Modern Management of Esophageal Cancer: Radio-Oncology in Neoadjuvancy, Adjuvancy and Palliation
Abstract
:Simple Summary
Abstract
1. Neoadjuvant Radiation Oncology
1.1. Current Guideline Indications
1.2. Modern Evidence
1.3. The Issue of Junctional Primaries: In Other Words, Shall We Still Prefer RTCT over CT for GEJ?
1.4. Doses and Volumes (Including Brachytherapy/Interventional Radiation Oncology)
1.5. Ongoing Trials
Trials on Preoperative RTCT Dealing with Choice of Which Schedule of Concomitant CT
2. Adjuvant Radiation Oncology
2.1. Current Guideline’s Indications
2.2. Available Evidence
2.3. Ongoing Trials and Promising Strategies
3. Palliative Approaches
3.1. Current Guideline’s Indications
3.2. Use of Stent and Potential Integration with Radiotherapy
3.3. Clinical Application of Brachytherapy (Interventional Radiotherapy)
4. Innovative Approaches
4.1. Is There Room for Avoidance of Surgery in Case of Major Response?
4.2. May Definitive RTCT Replace Surgery for SCC?
4.3. Role of MRIgRT
4.4. Role of Radiomic Analysis
4.5. Prehabilitation and Rehabilitation for Esophageal Cancer
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Klevebro, F.; Ekman, S.; Nilsson, M. Current trends in multimodality treatment of esophageal and gastroesophageal junction cancer–Review article. Surg. Oncol. 2017, 26, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Guidelines NCCN. NCCN Guidelines-Esophageal and Esophagogastric Junction Cancers. Version 3. 2021. Available online: https://www.nccn.org/professionals/physician_gls/pdf/esophageal.pdf (accessed on 31 December 2021).
- Shah, M.A.; Kennedy, E.B.; Catenacci, D.V.; Deighton, D.C.; Goodman, K.A.; Malhotra, N.K.; Willett, C.; Stiles, B.; Sharma, P.; Tang, L.; et al. Treatment of locally advanced esophageal carcinoma: ASCO guideline. J. Clin. Oncol. 2020, 38, 2677–2694. [Google Scholar] [CrossRef] [PubMed]
- Talsma, K.; Van Hagen, P.; Grotenhuis, B.A.; Steyerberg, E.; Tilanus, H.W.; Van Lanschot, J.J.B.; Wijnhoven, B.P.L. Comparison of the 6th and 7th Editions of the UICC-AJCC TNM classification for esophageal cancer. Ann. Surg. Oncol. 2012, 19, 2142–2148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curtis, N.J.; Noble, F.; Bailey, I.S.; Kelly, J.J.; Byrne, J.P.; Underwood, T.J. The relevance of the Siewert classification in the era of multimodal therapy for adenocarcinoma of the gastro-oesophageal junction. J. Surg. Oncol. 2013, 109, 202–207. [Google Scholar] [CrossRef] [Green Version]
- Cellini, F.; Morganti, A.G.; Di Matteo, F.M.; Mattiucci, G.C.; Valentini, V. Clinical management of gastroesophageal junction tumors: Past and recent evidences for the role of radiotherapy in the multidisciplinary approach. Radiat. Oncol. 2014, 9, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424, Erratum in CA A Cancer J. Clin. 2020, 70, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steyerberg, E.W.; Neville, B.A.; Koppert, L.B.; Lemmens, V.E.; Tilanus, H.W.; Coebergh, J.-W.W.; Weeks, J.C.; Earle, C.C. Surgical mortality in patients with esophageal cancer: Development and validation of a simple risk score. J. Clin. Oncol. 2006, 24, 4277–4284. [Google Scholar] [CrossRef] [PubMed]
- Napier, K.J. Esophageal cancer: A Review of epidemiology, pathogenesis, staging workup and treatment modalities. World J. Gastrointest. Oncol. 2014, 6, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Baba, Y.; Watanabe, M.; Yoshida, N.; Baba, H. Neoadjuvant treatment for esophageal squamous cell carcinoma. World J. Gastrointest. Oncol. 2014, 6, 121–128. [Google Scholar] [CrossRef]
- Lagergren, J.; Smyth, E.; Cunningham, D.; Lagergren, P. Oesophageal cancer. Lancet 2017, 390, 2383–2396. [Google Scholar] [CrossRef] [Green Version]
- Gebski, V.; Burmeister, B.; Smithers, B.M.; Foo, K.; Zalcberg, J.; Simes, J. Survival benefits from neoadjuvant chemoradiotherapy or chemotherapy in oesophageal carcinoma: A meta-analysis. Lancet Oncol. 2007, 8, 226–234. [Google Scholar] [CrossRef]
