.15–82.80 | |
SUVpeak | 18.85 ± 12.52 | 3.58–50.20 | ||
SUVmean | 40% | 18.13 ± 13.27 | 2.89–49.96 | |
45% | 20.01 ± 14.69 | 3.10–53.51 | ||
50% | 21.37 ± 15.21 | 3.33–56.03 | ||
PSMA-TV | 40% | 9.16 ± 8.38 | 0.25–28.96 | |
45% | 6.36 ± 6.09 | 0.17–20.70 | ||
50% | 4.32 ± 4.20 | 0.17–14.68 | ||
TL-PSMA | 40% | 145.90 ± 192.80 | 10.59–806.90 | |
45% | 111.50 ± 154.00 | 8.22–652.00 | ||
50% | 82.76 ± 112.60 | 5.36–472.30 |
PSMA-RADS Category | Pat. #1 | Pat. #2 | Pat. #3 | Pat. #4 | Pat. #5 | Pat. #6 | Pat. #7 | Pat. #8 | Pat. #9 |
---|---|---|---|---|---|---|---|---|---|
1A | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
1B | 3 | 0 | 1 | 3 | 7 | 3 | 4 | 1 | 0 |
2 | 4 | 8 | 3 | 10 | 9 | 7 | 22 | 1 | 13 |
3A | 0 | 13 | 1 | 7 | 14 | 14 | 6 | 3 | 1 |
3B | 0 | 9 | 0 | 2 | 1 | 2 | 0 | 0 | 1 |
3C | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3D | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 5 |
4 | 10 | 12 | 2 | 1 | 4 | 3 | 3 | 1 | 0 |
5 | 25 | 9 | 1 | 1 | 1 | 8 | 5 | 1 | 2 |
Total | 42 | 55 | 8 | 24 | 37 | 38 | 41 | 8 | 22 |
PSMA-RADS Category | Pat. #10 | Pat. #11 | Pat. #12 | Pat. #13 | Pat. #14 | Pat. #15 | Pat. #16 | Pat. #17 | Pat. #18 |
1A | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1B | 6 | 12 | 11 | 22 | 2 | 6 | 1 | 2 | 1 |
2 | 13 | 6 | 7 | 6 | 2 | 6 | 0 | 1 | 3 |
3A | 7 | 9 | 1 | 7 | 1 | 2 | 0 | 3 | 16 |
3B | 3 | 0 | 0 | 0 | 3 | 2 | 0 | 0 | 2 |
3C | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 6 |
3D | 1 | 1 | 0 | 1 | 9 | 0 | 1 | 1 | 4 |
4 | 9 | 4 | 3 | 19 | 3 | 14 | 0 | 3 | 7 |
5 | 2 | 15 | 15 | 15 | 23 | 21 | 2 | 1 | 1 |
Total | 42 | 49 | 37 | 70 | 43 | 51 | 4 | 11 | 41 |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Sweat, S.D.; Pacelli, A.; Murphy, G.P.; Bostwick, D.G. Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology 1998, 52, 637–640. [Google Scholar] [CrossRef]
- Mannweiler, S.; Amersdorfer, P.; Trajanoski, S.; Terrett, J.A.; King, D.; Mehes, G. Heterogeneity of Prostate-Specific Membrane Antigen (PSMA) Expression in Prostate Carcinoma with Distant Metastasis. Pathol. Oncol. Res. 2009, 15, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Rowe, S.P.; Macura, K.J.; Mena, E.; Blackford, A.L.; Nadal, R.; Antonarakis, E.S.; Eisenberger, M.; Carducci, M.; Fan, H.; Dannals, R.F.; et al. PSMA-Based [18F]DCFPyL PET/CT Is Superior to Conventional Imaging for Lesion Detection in Patients with Metastatic Prostate Cancer. Mol. Imaging Biol. 2016, 18, 411–419. [Google Scholar] [CrossRef] [Green Version]
- Rauscher, I.; Kroenke, M.; König, M.; Gafita, A.; Maurer, T.; Horn, T.; Schiller, K.; Weber, W.; Eiber, M. Matched-Pair Comparison of 68Ga-PSMA-11 PET/CT and 18F-PSMA-1007 PET/CT: Frequency of Pitfalls and Detection Efficacy in Biochemical Recurrence After Radical Prostatectomy. J. Nucl. Med. 2020, 61, 51–57. [Google Scholar] [CrossRef]
