Clinical Trials in High-Risk Medulloblastoma: Evolution of the SIOP-Europe HR-MB Trial
Abstract
:Simple Summary
Abstract
1. High-Risk Medulloblastoma: Background, Challenges, and Basis for Clinical Trials
- Medulloblastoma, Genetically Defined
- Medulloblastoma—WNT-activated;
- Medulloblastom—SHH-activated and TP53-mutant;
- Medulloblastoma—SHH-activated and TP53-wildtype;
- Medulloblastoma—non-WNT/non-SHH (encompassing Group 3 and Group 4).
- Medulloblastoma, Histologically Defined
- Classic medulloblastoma;
- Desmoplastic/nodular medulloblastoma;
- Medulloblastoma with extensive nodularity;
- Large-cell/anaplastic medulloblastoma.
2. Definition of High-Risk Medulloblastoma: Trial Eligibility and Therapy Considerations
2.1. Metastatic Disease
2.2. Histological Variants
2.3. Surgical Resection
2.4. Molecular Biomarkers
2.5. Familial/Germline Disease
3. Treatments for High-Risk Medulloblastoma and Future Potential
4. Limitations in Recent Clinical Trials and Requirements for Future Studies
5. Evolution of Medulloblastoma Clinical Trials by the SIOP-Europe Group
5.1. SIOP-E and First Trials
5.2. UKCCSG-SIOP-PNET3 (1993–2000)
5.3. HIT-SIOP-PNET4 (2000–2006)
5.4. First Biologically Driven Trials—SIOP-PNET5-MB (2014–2022)
6. The SIOP-Europe High-Risk Medulloblastoma Trial (SIOP-HR-MB)
7. Objectives
7.1. Primary Objectives
- To evaluate whether the outcome in children, young people and adults with high-risk medulloblastoma is improved over standard therapy for those treated with; (i) conventional (once a day) radiotherapy (control arm), (ii) hyperfractionated/accelerated radiotherapy (HART), or (iii) high-dose therapy with thiotepa followed by conventional radiotherapy;
- To evaluate whether the outcome for high-risk patients is different for those treated with two different maintenance chemotherapy therapies.
7.2. Secondary Objectives
- To study the late effects of treatment and their impact on quality of survival (QoS), including neurocognitive function, neurological impairment, endocrine impairment, audiological function and secondary tumours;
- To conduct comprehensive and prospective biological studies in high-risk medulloblastoma, with the aims of (i) understanding the biological basis of high-risk disease, (ii) identification and validation of diagnostic and prognostic biomarkers, and (iii) identification and validation of molecular targets with therapeutic potential and associated predictive biomarkers;
- To conduct prospective QoS, toxicity and pharmacogenomic studies with the aim of exploring clinical, host and tumour factors, and genetic variants that relate to the early and late side effects of treatment and survival parameters.
8. Trial Description
- Boost the primary tumour site to the tumour bed only, and not to the whole posterior fossa, considering the need to limit toxicity in view of the absence of data on the role of local irradiation after CSI in the setting of HR-MB patients. Central radiological review and the high-quality MRI required in the trial allow for a precise definition of tumour extension and the substantial sparing of normal nervous tissue related to the tumour bed boost, thereby allowing the safer delivery of boost doses to the brain metastatic sites when indicated.
- Boost metastatic sites (if no more than three measurable lesions remain after induction chemotherapy), taking into account that the response to chemotherapy is considered a good prognostic factor [8,11], thus avoiding the need to boost mainly normal brain and spinal tissue without evidence of macroscopic disease, which is at high risk of significant side effects, such as radio-necrosis. Moreover, boosts to numerous metastatic sites would imply the delivery of very high doses to large volumes of the central nervous system without existing evidence on the efficacy of this approach but with a high probability of increasing toxicity.
9. Central Review and Research Investigations
9.1. Radiology and Radiotherapy
9.2. Biological Investigations: Reference Assessments and Biological Studies
9.3. Molecular Diagnostics
9.4. Biological Research
9.5. Neurocognition and Quality of Survival
9.6. Key Research Questions
- Identification and/or validation of independent prognostic biomarkers which are associated with disease course in high-risk medulloblastoma;
- Development of models for the optimal prediction of disease risk, using combined clinical, pathological and molecular indices, within the high-risk strata;
- Prioritisation of potential therapeutic targets, and associated predictive biomarkers, for further investigation and validation;
- Investigation of novel germline predisposition within the cohort;
- Investigation of associations with clinical factors such as imaging features, quality of survival, intellectual outcomes and toxicity measures.