- Sjoquist, K.; Burmeister, B.H.; Smithers, B.M.; Zalcberg, J.R.; Simes, R.J.; Barbour, A.; Gebski, V. Survival after neoadjuvant chemotherapy or chemoradiotherapy for resectable oesophageal carcinoma: An updated meta-analysis. Lancet Oncol. 2011, 12, 681–692. [Google Scholar] [CrossRef]
- Ronellenfitsch, U.; Schwarzbach, M.; Hofheinz, R.; Kienle, P.; Kieser, M.; Slanger, T.E.; Burmeister, B.; Kelsen, D.; Niedzwiecki, D.; Schuhmacher, C.; et al. Preoperative chemo(radio)therapy versus primary surgery for gastroesophageal adenocarcinoma: Systematic review with meta-analysis combining individual patient and aggregate data. Eur. J. Cancer 2013, 49, 3149–3158. [Google Scholar] [CrossRef] [PubMed]
- Van Hagen, P.; Hulshof, M.C.C.M.; Van Lanschot, J.J.B.; Steyerberg, E.W.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.L.; Richel, D.J.; Nieuwenhuijzen, G.A.P.; Hospers, G.A.P.; Bonenkamp, J.J.; et al. Preoperative Chemoradiotherapy for Esophageal or Junctional Cancer. N. Engl. J. Med. 2012, 366, 2074–2084. [Google Scholar] [CrossRef] [Green Version]
- Urba, S.G.; Orringer, M.B.; Turrisi, A.; Iannettoni, M.; Forastiere, A.; Strawderman, M. Randomized Trial of Preoperative Chemoradiation Versus Surgery Alone in Patients with Locoregional Esophageal Carcinoma. J. Clin. Oncol. 2001, 19, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Burmeister, B.H.; Smithers, B.M.; Gebski, V.; Fitzgerald, L.; Simes, R.J.; Devitt, P.; Ackland, S.; Gotley, D.; Joseph, D.; Millar, J.; et al. Surgery alone versus chemoradiotherapy followed by surgery for resectable cancer of the oesophagus: A randomised controlled phase III trial. Lancet Oncol. 2005, 6, 659–668. [Google Scholar] [CrossRef]
- Tepper, J.; Krasna, M.J.; Niedzwiecki, D.; Hollis, D.; Reed, C.E.; Goldberg, R.; Kiel, K.; Willett, C.; Sugarbaker, D.; Mayer, R. Phase III Trial of Trimodality Therapy with Cisplatin, Fluorouracil, Radiotherapy, and Surgery Compared with Surgery Alone for Esophageal Cancer: CALGB 9781. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2008, 26, 1086–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oppedijk, V.; van der Gaast, A.; van Lanschot, J.J.; van Hagen, P.; van Os, R.; van Rij, C.M.; van der Sangen, M.J.; Beukema, J.C.; Rütten, H.; Spruit, P.H.; et al. Patterns of recurrence after surgery alone versus preoperative chemoradiotherapy and surgery in the CROSS trials. J. Clin. Oncol. 2014, 32, 385–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro, J.; van Lanschot, J.J.B.; Hulshof, M.C.C.M.; van Hagen, P.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.L.; van Laarhoven, H.W.M.; Nieuwenhuijzen, G.A.P.; Hospers, G.A.P.; Bonenkamp, J.J.; et al. Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): Long-term results of a randomised controlled trial. Lancet Oncol. 2015, 16, 1090–1098. [Google Scholar] [CrossRef]
- Eyck, B.M.; van Lanschot, J.J.B.; Hulshof, M.C.C.M.; van der Wilk, B.J.; Shapiro, J.; van Hagen, P.; Henegouwen, M.I.V.B.; Wijnhoven, B.P.L.; van Laarhoven, H.W.M.; Nieuwenhuijzen, G.A.P.; et al. Ten-Year outcome of neoadjuvant chemoradiotherapy plus surgery for esophageal cancer: The randomized controlled CROSS trial. J. Clin. Oncol. 2021, 39, 1995–2004. [Google Scholar] [CrossRef]
- Kelsen, D.P.; Winter, K.A.; Gunderson, L.L.; Mortimer, J.; Estes, N.C.; Haller, D.G.; Ajani, J.A.; Kocha, W.; Minsky, B.D.; Roth, J.A.; et al. Long-Term Results of RTOG trial 8911 (USA Intergroup 113): A random assignment trial comparison of chemotherapy followed by surgery compared with surgery alone for esophageal cancer. J. Clin. Oncol. 2007, 25, 3719–3725. [Google Scholar] [CrossRef] [PubMed]