- Giesel, F.L.; Knorr, K.; Spohn, F.; Will, L.; Maurer, T.; Flechsig, P.; Neels, O.; Schiller, K.; Amaral, H.; Weber, W.A.; et al. Detection Efficacy of 18F-PSMA-1007 PET/CT in 251 Patients with Biochemical Recurrence of Prostate Cancer After Radical Prostatectomy. J. Nucl. Med. 2019, 60, 362–368. [Google Scholar] [CrossRef] [Green Version]
- Sprute, K.; Kramer, V.; Koerber, S.A.; Meneses, M.; Fernandez, R.; Soza-Ried, C.; Eiber, M.; Weber, W.A.; Rauscher, I.; Rahbar, K.; et al. Diagnostic Accuracy of 18F-PSMA-1007 PET/CT Imaging for Lymph Node Staging of Prostate Carcinoma in Primary and Biochemical Recurrence. J. Nucl. Med. 2021, 62, 208–213. [Google Scholar] [CrossRef]
- Werner, R.A.; Derlin, T.; Lapa, C.; Sheikbahaei, S.; Higuchi, T.; Giesel, F.L.; Behr, S.; Drzezga, A.; Kimura, H.; Buck, A.K.; et al. 18F-Labeled, PSMA-Targeted Radiotracers: Leveraging the Advantages of Radiofluorination for Prostate Cancer Molecular Imaging. Theranostics 2020, 10, 1–16. [Google Scholar] [CrossRef]
- Szabo, Z.; Mena, E.; Rowe, S.P.; Plyku, D.; Nidal, R.; Eisenberger, M.A.; Antonarakis, E.S.; Fan, H.; Dannals, R.F.; Chen, Y.; et al. Initial Evaluation of [18F]DCFPyL for Prostate-Specific Membrane Antigen (PSMA)-Targeted PET Imaging of Prostate Cancer. Mol. Imaging Biol. 2015, 17, 565–574. [Google Scholar] [CrossRef]
- Rowe, S.P.; Pienta, K.J.; Pomper, M.G.; Gorin, M.A. Proposal for a Structured Reporting System for Prostate-Specific Membrane Antigen-Targeted PET Imaging: PSMA-RADS Version 1.0. J. Nucl. Med. 2017, 59, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Rowe, S.P.; Pienta, K.J.; Pomper, M.G.; Gorin, M.A. PSMA-RADS Version 1.0: A Step Towards Standardizing the Interpretation and Reporting of PSMA–targeted PET Imaging Studies. Eur. Urol. 2018, 73, 485–487. [Google Scholar] [CrossRef]
- Yin, Y.; Werner, R.A.; Higuchi, T.; Lapa, C.; Pienta, K.J.; Pomper, M.G.; Gorin, M.A.; Rowe, S.P. Follow-up of Lesions with Equivocal Radiotracer Uptake on PSMA-Targeted PET in Patients with Prostate Cancer: Predictive Values of the PSMA-RADS-3A and PSMA-RADS-3B Categories. J. Nucl. Med. 2018, 60, 511–516. [Google Scholar] [CrossRef]
- Reyes, D.K.; Demehri, S.; Werner, R.A.; Pomper, M.G.; Gorin, M.A.; Rowe, S.P.; Pienta, K.J. PSMA-targeted [18F]DCFPyL PET/CT-avid lesions in a patient with prostate cancer: Clinical decision-making informed by the PSMA-RADS interpretive framework. Urol. Case Rep. 2019, 23, 72–74. [Google Scholar] [CrossRef]
- Werner, R.A.; Bundschuh, R.A.; Bundschuh, L.; Javadi, M.S.; Leal, J.P.; Higuchi, T.; Pienta, K.J.; Buck, A.K.; Pomper, M.G.; Gorin, M.A.; et al. Interobserver Agreement for the Standardized Reporting System PSMA-RADS 1.0 on 18F-DCFPyL PET/CT Imaging. J. Nucl. Med. 2018, 59, 1857–1864. [Google Scholar] [CrossRef] [Green Version]