10. Balancing Recruitment to the Randomisation Arms
11. Relapse Management and Introduction of Novel Therapies
11.1. Potential New Agents and Approaches
11.2. Targeted Therapies at Relapse
11.3. Immune Therapies
11.4. Reuse of Standard Treatments
11.5. Second-Line Chemotherapy
11.6. Metronomic Therapy
12. Early Phase Window Concept
13. Patients Not Eligible for the Trial
14. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Cavalli, F.M.G.; Remke, M.; Rampasek, L.; Peacock, J.; Shih, D.J.H.; Luu, B.; Garzia, L.; Torchia, J.; Nor, C.; Morrissy, A.S.; et al. Intertumoral Heterogeneity within Medulloblastoma Subgroups. Cancer Cell 2017, 31, 737–754.e6. [Google Scholar] [CrossRef] [PubMed]
- Ramaswamy, V.; Remke, M.; Bouffet, E.; Bailey, S.; Clifford, S.C.; Doz, F.; Kool, M.; Dufour, C.; Vassal, G.; Milde, T.; et al. Risk stratification of childhood medulloblastoma in the molecular era: The current consensus. Acta Neuropathol. 2016, 131, 821–831. [Google Scholar] [CrossRef]
- Schwalbe, E.C.; Lindsey, J.C.; Nakjang, S.; Crosier, S.; Smith, A.J.; Hicks, D.; Rafiee, G.; Hill, R.M.; Iliasova, A.; Stone, T.; et al. Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: A cohort study. Lancet Oncol. 2017, 18, 958–971. [Google Scholar] [CrossRef]
- Dufour, C.; Kieffer, V.; Varlet, P.; Raquin, M.A.; Dhermain, F.; Puget, S.; Valteau-Couanet, D.; Grill, J. Tandem high-dose chemotherapy and autologous stem cell rescue in children with newly diagnosed high-risk medulloblastoma or supratentorial primitive neuro-ectodermic tumors. Pediatr. Blood Cancer 2014, 61, 1398–1402. [Google Scholar] [CrossRef] [PubMed]
- Gajjar, A.; Chintagumpala, M.; Ashley, D.; Kellie, S.; Kun, L.E.; Merchant, T.E.; Woo, S.; Wheeler, G.; Ahern, V.; Krasin, M.J.; et al. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): Long-term results from a prospective, multicentre trial. Lancet Oncol. 2006, 7, 813–820. [Google Scholar] [CrossRef]
- Gandola, L.; Massimino, M.; Cefalo, G.; Solero, C.; Spreafico, F.; Pecori, E.; Riva, D.; Collini, P.; Pignoli, E.; Giangaspero, F.; et al. Hyperfractionated accelerated radiotherapy in the Milan strategy for metastatic medulloblastoma. J. Clin. Oncol. 2009, 27, 566–571. [Google Scholar] [CrossRef]
- Jakacki, R.I.; Burger, P.C.; Zhou, T.; Holmes, E.J.; Kocak, M.; Onar, A.; Goldwein, J.; Mehta, M.; Packer, R.J.; Tarbell, N.; et al. Outcome of children with metastatic medulloblastoma treated with carboplatin during craniospinal radiotherapy: A Children’s Oncology Group Phase I/II study. J. Clin. Oncol. 2012, 30, 2648–2653. [Google Scholar] [CrossRef]
- Tarbell, N.J.; Friedman, H.; Polkinghorn, W.R.; Yock, T.; Zhou, T.; Chen, Z.; Burger, P.; Barnes, P.; Kun, L. High-risk medulloblastoma: A pediatric oncology group randomized trial of chemotherapy before or after radiation therapy (POG 9031). J. Clin. Oncol. 2013, 31, 2936–2941. [Google Scholar] [CrossRef]
- von Bueren, A.O.; Kortmann, R.D.; von Hoff, K.; Friedrich, C.; Mynarek, M.; Müller, K.; Goschzik, T.; Zur Mühlen, A.; Gerber, N.; Warmuth-Metz, M.; et al. Treatment of Children and Adolescents With Metastatic Medulloblastoma and Prognostic Relevance of Clinical and Biologic Parameters. J. Clin. Oncol. 2016, 34, 4151–4160. [Google Scholar] [CrossRef] [PubMed]
- Câmara-Costa, H.; Bull, K.S.; Kennedy, C.; Wiener, A.; Calaminus, G.; Resch, A.; Kieffer, V.; Lalande, C.; Poggi, G.; von Hoff, K.; et al. Quality of survival and cognitive performance in children treated for medulloblastoma in the PNET 4 randomized controlled trial. Neurooncol. Pract. 2017, 4, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Mulhern, R.K.; Palmer, S.L.; Merchant, T.E.; Wallace, D.; Kocak, M.; Brouwers, P.; Krull, K.; Chintagumpala, M.; Stargatt, R.; Ashley, D.M.; et al. Neurocognitive consequences of risk-adapted therapy for childhood medulloblastoma. J. Clin. Oncol. 2005, 23, 5511–5519. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, J.E.; Gurney, J.G.; Palmer, S.L.; Bass, J.K.; Wang, M.; Chen, S.; Zhang, H.; Swain, M.; Chapieski, M.L.; Bonner, M.J.; et al. Examination of risk factors for intellectual and academic outcomes following treatment for pediatric medulloblastoma. Neuro Oncol. 2014, 16, 1129–1136. [Google Scholar] [CrossRef]
- Ellison, D.W.; Dalton, J.; Kocak, M.; Nicholson, S.L.; Fraga, C.; Neale, G.; Kenney, A.M.; Brat, D.J.; Perry, A.; Yong, W.H.; et al. Medulloblastoma: Clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol. 2011, 121, 381–396. [Google Scholar] [CrossRef]