- Allum, W.H.; Stenning, S.P.; Bancewicz, J.; Clark, P.I.; Langley, R.E. Long-Term results of a randomized trial of surgery with or without preoperative chemotherapy in esophageal cancer. J. Clin. Oncol. 2009, 27, 5062–5067. [Google Scholar] [CrossRef] [PubMed]
- Leichman, L.P.; Goldman, B.H.; Bohanes, P.O.; Lenz, H.J.; Thomas, C.R.; Billingsley, K.G.; Corless, C.L.; Iqbal, S.; Gold, P.J.; Benedetti, J.K.; et al. S0356: A Phase II Clinical and prospective molecular trial with oxaliplatin, fluorouracil, and external-beam radiation therapy before surgery for patients with esophageal adenocarcinoma. J. Clin. Oncol. 2011, 29, 4555–4560. [Google Scholar] [CrossRef] [PubMed]
- Messager, M.; Mirabel, X.; Tresch, E.; Paumier, A.; Vendrely, V.; Dahan, L.; Glehen, O.; Vasseur, F.; Lacornerie, T.; Piessen, G.; et al. Preoperative chemoradiation with paclitaxel-carboplatin or with fluorouracil-oxaliplatin-folinic acid (FOLFOX) for resectable esophageal and junctional cancer: The PROTECT-1402, randomized phase 2 trial. BMC Cancer 2016, 16, 318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.H.; de Heer, E.C.; Hulshoff, J.B.; Kats-Ugurlu, G.; Burgerhof, J.G.M.; van Etten, B.; Plukker, J.T.M.; Hospers, G.A.; the Dutch Upper Gastrointestinal Cancer Audit (DUCA) Group. Effect of extending the original CROSS criteria on tumor response to neoadjuvant chemoradiotherapy in esophageal cancer patients: A national multicenter cohort analysis. Ann. Surg. Oncol. 2020, 28, 3951–3960. [Google Scholar] [CrossRef]
- Koëter, M.; van Putten, M.; Verhoeven, R.H.A.; Lemmens, V.E.P.P.; Nieuwenhuijzen, G.A.P. Definitive chemoradiation or surgery in elderly patients with potentially curable esophageal cancer in the Netherlands: A nationwide population-based study on patterns of care and survival. Acta Oncol. 2018, 57, 1192–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, J.S.; Guo, M.D.; Herskovic, A.; Macdonald, J.S.; Martenson, J.J.A.; Al-Sarraf, M.; Byhardt, R.; Russell, A.H.; Beitler, J.J.; Spencer, S.; et al. Chemoradiotherapy of locally advanced esophageal cancer: Long-term follow-up of a prospective randomized trial (RTOG 85-01). JAMA 1999, 281, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Swisher, S.G.; Winter, K.A.; Komaki, R.U.; Ajani, J.A.; Wu, T.T.; Hofstetter, W.L.; Konski, A.A.; Willett, C.G. A Phase II study of a paclitaxel-based chemoradiation regimen with selective surgical salvage for resectable locoregionally advanced esophageal cancer: Initial reporting of RTOG 0246. Int. J. Radiat. Oncol. 2012, 82, 1967–1972. [Google Scholar] [CrossRef] [Green Version]
- Conroy, T.; Galais, M.-P.; Raoul, J.-L.; Bouché, O.; Gourgou-Bourgade, S.; Douillard, J.-Y.; Etienne, P.-L.; Boige, V.; Martel-Lafay, I.; Michel, P.; et al. Definitive chemoradiotherapy with FOLFOX versus fluorouracil and cisplatin in patients with oesophageal cancer (PRODIGE5/ACCORD17): Final results of a randomised, phase 2/3 trial. Lancet Oncol. 2014, 15, 305–314. [Google Scholar] [CrossRef]
- Stahl, M.; Stuschke, M.; Lehmann, N.; Meyer, H.-J.; Walz, M.K.; Seeber, S.; Klump, B.; Budach, W.; Teichmann, R.; Schmitt, M.; et al. Chemoradiation with and without surgery in patients with locally advanced squamous cell carcinoma of the esophagus. J. Clin. Oncol. 2005, 23, 2310–2317. [Google Scholar] [CrossRef] [Green Version]
- Bedenne, L.; Michel, P.; Bouché, O.; Milan, C.; Mariette, C.; Conroy, T.; Pezet, D.; Roullet, B.; Seitz, J.-F.; Herr, J.-P.; et al. Chemoradiation followed by surgery compared with chemoradiation alone in squamous cancer of the esophagus: FFCD 9102. J. Clin. Oncol. 2007, 25, 1160–1168. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Liu, H.; Chen, Y.; Zhu, C.; Fang, W.; Yu, Z.; Mao, W.; Xiang, J.; Han, Y.; Chen, Z.; et al. Neoadjuvant chemoradiotherapy followed by surgery versus surgery alone for locally advanced squamous cell carcinoma of the esophagus (NEOCRTEC5010): A phase III multicenter, randomized, open-label clinical trial. J. Clin. Oncol. 2018, 36, 2796–2803. [Google Scholar] [CrossRef] [PubMed]