- Giesel, F.L.; Will, L.; Lawal, I.; Lengana, T.; Kratochwil, C.; Vorster, M.; Neels, O.; Reyneke, F.; Haberkon, U.; Kopka, K.; et al. Intraindividual Comparison of 18F-PSMA-1007 and 18F-DCFPyL PET/CT in the Prospective Evaluation of Patients with Newly Diagnosed Prostate Carcinoma: A Pilot Study. J. Nucl. Med. 2018, 59, 1076–1080. [Google Scholar] [CrossRef] [Green Version]
- Wondergem, M.; van der Zant, F.M.; Broos, W.A.; Knol, R.J. Matched-Pair Comparison of 18F-DCFPyL PET/CT and 18F-PSMA-1007 PET/CT in 240 Prostate Cancer Patients: Interreader Agreement and Lesion Detection Rate of Suspected Lesions. J. Nucl. Med. 2021, 62, 1422–1429. [Google Scholar] [CrossRef]
- Cardinale, J.; Martin, S.; Remde, Y.; Schäfer, M.; Hienzsch, A.; Hübner, S.; Zerges, A.-M.; Marx, H.; Hesse, R.; Weber, K.; et al. Procedures for the GMP-Compliant Production and Quality Control of [18F]PSMA-1007: A Next Generation Radiofluorinated Tracer for the Detection of Prostate Cancer. Pharmaceuticals 2017, 10, 77. [Google Scholar] [CrossRef] [Green Version]
- Cytawa, W.; Seitz, A.K.; Kircher, S.; Fukushima, K.; Tran-Gia, J.; Schirbel, A.; Bandurski, T.; Lass, P.; Krebs, M.; Połom, W.; et al. 68Ga-PSMA I&T PET/CT for primary staging of prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 168–177. [Google Scholar] [CrossRef]
- Michalski, K.; Ruf, J.; Goetz, C.; Seitz, A.K.; Buck, A.K.; Lapa, C.; Hartrampf, P.E. Prognostic implications of dual tracer PET/CT: PSMA ligand and [18F]FDG PET/CT in patients undergoing [177Lu]PSMA radioligand therapy. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2024–2030. [Google Scholar] [CrossRef]
- Schmuck, S.; von Klot, C.A.; Henkenberens, C.; Sohns, J.M.; Christiansen, H.; Wester, H.-J.; Ross, T.L.; Bengel, F.M.; Derlin, T. Initial Experience with Volumetric 68Ga-PSMA I&T PET/CT for Assessment of Whole-Body Tumor Burden as a Quantitative Imaging Biomarker in Patients with Prostate Cancer. J. Nucl. Med. 2017, 58, 1962–1968. [Google Scholar] [CrossRef] [Green Version]
- Rauscher, I.; Maurer, T.; Beer, A.J.; Graner, F.-P.; Haller, B.; Weirich, G.; Doherty, A.; Gschwend, J.E.; Schwaiger, M.; Eiber, M. Value of 68Ga-PSMA HBED-CC PET for the Assessment of Lymph Node Metastases in Prostate Cancer Patients with Biochemical Recurrence: Comparison with Histopathology After Salvage Lymphadenectomy. J. Nucl. Med. 2016, 57, 1713–1719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, B.; Bading, J.; Conti, P.S. Tumor Quantification in Clinical Positron Emission Tomography. Theranostics 2013, 3, 787–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheikhbahaei, S.; Werner, R.A.; Solnes, L.B.; Pienta, K.J.; Pomper, M.G.; Gorin, M.A.; Rowe, S.P. Prostate-Specific Membrane Antigen (PSMA)-Targeted PET Imaging of Prostate Cancer: An Update on Important Pitfalls. Semin. Nucl. Med. 2019, 49, 255–270. [Google Scholar] [CrossRef]