- Miralbell, R.; Bieri, S.; Huguenin, P.; Feldges, A.; Morin, A.M.; Garcia, E.; Wagner, H.P.; Wacker, P.; von der Weid, N.; Swiss Pediatric Oncology Group. Prognostic value of cerebrospinal fluid cytology in pediatric medulloblastoma. Ann. Oncol. 1999, 10, 239–241. [Google Scholar] [CrossRef]
- Zeltzer, P.M.; Boyett, J.M.; Finlay, J.L.; Albright, A.L.; Rorke, L.B.; Milstein, J.M.; Allen, J.C.; Stevens, K.R.; Stanley, P.; Li, H.; et al. Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: Conclusions from the Children’s Cancer Group 921 randomized phase III study. J. Clin. Oncol. 1999, 17, 832–845. [Google Scholar] [CrossRef]
- Fouladi, M.; Gajjar, A.; Boyett, J.M.; Walter, A.W.; Thompson, S.J.; Merchant, T.E.; Jenkins, J.J.; Langston, J.W.; Liu, A.; Kun, L.E.; et al. Comparison of CSF cytology and spinal magnetic resonance imaging in the detection of leptomeningeal disease in pediatric medulloblastoma or primitive neuroectodermal tumor. J. Clin. Oncol. 1999, 17, 3234–3237. [Google Scholar] [CrossRef] [PubMed]
- Oyharcabal-Bourden, V.; Kalifa, C.; Gentet, J.C.; Frappaz, D.; Edan, C.; Chastagner, P.; Sariban, E.; Pagnier, A.; Babin, A.; Pichon, F.; et al. Standard-risk medulloblastoma treated by adjuvant chemotherapy followed by reduced-dose craniospinal radiation therapy: A French Society of Pediatric Oncology Study. J. Clin. Oncol. 2005, 23, 4726–4734. [Google Scholar] [CrossRef] [PubMed]
- Packer, R.J.; Gajjar, A.; Vezina, G.; Rorke-Adams, L.; Burger, P.C.; Robertson, P.L.; Bayer, L.; LaFond, D.; Donahue, B.R.; Marymont, M.H.; et al. Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J. Clin. Oncol. 2006, 24, 4202–4208. [Google Scholar] [CrossRef]
- Giangaspero, F.; Rigobello, L.; Badiali, M.; Loda, M.; Andreini, L.; Basso, G.; Zorzi, F.; Montaldi, A. Large-cell medulloblastomas. A distinct variant with highly aggressive behavior. Am. J. Surg. Pathol. 1992, 16, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Brown, H.G.; Kepner, J.L.; Perlman, E.J.; Friedman, H.S.; Strother, D.R.; Duffner, P.K.; Kun, L.E.; Goldthwaite, P.T.; Burger, P.C. “Large cell/anaplastic” medulloblastomas: A Pediatric Oncology Group Study. J. Neuropathol. Exp. Neurol. 2000, 59, 857–865. [Google Scholar] [CrossRef] [PubMed]
- McManamy, C.S.; Lamont, J.M.; Taylor, R.E.; Cole, M.; Pearson, A.D.; Clifford, S.C.; Ellison, D.W. Morphophenotypic variation predicts clinical behavior in childhood non-desmoplastic medulloblastomas. J. Neuropathol. Exp. Neurol. 2003, 62, 627–632. [Google Scholar] [CrossRef]
- Eberhart, C.G.; Kepner, J.L.; Goldthwaite, P.T.; Kun, L.E.; Duffner, P.K.; Friedman, H.S.; Strother, D.R.; Burger, P.C. Histopathologic grading of medulloblastomas: A Pediatric Oncology Group study. Cancer 2002, 94, 552–560. [Google Scholar] [CrossRef]
- Lannering, B.; Rutkowski, S.; Doz, F.; Pizer, B.; Gustafsson, G.; Navajas, A.; Massimino, M.; Reddingius, R.; Benesch, M.; Carrie, C.; et al. Hyperfractionated versus conventional radiotherapy followed by chemotherapy in standard-risk medulloblastoma: Results from the randomized multicenter HIT-SIOP PNET 4 trial. J. Clin. Oncol. 2012, 30, 3187–3193. [Google Scholar] [CrossRef]
- Pietsch, T.; Schmidt, R.; Remke, M.; Korshunov, A.; Hovestadt, V.; Jones, D.T.; Felsberg, J.; Kaulich, K.; Goschzik, T.; Kool, M.; et al. Prognostic significance of clinical, histopathological, and molecular characteristics of medulloblastomas in the prospective HIT2000 multicenter clinical trial cohort. Acta Neuropathol. 2014, 128, 137–149. [Google Scholar] [CrossRef]
- Massimino, M.; Antonelli, M.; Gandola, L.; Miceli, R.; Pollo, B.; Biassoni, V.; Schiavello, E.; Buttarelli, F.R.; Spreafico, F.; Collini, P.; et al. Histological variants of medulloblastoma are the most powerful clinical prognostic indicators. Pediatr. Blood Cancer 2013, 60, 210–216. [Google Scholar] [CrossRef]
- Esbenshade, A.J.; Kocak, M.; Hershon, L.; Rousseau, P.; Decarie, J.C.; Shaw, S.; Burger, P.; Friedman, H.S.; Gajjar, A.; Moghrabi, A. A Phase II feasibility study of oral etoposide given concurrently with radiotherapy followed by dose intensive adjuvant chemotherapy for children with newly diagnosed high-risk medulloblastoma (protocol POG 9631): A report from the Children’s Oncology Group. Pediatr. Blood Cancer 2017, 64, e26373. [Google Scholar]
- Taylor, M.D.; Northcott, P.A.; Korshunov, A.; Remke, M.; Cho, Y.J.; Clifford, S.C.; Eberhart, C.G.; Parsons, D.W.; Rutkowski, S.; Gajjar, A.; et al. Molecular subgroups of medulloblastoma: The current consensus. Acta Neuropathol. 2012, 123, 465–472. [Google Scholar] [CrossRef]
- Northcott, P.A.; Robinson, G.W.; Kratz, C.P.; Mabbott, D.J.; Pomeroy, S.L.; Clifford, S.C.; Rutkowski, S.; Ellison, D.W.; Malkin, D.; Taylor, M.D.; et al. Medulloblastoma. Nat. Rev. Dis. Primers 2019, 5, 11. [Google Scholar] [CrossRef]