- Vellayappan, B.A.; Soon, Y.Y.; Ku, G.Y.; Leong, C.N.; Lu, J.J.; Tey, J.C. Chemoradiotherapy versus chemoradiotherapy plus surgery for esophageal cancer. Cochrane Database Syst. Rev. 2017, 2017, CD010511. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, Y.; Uno, T.; Oyama, T.; Kato, K.; Kato, H.; Kawakubo, H.; Kawamura, O.; Kusano, M.; Kuwano, H.; Takeuchi, H.; et al. Esophageal cancer practice guidelines 2017 edited by the Japan esophageal society: Part 2. Esophagus 2018, 16, 25–43. [Google Scholar] [CrossRef] [PubMed]
- Ando, N.; Kato, H.; Igaki, H.; Shinoda, M.; Ozawa, S.; Shimizu, H.; Nakamura, T.; Yabusaki, H.; Aoyama, N.; Kurita, A.; et al. A randomized trial comparing postoperative adjuvant chemotherapy with cisplatin and 5-Fluorouracil versus preoperative chemotherapy for localized advanced squamous cell carcinoma of the thoracic esophagus (JCOG9907). Ann. Surg. Oncol. 2011, 19, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Kato, K.; Igaki, H.; Ito, Y.; Mizusawa, J.; Ando, N.; Udagawa, H.; Tsubosa, Y.; Daiko, H.; Hironaka, S.; et al. Three-arm Phase III Trial comparing cisplatin plus 5-FU (CF) versus docetaxel, cisplatin plus 5-FU (DCF) versus radiotherapy with CF (CF-RT) as preoperative therapy for locally advanced esophageal cancer (JCOG1109, NExT Study). Jpn. J. Clin. Oncol. 2013, 43, 752–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stroes, C.I.; Schokker, S.; Creemers, A.; Molenaar, R.J.; Hulshof, M.C.; van der Woude, S.O.; Bennink, R.J.; Mathôt, R.A.; Krishnadath, K.K.; Punt, C.J.; et al. Phase II Feasibility and biomarker study of neoadjuvant trastuzumab and pertuzumab with chemoradiotherapy for resectable human epidermal growth factor receptor 2–positive esophageal adenocarcinoma: TRAP study. J. Clin. Oncol. 2020, 38, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Haustermans, K. The rationale and evidence for radiotherapy in the management of gastroesophageal junction tumors. Am. Soc. Clin. Oncol. Educ. Book 2013, 33, e151–e154. [Google Scholar] [CrossRef]
- Cellini, F.; Valentini, V. Targeted therapies in combination with radiotherapy in oesophageal and gastroesophageal carcinoma. Curr. Med. Chem. 2014, 21, 990–1004. [Google Scholar] [CrossRef] [PubMed]
- Rusch, V.W. Are cancers of the esophagus, gastroesophageal junction, and cardia one disease, two, or several? Semin. Oncol. 2004, 31, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Buas, M.F.; Vaughan, T.L. Epidemiology and risk factors for gastroesophageal junction tumors: Understanding the rising incidence of this disease. Semin. Radiat. Oncol. 2012, 23, 3–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siewert, J.R.; Stein, H.J. Classification of adenocarcinoma of the oesophagogastric junction. Br. J. Surg. 1998, 85, 1457–1459. [Google Scholar] [CrossRef] [PubMed]
- Siewert, J.R.; Feith, M.; Werner, M.; Stein, H.J. Adenocarcinoma of the esophagogastric junction: Results of surgical therapy based on anatomical/topographic classification in 1,002 consecutive patients. Ann. Surg. 2000, 232, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Brierley, J.D.; Wittekind, M.G. TNM Classification of Malignant Tumours, 8th ed.; Wiley-Blackwell: Oxford, UK, 2017. [Google Scholar]
- Cellini, F.; Ramella, S.; Ciresa, M.; Porziella, V.; Meacci, E.; Fiore, M.; Trodella, L.; D’Angelillo, R.M. Role of induction therapy in esophageal cancer. Rays 2006, 30, 329–333. [Google Scholar]