- Eiber, M.; Herrmann, K.; Calais, J.; Hadaschik, B.; Giesel, F.L.; Hartenbach, M.; Hope, T.A.; Reiter, R.; Maurer, T.; Weber, W.A.; et al. Prostate Cancer Molecular Imaging Standardized Evaluation (PROMISE): Proposed miTNM Classification for the Interpretation of PSMA-Ligand PET/CT. J. Nucl. Med. 2018, 59, 469–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceci, F.; Oprea-Lager, D.E.; Emmett, L.; Adam, J.A.; Bomanji, J.; Czernin, J.; Eiber, M.; Haberkorn, U.; Hofman, M.S.; Hope, T.A.; et al. E-PSMA: The EANM standardized reporting guidelines v1.0 for PSMA-PET. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1626–1638. [Google Scholar] [CrossRef]
- Derwael, C.; Lavergne, O.; Lovinfosse, P.; Nechifor, V.; Salvé, M.; Waltregny, D.; Hustinx, R.; Withofs, N. Interobserver agreement of [68Ga]Ga-PSMA-11 PET/CT images interpretation in men with newly diagnosed prostate cancer. EJNMMI Res. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ashrafinia, S.; Salehi Sadaghiani, M.; Dalaie, P.; Tulbah, R.; Yin, Y.; Leung, K.; VanDenBerg, R.; Leal, J.; Gorin, M.; Pomper, M.; et al. Characterization of Segmented 18F-DCFPyL PET/CT Lesions in the Context of PSMA-RADS Structured Reporting. J. Nucl. Med. 2019, 60, 1565. [Google Scholar]
- Kyriakopoulos, C.E.; Chen, Y.-H.; Carducci, M.A.; Liu, G.; Jarrard, D.F.; Hahn, N.M.; Shevrin, D.H.; Dreicer, R.; Hussain, M.; Eisenberger, M.; et al. Chemohormonal Therapy in Metastatic Hormone-Sensitive Prostate Cancer: Long-Term Survival Analysis of the Randomized Phase III E3805 CHAARTED Trial. J. Clin. Oncol. 2018, 36, 1080–1087. [Google Scholar] [CrossRef] [Green Version]
- Zukotynski, K.A.; Emmenegger, U.; Hotte, S.; Kapoor, A.; Fu, W.; Blackford, A.L.; Valliant, J.; Bénard, F.; Kim, C.K.; Markowski, M.C.; et al. Prospective, Single-Arm Trial Evaluating Changes in Uptake Patterns on Prostate-Specific Membrane Antigen–Targeted 18F-DCFPyL PET/CT in Patients with Castration-Resistant Prostate Cancer Starting Abiraterone or Enzalutamide. J. Nucl. Med. 2021, 62, 1430–1437. [Google Scholar] [CrossRef]
- Widjaja, L.; Werner, R.; Ross, T.; Bengel, F.; Derlin, T. PSMA Expression Predicts Early Biochemical Response in Patients with Metastatic Castration-Resistant Prostate Cancer under 177Lu-PSMA-617 Radioligand Therapy. Cancers 2021, 13, 2938. [Google Scholar] [CrossRef]
- Seifert, R.; Seitzer, K.; Herrmann, K.; Kessel, K.; Schäfers, M.; Kleesiek, J.; Weckesser, M.; Boegemann, M.; Rahbar, K. Analysis of PSMA expression and outcome in patients with advanced Prostate Cancer receiving 177Lu-PSMA-617 Radioligand Therapy. Theranostics 2020, 10, 7812–7820. [Google Scholar] [CrossRef]