- Sharma, T.; Schwalbe, E.C.; Williamson, D.; Sill, M.; Hovestadt, V.; Mynarek, M.; Rutkowski, S.; Robinson, G.W.; Gajjar, A.; Cavalli, F.; et al. Second-generation molecular subgrouping of medulloblastoma: An international meta-analysis of Group 3 and Group 4 subtypes. Acta Neuropathol. 2019, 138, 309–326. [Google Scholar] [CrossRef]
- Schwalbe, E.C.; Hayden, J.T.; Rogers, H.A.; Miller, S.; Lindsey, J.C.; Hill, R.M.; Nicholson, S.L.; Kilday, J.P.; Adamowicz-Brice, M.; Storer, L.; et al. Histologically defined central nervous system primitive neuro-ectodermal tumours (CNS-PNETs) display heterogeneous DNA methylation profiles and show relationships to other paediatric brain tumour types. Acta Neuropathol. 2013, 126, 943–946. [Google Scholar] [CrossRef] [PubMed]
- Kool, M.; Jones, D.T.; Jäger, N.; Northcott, P.A.; Pugh, T.J.; Hovestadt, V.; Piro, R.M.; Esparza, L.A.; Markant, S.L.; Remke, M.; et al. Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell 2014, 25, 393–405. [Google Scholar] [CrossRef]
- Northcott, P.A.; Jones, D.T.; Kool, M.; Robinson, G.W.; Gilbertson, R.J.; Cho, Y.J.; Pomeroy, S.L.; Korshunov, A.; Lichter, P.; Taylor, M.D.; et al. Medulloblastomics: The end of the beginning. Nat. Rev. Cancer 2012, 12, 818–834. [Google Scholar] [CrossRef] [PubMed]
- Ellison, D.W.; Kocak, M.; Dalton, J.; Megahed, H.; Lusher, M.E.; Ryan, S.L.; Zhao, W.; Nicholson, S.L.; Taylor, R.E.; Bailey, S.; et al. Definition of disease-risk stratification groups in childhood medulloblastoma using combined clinical, pathologic, and molecular variables. J. Clin. Oncol. 2011, 29, 1400–1407. [Google Scholar] [CrossRef]
- Clifford, S.C.; Lannering, B.; Schwalbe, E.C.; Hicks, D.; O’Toole, K.; Nicholson, S.L.; Goschzik, T.; Zur Mühlen, A.; Figarella-Branger, D.; Doz, F.; et al. Biomarker-driven stratification of disease-risk in non-metastatic medulloblastoma: Results from the multi-center HIT-SIOP-PNET4 clinical trial. Oncotarget 2015, 6, 38827–38839. [Google Scholar] [CrossRef] [PubMed]
- Ellison, D.W.; Onilude, O.E.; Lindsey, J.C.; Lusher, M.E.; Weston, C.L.; Taylor, R.E.; Pearson, A.D.; Clifford, S.C. β-Catenin status predicts a favorable outcome in childhood medulloblastoma: The United Kingdom Children’s Cancer Study Group Brain Tumour Committee. J. Clin. Oncol. 2005, 23, 7951–7957. [Google Scholar] [CrossRef]
- Zhukova, N.; Ramaswamy, V.; Remke, M.; Pfaff, E.; Shih, D.J.; Martin, D.C.; Castelo-Branco, P.; Baskin, B.; Ray, P.N.; Bouffet, E.; et al. Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J. Clin. Oncol. 2013, 31, 2927–2935. [Google Scholar] [CrossRef]
- Royds, J.A.; Iacopetta, B. p53 and disease: When the guardian angel fails. Cell Death Differ. 2006, 13, 1017–1026. [Google Scholar] [CrossRef]
- Hientz, K.; Mohr, A.; Bhakta-Guha, D.; Efferth, T. The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget 2017, 8, 8921–8946. [Google Scholar] [CrossRef]
- Ryan, S.L.; Schwalbe, E.C.; Cole, M.; Lu, Y.; Lusher, M.E.; Megahed, H.; O’Toole, K.; Nicholson, S.L.; Bognar, L.; Garami, M.; et al. MYC family amplification and clinical risk-factors interact to predict an extremely poor prognosis in childhood medulloblastoma. Acta Neuropathol. 2012, 123, 501–513. [Google Scholar] [CrossRef]
- Shih, D.J.; Northcott, P.A.; Remke, M.; Korshunov, A.; Ramaswamy, V.; Kool, M.; Luu, B.; Yao, Y.; Wang, X.; Dubuc, A.M.; et al. Cytogenetic prognostication within medulloblastoma subgroups. J. Clin. Oncol. 2014, 32, 886–896. [Google Scholar] [CrossRef]
- Goschzik, T.; Schwalbe, E.C.; Hicks, D.; Smith, A.; Zur Muehlen, A.; Figarella-Branger, D.; Doz, F.; Rutkowski, S.; Lannering, B.; Pietsch, T.; et al. Prognostic effect of whole chromosomal aberration signatures in standard-risk, non-WNT/non-SHH medulloblastoma: A retrospective, molecular analysis of the HIT-SIOP PNET 4 trial. Lancet Oncol. 2018, 19, 1602–1616. [Google Scholar] [CrossRef]
- Bougeard, G.; Renaux-Petel, M.; Flaman, J.M.; Charbonnier, C.; Fermey, P.; Belotti, M.; Gauthier-Villars, M.; Stoppa-Lyonnet, D.; Consolino, E.; Brugières, L.; et al. Revisiting Li-Fraumeni Syndrome From TP53 Mutation Carriers. J. Clin. Oncol. 2015, 33, 2345–2352. [Google Scholar] [CrossRef] [PubMed]
- Zerdoumi, Y.; Kasper, E.; Soubigou, F.; Adriouch, S.; Bougeard, G.; Frebourg, T.; Flaman, J.M. A new genotoxicity assay based on p53 target gene induction. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2015, 789–790, 28–35. [Google Scholar] [CrossRef]