- Stahl, M.; Walz, M.K.; Stuschke, M.; Lehmann, N.; Meyer, H.-J.; Riera-Knorrenschild, J.; Langer, P.; Engenhart-Cabillic, R.; Bitzer, M.; Königsrainer, A.; et al. Phase III comparison of preoperative chemotherapy compared with chemoradiotherapy in patients with locally advanced adenocarcinoma of the esophagogastric junction. J. Clin. Oncol. 2009, 27, 851–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burmeister, B.H.; Thomas, J.M.; Burmeister, E.A.; Walpole, E.; Harvey, J.A.; Thomson, D.B.; Barbour, A.; Gotley, D.; Smithers, B.M. Is concurrent radiation therapy required in patients receiving preoperative chemotherapy for adenocarcinoma of the oesophagus? A randomised phase II trial. Eur. J. Cancer 2011, 47, 354–360. [Google Scholar] [CrossRef]
- Klevebro, F.; von Döbeln, G.A.; Wang, N.; Johnsen, G.; Jacobsen, A.-B.; Friesland, S.; Hatlevoll, I.; Glenjen, N.I.; Lind, P.; Tsai, J.A.; et al. A randomized clinical trial of neoadjuvant chemotherapy versus neoadjuvant chemoradiotherapy for cancer of the oesophagus or gastro-oesophageal junction. Ann. Oncol. 2016, 27, 660–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Ren, Y.; Hu, Y.; Cui, N.; Wang, X.; Cui, Y. Neoadjuvant chemotherapy versus neoadjuvant chemoradiotherapy for cancer of the esophagus or the gastroesophageal junction: A meta-analysis based on clinical trials. PLoS ONE 2018, 13, e0202185. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, Q.; Ge, X.; Song, Y.; Tian, Y.; Wang, S.; Liu, M.; Qiao, X. Neoadjuvant chemoradiotherapy improves survival in locally advanced adenocarcinoma of esophagogastric junction compared with neoadjuvant chemotherapy: A propensity score matching analysis. BMC Surg. 2021, 21, 1–8. [Google Scholar] [CrossRef]
- Al-Batran, S.-E.; Homann, N.; Pauligk, C.; Goetze, T.O.; Meiler, J.; Kasper, S.; Kopp, H.-G.; Mayer, F.; Haag, G.M.; Luley, K.; et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): A randomised, phase 2/3 trial. Lancet 2019, 393, 1948–1957. [Google Scholar] [CrossRef] [PubMed]
- Innocente, R.; Navarria, F.; Petri, R.; Palazzari, E.; Vecchiato, M.; Polesel, J.; Ziccarelli, A.; Martino, A.; Ubiali, P.; Tonin, D.; et al. Feasibility and oncological outcome of preoperative chemoradiation with IMRT dose intensification for locally advanced esophageal and gastroesophageal cancer. Front. Oncol. 2021, 11, 26. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.-M.; Wang, Y.-M.; Chen, Y.-H.; Fang, F.-M.; Huang, S.-C.; Lu, H.-I.; Li, S.-H. The impact of radiotherapy dose in patients with locally advanced esophageal squamous cell carcinoma receiving preoperative chemoradiotherapy. Curr. Oncol. 2021, 28, 1354–1365. [Google Scholar] [CrossRef] [PubMed]
- Geh, J.I.; Bond, S.J.; Bentzen, S.M.; Glynne-Jones, R. Systematic overview of preoperative (neoadjuvant) chemoradiotherapy trials in oesophageal cancer: Evidence of a radiation and chemotherapy dose response. Radiother. Oncol. 2006, 78, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xu, X.; Zhou, X.; Bao, W.; Zhang, D.; Gu, F.; Du, X.; Chen, Q.; Qiu, G. Impact of radiation dose on survival for esophageal squamous cell carcinoma treated with neoadjuvant chemoradiotherapy. Front. Oncol. 2020, 10, 1431. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Sun, C.; Yin, X.; Tong, J.; Zhang, X.; Wang, X.; Yuan, X.; Zhang, Z.; Lu, G.; et al. Comparison of clinical efficacy of neoadjuvant chemoradiation therapy between lower and higher radiation doses for carcinoma of the esophagus and gastroesophageal junction: A systematic review. Int. J. Radiat. Oncol. 2021, 111, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Feng, W.; Gao, L.-T.; Cai, X.-W.; Liu, Q.; Zhu, Z.-F.; Fu, X.-L.; Yu, W. Long-term follow-up of a phase I/II trial of radiation dose escalation by simultaneous integrated boost for locally advanced esophageal squamous cell carcinoma. Radiother. Oncol. 2021, 159, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Halder, A.; Biswas, R.; Ghosh, A.; Dastidar, A.G. Comparative study of concomitant chemoradiation versus concomitant chemoradiation followed by high-dose-rate intraluminal brachytherapy in locally advanced esophageal carcinoma: A single institutional study. J. Contemp. Brachyther. 2018, 10, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Lancellotta, V.; Cellini, F.; Fionda, B.; De Sanctis, V.; Vidali, C.; Fusco, V.; Frassine, F.; Tomasini, D.; Vavassori, A.; Gambacorta, M.A.; et al. The role of interventional radiotherapy (Brachytherapy) in stage I esophageal cancer: An AIRO (italian association of radiotherapy and clinical oncology) systematic review. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 7589–7597. [Google Scholar] [CrossRef] [PubMed]