- Seifert, R.; Kessel, K.; Schlack, K.; Weckesser, M.; Kersting, D.; Seitzer, K.E.; Weber, M.; Bögemann, M.; Rahbar, K. Total tumor volume reduction and low PSMA expression in patients receiving Lu-PSMA therapy. Theranostics 2021, 11, 8143–8151. [Google Scholar] [CrossRef]
- Sadaghiani, M.S.; Sheikhbahaei, S.; Werner, R.A.; Pienta, K.J.; Pomper, M.G.; Solnes, L.B.; Gorin, M.A.; Wang, N.-Y.; Rowe, S.P. A Systematic Review and Meta-analysis of the Effectiveness and Toxicities of Lutetium-177–labeled Prostate-specific Membrane Antigen–targeted Radioligand Therapy in Metastatic Castration-Resistant Prostate Cancer. Eur. Urol. 2021, 80, 82–94. [Google Scholar] [CrossRef]
- Fanti, S.; Hadaschik, B.; Herrmann, K. Proposal for Systemic-Therapy Response-Assessment Criteria at the Time of PSMA PET/CT Imaging: The PSMA PET Progression Criteria. J. Nucl. Med. 2019, 61, 678–682. [Google Scholar] [CrossRef]
- Widjaja, L.; Derlin, T.; Rowe, S.; Pomper, M.; Bengel, F.; Werner, R. Strukturierte Quantifizierung von PSMA PET/CTs mit Hilfe des PSMA-RAD-Systems zur Vorhersage des Therapieansprechens auf eine PSMA-Radioligandentherapie. Nuklearmedizin 2021, 60, 140. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Subjects | 18 |
Age (y) | |
Mean ± SD | 70 ± 8 |
Range | 50–80 |
PSA (ng/mL) | |
Mean ± SD | 180.35 ± 393.75 |
Range | 4.79–1690.00 |
Gleason score | |
Median | 8 |
Range | 7–10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihatsch, P.W.; Beissert, M.; Pomper, M.G.; Bley, T.A.; Seitz, A.K.; Kübler, H.; Buck, A.K.; Rowe, S.P.; Serfling, S.E.; Hartrampf, P.E.; et al. Changing Threshold-Based Segmentation Has No Relevant Impact on Semi-Quantification in the Context of Structured Reporting for PSMA-PET/CT. Cancers 2022, 14, 270. https://doi.org/10.3390/cancers14020270
Mihatsch PW, Beissert M, Pomper MG, Bley TA, Seitz AK, Kübler H, Buck AK, Rowe SP, Serfling SE, Hartrampf PE, et al. Changing Threshold-Based Segmentation Has No Relevant Impact on Semi-Quantification in the Context of Structured Reporting for PSMA-PET/CT. Cancers. 2022; 14(2):270. https://doi.org/10.3390/cancers14020270
Chicago/Turabian StyleMihatsch, Patrick W., Matthias Beissert, Martin G. Pomper, Thorsten A. Bley, Anna K. Seitz, Hubert Kübler, Andreas K. Buck, Steven P. Rowe, Sebastian E. Serfling, Philipp E. Hartrampf, and et al. 2022. "Changing Threshold-Based Segmentation Has No Relevant Impact on Semi-Quantification in the Context of Structured Reporting for PSMA-PET/CT" Cancers 14, no. 2: 270. https://doi.org/10.3390/cancers14020270
APA StyleMihatsch, P. W., Beissert, M., Pomper, M. G., Bley, T. A., Seitz, A. K., Kübler, H., Buck, A. K., Rowe, S. P., Serfling, S. E., Hartrampf, P. E., & Werner, R. A. (2022). Changing Threshold-Based Segmentation Has No Relevant Impact on Semi-Quantification in the Context of Structured Reporting for PSMA-PET/CT. Cancers, 14(2), 270. https://doi.org/10.3390/cancers14020270