- Hoff, K.V.; Hinkes, B.; Gerber, N.U.; Deinlein, F.; Mittler, U.; Urban, C.; Benesch, M.; Warmuth-Metz, M.; Soerensen, N.; Zwiener, I.; et al. Long-term outcome and clinical prognostic factors in children with medulloblastoma treated in the prospective randomised multicentre trial HIT’91. Eur. J. Cancer 2009, 45, 1209–1217. [Google Scholar] [CrossRef]
- Kortmann, R.D.; Kühl, J.; Timmermann, B.; Mittler, U.; Urban, C.; Budach, V.; Richter, E.; Willich, N.; Flentje, M.; Berthold, F.; et al. Postoperative neoadjuvant chemotherapy before radiotherapy as compared to immediate radiotherapy followed by maintenance chemotherapy in the treatment of medulloblastoma in childhood: Results of the German prospective randomized trial HIT ‘91. Int. J. Radiat. Oncol. Biol. Phys. 2000, 46, 269–279. [Google Scholar] [CrossRef]
- Packer, R.J.; Sutton, L.N.; Elterman, R.; Lange, B.; Goldwein, J.; Nicholson, H.S.; Mulne, L.; Boyett, J.; D’Angio, G.; Wechsler-Jentzsch, K. Outcome for children with medulloblastoma treated with radiation and cisplatin, CCNU, and vincristine chemotherapy. J. Neurosurg. 1994, 81, 690–698. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.E.; Bailey, C.C.; Robinson, K.J.; Weston, C.L.; Walker, D.A.; Ellison, D.; Ironside, J.; Pizer, B.L.; Lashford, L.S. Outcome for patients with metastatic (M2-3) medulloblastoma treated with SIOP/UKCCSG PNET-3 chemotherapy. Eur. J. Cancer 2005, 41, 727–734. [Google Scholar] [CrossRef]
- Taylor, R.E.; Howman, A.J.; Wheatley, K.; Brogden, E.E.; Large, B.; Gibson, M.J.; Robson, K.; Mitra, D.; Saran, F.; Michalski, A.; et al. Hyperfractionated Accelerated Radiotherapy (HART) with maintenance chemotherapy for metastatic (M1-3) Medulloblastoma--a safety/feasibility study. Radiother. Oncol. 2014, 111, 41–46. [Google Scholar] [CrossRef]
- Carrie, C.; Grill, J.; Figarella-Branger, D.; Bernier, V.; Padovani, L.; Habrand, J.L.; Benhassel, M.; Mege, M.; Mahé, M.; Quetin, P.; et al. Online quality control, hyperfractionated radiotherapy alone and reduced boost volume for standard risk medulloblastoma: Long-term results of MSFOP 98. J. Clin. Oncol. 2009, 27, 1879–1883. [Google Scholar] [CrossRef] [PubMed]
- Wheldon, T.E.; O’Donoghue, J.A.; Barrett, A. Kinetic considerations in the choice of treatment schedules for neuraxis radiotherapy. Br. J. Radiol. 1993, 66, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Veneroni, L.; Boschetti, L.; Barretta, F.; Clerici, C.A.; Simonetti, F.; Schiavello, E.; Biassoni, V.; Spreafico, F.; Gandola, L.; Pecori, E.; et al. Quality of life in long-term survivors treated for metastatic medulloblastoma with a hyperfractionated accelerated radiotherapy (HART) strategy. Childs Nerv. Syst. 2017, 33, 1969–1976. [Google Scholar] [CrossRef] [PubMed]
- Dufour, C.; Foulon, S.; Geoffray, A.; Masliah-Planchon, J.; Figarella-Branger, D.; Bernier-Chastagner, V.; Padovani, L.; Guerrini-Rousseau, L.; Faure-Conter, C.; Icher, C.; et al. Prognostic relevance of clinical and molecular risk factors in children with high-risk medulloblastoma treated in the phase II trial PNET HR+5. Neuro Oncol. 2021, 23, 1163–1172. [Google Scholar] [CrossRef] [PubMed]
- Spreafico, F.; Gandola, L.; Marchianò, A.; Simonetti, F.; Poggi, G.; Adduci, A.; Clerici, C.A.; Luksch, R.; Biassoni, V.; Meazza, C.; et al. Brain magnetic resonance imaging after high-dose chemotherapy and radiotherapy for childhood brain tumors. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Dale, R.G. Time-dependent tumour repopulation factors in linear-quadratic equations--implications for treatment strategies. Radiother. Oncol. 1989, 15, 371–381. [Google Scholar] [CrossRef]
- Clifford, S.C.; Lusher, M.E.; Lindsey, J.C.; Langdon, J.A.; Gilbertson, R.J.; Straughton, D.; Ellison, D.W. Wnt/Wingless pathway activation and chromosome 6 loss characterize a distinct molecular sub-group of medulloblastomas associated with a favorable prognosis. Cell Cycle 2006, 5, 2666–2670. [Google Scholar] [CrossRef]
- Crosier, S.; Hicks, D.; Schwalbe, E.C.; Williamson, D.; Leigh Nicholson, S.; Smith, A.; Lindsey, J.C.; Michalski, A.; Pizer, B.; Bailey, S.; et al. Advanced molecular pathology for rare tumours: A national feasibility study and model for centralised medulloblastoma diagnostics. Neuropathol. Appl. Neurobiol. 2021, 47, 736–747. [Google Scholar] [CrossRef]
- Chang, C.H.; Housepian, E.M.; Herbert, C. An operative staging system and a megavoltage radiotherapeutic technic for cerebellar medulloblastomas. Radiology 1969, 93, 1351–1359. [Google Scholar] [CrossRef]
- Cefalo, G.; Massimino, M.; Ruggiero, A.; Barone, G.; Ridola, V.; Spreafico, F.; Potepan, P.; Abate, M.E.; Mascarin, M.; Garrè, M.L.; et al. Temozolomide is an active agent in children with recurrent medulloblastoma/primitive neuroectodermal tumor: An Italian multi-institutional phase II trial. Neuro Oncol. 2014, 16, 748–753. [Google Scholar] [CrossRef]