- Hoeppner, J.; Lordick, F.; Brunner, T.; Glatz, T.; Bronsert, P.; Röthling, N.; Schmoor, C.; Lorenz, D.; Ell, C.; Hopt, U.T.; et al. ESOPEC: Prospective randomized controlled multicenter phase III trial comparing perioperative chemotherapy (FLOT protocol) to neoadjuvant chemoradiation (CROSS protocol) in patients with adenocarcinoma of the esophagus (NCT02509286). BMC Cancer 2016, 16, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, J.; Preston, S.; O’Neill, B.; Baeksgaard, L.; Griffin, S.; Mariette, C.; Cuffe, S.; Cunningham, M.; Crosby, T.; Parker, I.; et al. ICORG 10-14: NEOadjuvant trial in adenocarcinoma of the oEsophagus and oesophagoGastric junction International Study (Neo-AEGIS). BMC Cancer 2017, 17, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, D.; Allum, W.H.; Stenning, S.P.; Thompson, J.N.; Van De Velde, C.J.; Nicolson, M.; Scarffe, J.H.; Lofts, F.J.; Falk, S.J.; Iveson, T.J.; et al. Perioperative Chemotherapy versus Surgery Alone for Resectable Gastroesophageal Cancer. N. Engl. J. Med. 2006, 355, 11–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenzen, S.; Biederstädt, A.; Ronellenfitsch, U.; Reißfelder, C.; Mönig, S.; Wenz, F.; Pauligk, C.; Walker, M.; Al-Batran, S.-E.; Haller, B.; et al. RACE-trial: Neoadjuvant radiochemotherapy versus chemotherapy for patients with locally advanced, potentially resectable adenocarcinoma of the gastroesophageal junction-a randomized phase III joint study of the AIO, ARO and DGAV. BMC Cancer 2020, 20, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.A.; Hofstetter, W.L.; Kennedy, E.B.; Locally Advanced Esophageal Carcinoma Guideline Expert Panel. Immunotherapy in patients with locally advanced esophageal carcinoma: ASCO treatment of locally advanced esophageal carcinoma guideline rapid recommendation update. J. Clin. Oncol. 2021, 39, 3182–3184. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, J.S.; Smalley, S.R.; Benedetti, J.; Hundahl, S.A.; Estes, N.C.; Stemmermann, G.N.; Haller, D.G.; Ajani, J.A.; Gunderson, L.L.; Jessup, J.M.; et al. Chemoradiotherapy after surgery compared with surgery alone for adenocarcinoma of the stomach or gastroesophageal junction. N. Engl. J. Med. 2001, 345, 725–730. [Google Scholar] [CrossRef]
- Smalley, S.R.; Benedetti, J.K.; Haller, D.G.; Hundahl, S.A.; Estes, N.C.; Ajani, J.A.; Gunderson, L.L.; Goldman, B.; Martenson, J.A.; Jessup, J.M.; et al. Updated Analysis of SWOG-Directed intergroup study 0116: A phase III trial of adjuvant radiochemotherapy versus observation after curative gastric cancer resection. J. Clin. Oncol. 2012, 30, 2327–2333. [Google Scholar] [CrossRef]
- Adelstein, D.J.; Lavertu, P.; Saxton, J.P.; Secic, M.; Wood, B.G.; Wanamaker, J.R.; Eliachar, I.; Strome, M.; Larto, M.A. Mature results of a Phase III randomized trial comparing concurrent chemoradiotherapy with radiation therapy alone in patients with Stage III and IV squamous cell carcinoma of the head and neck. Cancer 2000, 88, 876–883. [Google Scholar] [CrossRef]
- Ténière, P.; Hay, J.M.; Fingerhut, A.; Fagniez, P.L. Postoperative radiation therapy does not increase survival after curative resection for squamous cell carcinoma of the middle and lower esophagus as shown by a multicenter controlled trial. French University Association for Surgical Research. Surgery Gynecol. Obstet. 1991, 173, 123–130. [Google Scholar]