- Grill, J.; Geoerger, B.; Gesner, L.; Perek, D.; Leblond, P.; Cañete, A.; Aerts, I.; Madero, L.; de Toledo Codina, J.S.; Verlooy, J.; et al. Phase II study of irinotecan in combination with temozolomide (TEMIRI) in children with recurrent or refractory medulloblastoma: A joint ITCC and SIOPE brain tumor study. Neuro Oncol. 2013, 15, 1236–1243. [Google Scholar] [CrossRef]
- Ajithkumar, T.; Horan, G.; Padovani, L.; Thorp, N.; Timmermann, B.; Alapetite, C.; Gandola, L.; Ramos, M.; Van Beek, K.; Christiaens, M.; et al. SIOPE—Brain tumor group consensus guideline on craniospinal target volume delineation for high-precision radiotherapy. Radiother. Oncol. 2018, 128, 192–197. [Google Scholar] [CrossRef]
- Limond, J.A.; Bull, K.S.; Calaminus, G.; Kennedy, C.R.; Spoudeas, H.A.; Chevignard, M.P.; Brain Tumour Quality of Survival Group SIOP-E. Quality of survival assessment in European childhood brain tumour trials, for children aged 5 years and over. Eur. J. Paediatr. Neurol. 2015, 19, 202–210. [Google Scholar] [CrossRef]
- Dhall, G.; O’Neil, S.H.; Ji, L.; Haley, K.; Whitaker, A.M.; Nelson, M.D.; Gilles, F.; Gardner, S.L.; Allen, J.C.; Cornelius, A.S.; et al. Excellent outcome of young children with nodular desmoplastic medulloblastoma treated on “Head Start” III: A multi-institutional, prospective clinical trial. Neuro Oncol. 2020, 22, 1862–1872. [Google Scholar] [CrossRef] [PubMed]
- Hill, R.M.; Kuijper, S.; Lindsey, J.C.; Petrie, K.; Schwalbe, E.C.; Barker, K.; Boult, J.K.; Williamson, D.; Ahmad, Z.; Hallsworth, A.; et al. Combined MYC and P53 defects emerge at medulloblastoma relapse and define rapidly progressive, therapeutically targetable disease. Cancer Cell 2015, 27, 72–84. [Google Scholar] [CrossRef]
- Bouffet, E.; Doz, F.; Demaille, M.C.; Tron, P.; Roche, H.; Plantaz, D.; Thyss, A.; Stephan, J.L.; Lejars, O.; Sariban, E.; et al. Improving survival in recurrent medulloblastoma: Earlier detection, better treatment or still an impasse. Br. J. Cancer 1998, 77, 1321–1326. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.; Hill, R.M.; Kui, C.; Lindsey, J.C.; Grabovksa, Y.; Keeling, C.; Pease, L.; Bashton, M.; Crosier, S.; Vinci, M.; et al. Emergence and maintenance of actionable genetic drivers at medulloblastoma relapse. Neuro Oncol. 2022, 24, 153–165. [Google Scholar] [CrossRef]
- Endersby, R.; Whitehouse, J.; Pribnow, A.; Kuchibhotla, M.; Hii, H.; Carline, B.; Gande, S.; Stripay, J.; Ancliffe, M.; Howlett, M.; et al. Small-molecule screen reveals synergy of cell cycle checkpoint kinase inhibitors with DNA-damaging chemotherapies in medulloblastoma. Sci. Transl. Med. 2021, 13, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Robinson, G.W.; Orr, B.A.; Wu, G.; Gururangan, S.; Lin, T.; Qaddoumi, I.; Packer, R.J.; Goldman, S.; Prados, M.D.; Desjardins, A.; et al. Vismodegib Exerts Targeted Efficacy Against Recurrent Sonic Hedgehog-Subgroup Medulloblastoma: Results From Phase II Pediatric Brain Tumor Consortium Studies PBTC-025B and PBTC-032. J. Clin. Oncol. 2015, 33, 2646–2654. [Google Scholar] [CrossRef]
- Delmore, J.E.; Issa, G.C.; Lemieux, M.E.; Rahl, P.B.; Shi, J.; Jacobs, H.M.; Kastritis, E.; Gilpatrick, T.; Paranal, R.M.; Qi, J.; et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011, 146, 904–917. [Google Scholar] [CrossRef]
- Bandopadhayay, P.; Piccioni, F.; O’Rourke, R.; Ho, P.; Gonzalez, E.M.; Buchan, G.; Qian, K.; Gionet, G.; Girard, E.; Coxon, M.; et al. Neuronal differentiation and cell-cycle programs mediate response to BET-bromodomain inhibition in MYC-driven medulloblastoma. Nat. Commun. 2019, 10, 2400. [Google Scholar] [CrossRef] [PubMed]
- Morfouace, M.; Shelat, A.; Jacus, M.; Freeman, B.B.; Turner, D.; Robinson, S.; Zindy, F.; Wang, Y.D.; Finkelstein, D.; Ayrault, O.; et al. Pemetrexed and gemcitabine as combination therapy for the treatment of Group3 medulloblastoma. Cancer Cell 2014, 25, 516–529. [Google Scholar] [CrossRef] [PubMed]
- Mora, J.; Modak, S. Nivolumab in paediatric cancer: Children are not little adults. Lancet Oncol. 2020, 21, 474–476. [Google Scholar] [CrossRef]
- Pasqualini, C.; Rubino, J.; Brard, C.; Cassard, L.; André, N.; Rondof, W.; Scoazec, J.Y.; Marchais, A.; Nebchi, S.; Boselli, L.; et al. Phase II and biomarker study of programmed cell death protein 1 inhibitor nivolumab and metronomic cyclophosphamide in paediatric relapsed/refractory solid tumours: Arm G of AcSé-ESMART, a trial of the European Innovative Therapies for Children With Cancer Consortium. Eur. J. Cancer 2021, 150, 53–62. [Google Scholar]
- Pearson, A.D.J.; Rossig, C.; Lesa, G.; Diede, S.J.; Weiner, S.; Anderson, J.; Gray, J.; Geoerger, B.; Minard-Colin, V.; Marshall, L.V.; et al. ACCELERATE and European Medicines Agency Paediatric Strategy Forum for medicinal product development of checkpoint inhibitors for use in combination therapy in paediatric patients. Eur. J. Cancer 2020, 127, 52–66. [Google Scholar] [CrossRef]
- Audi, Z.F.; Saker, Z.; Rizk, M.; Harati, H.; Fares, Y.; Bahmad, H.F.; Nabha, S.M. Immunosuppression in Medulloblastoma: Insights into Cancer Immunity and Immunotherapy. Curr. Treat. Options Oncol. 2021, 22, 83. [Google Scholar] [CrossRef]
- Donovan, L.K.; Delaidelli, A.; Joseph, S.K.; Bielamowicz, K.; Fousek, K.; Holgado, B.L.; Manno, A.; Srikanthan, D.; Gad, A.Z.; Van Ommeren, R.; et al. Locoregional delivery of CAR T cells to the cerebrospinal fluid for treatment of metastatic medulloblastoma and ependymoma. Nat. Med. 2020, 26, 720–731. [Google Scholar] [CrossRef]
- Baroni, L.V.; Freytes, C.; Fernández Ponce, N.; Oller, A.; Pinto, N.; Gonzalez, A.; Maldonado, F.R.; Sampor, C.; Rugilo, C.; Lubieniecki, F.; et al. Craniospinal irradiation as part of re-irradiation for children with recurrent medulloblastoma. J. Neurooncol. 2021, 155, 53–61. [Google Scholar] [CrossRef]
- Gupta, T.; Maitre, M.; Sastri, G.J.; Krishnatry, R.; Shirsat, N.; Epari, S.; Sahay, A.; Chinnaswamy, G.; Patil, V.; Shetty, P.; et al. Outcomes of salvage re-irradiation in recurrent medulloblastoma correlate with age at initial diagnosis, primary risk-stratification, and molecular subgrouping. J. Neurooncol. 2019, 144, 283–291. [Google Scholar] [CrossRef]
- Tsang, D.S.; Sarhan, N.; Ramaswamy, V.; Nobre, L.; Yee, R.; Taylor, M.D.; Hawkins, C.; Bartels, U.; Huang, A.; Tabori, U.; et al. Re-irradiation for children with recurrent medulloblastoma in Toronto, Canada: A 20-year experience. J. Neurooncol. 2019, 145, 107–114. [Google Scholar] [CrossRef]
- Padovani, L.; Andre, N.; Gentet, J.C.; Figarella Branger, D.; Scavarda, D.; Verschuur, A.; Chinot, O.; Cowen, D.; Muracciole, X. Reirradiation and concomitant metronomic temozolomide: An efficient combination for local control in medulloblastoma disease. J. Pediatr. Hematol. Oncol. 2011, 33, 600–604. [Google Scholar] [CrossRef]
- Zhou, K.; Xie, C.; Wickström, M.; Dolga, A.M.; Zhang, Y.; Li, T.; Xu, Y.; Culmsee, C.; Kogner, P.; Zhu, C.; et al. Lithium protects hippocampal progenitors, cognitive performance and hypothalamus-pituitary function after irradiation to the juvenile rat brain. Oncotarget 2017, 8, 34111–34127. [Google Scholar] [CrossRef]
- Xu, X.; Huang, H.; Tu, Y.; Sun, J.; Xiong, Y.; Ma, C.; Qin, S.; Hu, W.; Zhou, J. Celecoxib Alleviates Radiation-Induced Brain Injury in Rats by Maintaining the Integrity of Blood-Brain Barrier. Dose Response 2021, 19, 15593258211024393. [Google Scholar] [CrossRef] [PubMed]
- Levy, A.S.; Krailo, M.; Chi, S.; Villaluna, D.; Springer, L.; Williams-Hughes, C.; Fouladi, M.; Gajjar, A. Temozolomide with irinotecan versus temozolomide, irinotecan plus bevacizumab for recurrent medulloblastoma of childhood: Report of a COG randomized Phase II screening trial. Pediatr. Blood Cancer 2021, 68, e29031. [Google Scholar] [CrossRef] [PubMed]
- André, N.; Carré, M.; Pasquier, E. Metronomics: Towards personalized chemotherapy. Nat. Rev. Clin. Oncol. 2014, 11, 413–431. [Google Scholar] [CrossRef]
- Peyrl, A.; Chocholous, M.; Kieran, M.W.; Azizi, A.A.; Prucker, C.; Czech, T.; Dieckmann, K.; Schmook, M.T.; Haberler, C.; Leiss, U.; et al. Antiangiogenic metronomic therapy for children with recurrent embryonal brain tumors. Pediatr. Blood Cancer 2012, 59, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Zapletalova, D.; André, N.; Deak, L.; Kyr, M.; Bajciova, V.; Mudry, P.; Dubska, L.; Demlova, R.; Pavelka, Z.; Zitterbart, K.; et al. Metronomic chemotherapy with the COMBAT regimen in advanced pediatric malignancies: A multicenter experience. Oncology 2012, 82, 249–260. [Google Scholar] [CrossRef]
- André, N.; Orbach, D.; Pasquier, E. Metronomic Maintenance for High-Risk Pediatric Malignancies: One Size Will Not Fit All. Trends Cancer 2020, 6, 819–828. [Google Scholar] [CrossRef]
Molecular Features | Histology | Residual Tumour | Metastatic Disease |
---|---|---|---|
TP53 mutant (somatic) and/or MYCN amplified (SHH subgroup only) | any | any | any |
any non-WNT subgroup | LCA * | any | M+ * |
WNT subgroup (>16 years) | LCA * | any | M+ * |
MYC amplified (any subgroup) | any | any | any |
Study [ref] | Number of Patients | Cohort Definition | Radiotherapy Dose | Chemotherapy | Comments | Toxic Deaths | Progression on Treatment | Event-Free Survival |
---|---|---|---|---|---|---|---|---|