- Xiao, Z.-F.; Yang, Z.-Y.; Miao, Y.-J.; Wang, L.-H.; Yin, W.-B.; Gu, X.-Z.; Zhang, D.-C.; Sun, K.-L.; Chen, G.-Y.; He, J. Influence of number of metastatic lymph nodes on survival of curative resected thoracic esophageal cancer patients and value of radiotherapy: Report of 549 cases. Int. J. Radiat. Oncol. 2005, 62, 82–90. [Google Scholar] [CrossRef]
- Fok, M.; Sham, J.S.; Choy, D.; Cheng, S.W.; Wong, J. Postoperative radiotherapy for carcinoma of the esophagus: A prospective, randomized controlled study. Surgery 1993, 113, 138–147. [Google Scholar]
- Lin, H.-N.; Chen, L.-Q.; Shang, Q.-X.; Yuan, Y.; Yang, Y.-S. A meta-analysis on surgery with or without postoperative radiotherapy to treat squamous cell esophageal carcinoma. Int. J. Surg. 2020, 80, 184–191. [Google Scholar] [CrossRef]
- Mattiucci, G.C.; Cellini, F. Role of the modern radiotherapy in the postoperative setting for esophageal cancer. J. Thorac. Dis. 2017, 9, 4212–4215. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-Y.; Chen, H.-S.; Hsu, P.-K.; Chao, Y.K.; Wang, B.-Y.; Huang, C.-S.; Liu, C.-C.; Wu, S.-C. A propensity-matched analysis comparing survival after esophagectomy followed by adjuvant chemoradiation to surgery alone for esophageal squamous cell carcinoma. Ann. Surg. 2016, 264, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, Y.; Xu, C.; Yang, J.; Komaki, R.; Lin, S.H. Dosimetric comparison to the heart and cardiac substructure in a large cohort of esophageal cancer patients treated with proton beam therapy or Intensity-modulated radiation therapy. Radiother. Oncol. 2017, 125, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wei, C.; Tucker, S.L.; Myles, B.; Palmer, M.; Hofstetter, W.L.; Swisher, S.G.; Ajani, J.A.; Cox, J.D.; Komaki, R.; et al. Predictors of postoperative complications after trimodality therapy for esophageal cancer. Int. J. Radiat. Oncol. 2013, 86, 885–891. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.H.; Merrell, K.W.; Shen, J.; Verma, V.; Correa, A.M.; Wang, L.; Thall, P.F.; Bhooshan, N.; James, S.E.; Haddock, M.G.; et al. Multi-institutional analysis of radiation modality use and postoperative outcomes of neoadjuvant chemoradiation for esophageal cancer. Radiother. Oncol. 2017, 123, 376–381. [Google Scholar] [CrossRef]
- Routman, D.M.; Garant, A.; Lester, S.C.; Day, C.N.; Harmsen, W.S.; Sanheuza, C.T.; Yoon, H.H.; Neben-Wittich, M.A.; Martenson, J.A.; Haddock, M.G.; et al. A comparison of Grade 4 lymphopenia with proton versus photon radiation therapy for esophageal cancer. Adv. Radiat. Oncol. 2019, 4, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Jethwa, K.R.; Haddock, M.G.; Tryggestad, E.J.; Hallemeier, C.L. The emerging role of proton therapy for esophagus cancer. J. Gastrointest. Oncol. 2020, 11, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Bang, Y.-J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef]
- Kojima, T.; Shah, M.A.; Muro, K.; Francois, E.; Adenis, A.; Hsu, C.-H.; Doi, T.; Moriwaki, T.; Kim, S.-B.; Lee, S.-H.; et al. Randomized phase III KEYNOTE-181 study of pembrolizumab versus chemotherapy in advanced esophageal cancer. J. Clin. Oncol. 2020, 38, 4138–4148. [Google Scholar] [CrossRef]
- Sun, J.-M.; Shen, L.; Shah, M.A.; Enzinger, P.; Adenis, A.; Doi, T.; Kojima, T.; Metges, J.-P.; Li, Z.; Kim, S.-B.; et al. Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (KEYNOTE-590): A randomised, placebo-controlled, phase 3 study. Lancet 2021, 398, 759–771. [Google Scholar] [CrossRef]
- Wilke, H.; Muro, K.; Van Cutsem, E.; Oh, S.-C.; Bodoky, G.; Shimada, Y.; Hironaka, S.; Sugimoto, N.; Lipatov, O.; Kim, T.-Y.; et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial. Lancet Oncol. 2014, 15, 1224–1235. [Google Scholar] [CrossRef]