SJMB96 [7] | 48 (M0 = 6; M1 = 9; M2 = 6; M3 = 27) | R+ or M1–M3 | 36–39.6 Gy | 4× HD chemotherapy (cisplatin, cyclophosphamide and vincristine) post-radiation | Single institute study; no randomization; part of a larger trial; 31/48 had additional pre-radiation topotecan window study. Quality of survival data published. | 0 | 1 | 5-year EFS 70% |
HART (UK) [50] | 34 (M1 = 9; M2 = 3; M3 = 24) | M+ | 1.24 Gy fractions bd to 39.68 Gy | Vincristine with radiation Maintenance 8× cisplatin, CCNU, vincristine | Toxicity feasibility study/not powered for survival. Excluded patients requiring GA. | 1 | 0 | 3-year EFS 59% |
COG 99,701 [9] | 161 (M0 = 5; M1 = 18; M2 = 10; M3 = 49) | R+, M+ or supratentorial PNET | 36 Gy | Carboplatin and vincristine during radiation Maintenance with 6× cyclophosphamide and vincristine +/− cisplatin | Phase I/II carboplatin as radiosensitizer; no quality of survival data published. | 0 | 4 (all long-term survivors, likely pseudo-progression) | 5-year EFS M1 = 77% M2 = 50% M3 = 67% |
POG 9031 [10] | 224 (M1 = 29; M2 = 36; M3 = 34; M4 = 9) | T3b/T4, M+ or R+ | 35.2–40.0 Gy | Randomised 3x cisplatin and etoposide before or after radiation; Maintenance with 7× cyclophosphamide and vincristine | 72 were Chang Stage T3b/T4, M0, R-; no quality of survival data published. | None reported | 12 in the CT 1st arm | 5-year EFS 66% CT 1st 70% RT 1st |
Milan [8,53] | 33 (M1 = 9; M2 = 6; M3 = 17; M4 = 1) | M+ | HART 31.2–39 Gy | 10 weeks chemotherapy pre-radiation (methotrexate, vincristine, etoposide, cyclophosphamide, carboplatin); post-radiation 2× HD chemotherapy (Thiotepa]) or maintenance with 12 months CCNU and vincristine | Limited centre study; Subsequent neuro toxicity reported. Quality of life data reported. | None reported | 5 (pre-radiation) 2 (on maintenance therapy) | 5-year EFS 70% |
Institut Gustave Roussy (France) [6] | 24 (M0 = 5; M1 = 0; M2 = 4; M3 = 15) | R+, M+, MYCN amplification or supratentorial PNET | 18 Gy (1) 25 Gy (2) 36 Gy (19) 40 Gy (1) 54 Gy focal [1 sPNET] | 2× carboplatin and etoposide pre-radiation; 2× HD chemotherapy (Thiotepa); Maintenance with temozolomide | Single institute study; neurocognitive data reported. | 0 | 0 | 5-year EFS 65% 72% in M+ |
HIT 2000 (Germany) [11] | 123 (M1 = 36; M2/M3 = 87) | M+ | HFRT 40 Gy | 2× cycles of pre-radiation chemotherapy (cyclophosphamide, vincristine, methotrexate, carboplatin, etoposide and intraventricular methotrexate); maintenance with 4 cycles cisplatin, CCNU, vincristine | Well-tolerated. | 0 | 14 (pre-radiation) 1 (after radiation) 31 (during maintenance or at end of treatment) | 5-year EFS 62% |
PNET HR+5 (France) [54] | 51 (M0 = 14; M1 = 3; M2/3 = 34) | R+, M+, MYC/N amplification, LCA histology | 36 Gy CSI Unless Residual disease alone post surgery with no other high risk features then 23.4 Gy CSI | 2× carboplatin/etoposide; 2× thiotepa HD; 6× temozolomide maintenance | French national study. | 5-year EFS 76% 5-year OS 76% |
RT Volume | Schedule | Total Dose | Dose/Fraction | Fractions/Day | No. Fractions | ERD T | ERD L |
---|---|---|---|---|---|---|---|
CSI | HART | 39 Gy | 1.3 Gy | 2 | 30 | 31.47 | 55.9 |
CF | 36 Gy | 1.8 Gy | 1 | 20 | 25.68 | 57.6 | |
Tumour Bed/Brain Metastasis boost | HART | 20.8 Gy | 1.3 Gy | 2 | 16 | 16.78 | 29.8 |
CF | 18 Gy | 1.8 Gy | 1 | 10 | 12.84 | 28.8 | |
Spine metastasis boost | HART | 7.8 Gy | 1.3 Gy | 2 | 6 | 6.29 | 11.2 |
CF | 9 Gy | 1.8 Gy | 1 | 5 | 6.42 | 14.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bailey, S.; André, N.; Gandola, L.; Massimino, M.; Wheatley, K.; Gates, S.; Homer, V.; Rutkowski, S.; Clifford, S.C. Clinical Trials in High-Risk Medulloblastoma: Evolution of the SIOP-Europe HR-MB Trial. Cancers 2022, 14, 374. https://doi.org/10.3390/cancers14020374
Bailey S, André N, Gandola L, Massimino M, Wheatley K, Gates S, Homer V, Rutkowski S, Clifford SC. Clinical Trials in High-Risk Medulloblastoma: Evolution of the SIOP-Europe HR-MB Trial. Cancers. 2022; 14(2):374. https://doi.org/10.3390/cancers14020374
Chicago/Turabian StyleBailey, Simon, Nicolas André, Lorenza Gandola, Maura Massimino, Keith Wheatley, Simon Gates, Victoria Homer, Stefan Rutkowski, and Steven C. Clifford. 2022. "Clinical Trials in High-Risk Medulloblastoma: Evolution of the SIOP-Europe HR-MB Trial" Cancers 14, no. 2: 374. https://doi.org/10.3390/cancers14020374
APA StyleBailey, S., André, N., Gandola, L., Massimino, M., Wheatley, K., Gates, S., Homer, V., Rutkowski, S., & Clifford, S. C. (2022). Clinical Trials in High-Risk Medulloblastoma: Evolution of the SIOP-Europe HR-MB Trial. Cancers, 14(2), 374. https://doi.org/10.3390/cancers14020374