- Kato, K.; Cho, B.C.; Takahashi, M.; Okada, M.; Lin, C.-Y.; Chin, K.; Kadowaki, S.; Ahn, M.-J.; Hamamoto, Y.; Doki, Y.; et al. Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019, 20, 1506–1517. [Google Scholar] [CrossRef]
- Cellini, F.; Di Franco, R.; Manfrida, S.; Borzillo, V.; Maranzano, E.; Pergolizzi, S.; Morganti, A.G.; Fusco, V.; Deodato, F.; Santarelli, M.; et al. Palliative radiotherapy indications during the COVID-19 pandemic and in future complex logistic settings: The NORMALITY model. La Radiol. Med. 2021, 126, 1619–1656. [Google Scholar] [CrossRef]
- Deressa, B.T.; Tigeneh, W.; Bogale, N.; Buwenge, M.; Morganti, A.G.; Farina, E. Short-Course 2-Dimensional Radiation Therapy in the Palliative Treatment of Esophageal Cancer in a Developing Country: A Phase II Study (Sharon Project). Int. J. Radiat. Oncol. 2019, 106, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Spaander, M.C.W.; van der Bogt, R.D.; Baron, T.H.; Albers, D.; Blero, D.; de Ceglie, A.; Conio, M.; Czakó, L.; Everett, S.; Garcia-Pagán, J.-C.; et al. Esophageal stenting for benign and malignant disease: European Society of Gastrointestinal Endoscopy (ESGE) Guideline–Update 2021. Endoscopy 2021, 53, 751–762. [Google Scholar] [CrossRef]
- Tinusz, B.; Soós, A.; Hegyi, P.; Sarlós, P.; Szapáry, L.; Erős, A.; Feczák, D.; Szakács, Z.; Márta, K.; Venglovecz, V.; et al. Efficacy and safety of stenting and additional oncological treatment versus stenting alone in unresectable esophageal cancer: A meta-analysis and systematic review. Radiother. Oncol. 2020, 147, 169–177. [Google Scholar] [CrossRef]
- Bergquist, H.; Johnsson, E.; Nyman, J.; Rylander, H.; Hammerlid, E.; Friesland, S.; Ejnell, H.; Lundell, L.; Ruth, M. Combined stent insertion and single high-dose brachytherapy in patients with advanced esophageal cancer-results of a prospective safety study. Dis. Esophagus 2011, 25, 410–415. [Google Scholar] [CrossRef]
- Yang, Z.-M.; Geng, H.-T.; Wu, H. Radioactive stent for malignant esophageal obstruction: A meta-analysis of randomized controlled trials. J. Laparoendosc. Adv. Surg. Tech. 2021, 31, 783–789. [Google Scholar] [CrossRef]
- Guedea, F. Perspectives of brachytherapy: Patterns of care, new technologies, and “new biology”. Cancer Radiothérapie 2014, 18, 434–436. [Google Scholar] [CrossRef]
- Tagliaferri, L.; Vavassori, A.; Lancellotta, V.; De Sanctis, V.; Barbera, F.; Fusco, V.; Vidali, C.; Fionda, B.; Colloca, G.; Gambacorta, M.; et al. Can brachytherapy be properly considered in the clinical practice? Trilogy project: The vision of the AIRO (Italian Association of Radiotherapy and Clinical Oncology) Interventional Radiotherapy study group. J. Contemp. Brachyther. 2020, 12, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Kodama, M.; Kakegawa, T. Treatment of superficial cancer of the esophagus: A summary of responses to a questionnaire on superficial cancer of the esophagus in Japan. Surgery 1998, 123, 432–439. [Google Scholar] [CrossRef]
- Kato, H.; Tachimori, Y.; Watanabe, H.; Yamaguchi, H.; Ishikawa, T.; Itabashi, M. Superficial esophageal carcinoma. Surgical treatment and the results. Cancer 1990, 66, 2319–2323. [Google Scholar] [CrossRef]
- Lancellotta, V.; Cellini, F.; Fionda, B.; De Sanctis, V.; Vidali, C.; Fusco, V.; Barbera, F.; Gambacorta, M.A.; Corvò, R.; Magrini, S.M.; et al. The role of palliative interventional radiotherapy (brachytherapy) in esophageal cancer: An AIRO (Italian Association of Radiotherapy and Clinical Oncology) systematic review focused on dysphagia-free survival. Brachytherapy 2020, 19, 104–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayter, C.R.; Huff-Winters, C.; Paszat, L.; Youssef, Y.M.; Shelley, W.E.; Schulze, K. A prospective trial of short-course radiotherapy plus chemotherapy for palliation of dysphagia from advanced esophageal cancer. Radiother. Oncol. 2000, 56, 329–333. [Google Scholar] [CrossRef]
- Homs, M.Y.; Steyerberg, E.W.; Eijkenboom, W.M.; Tilanus, H.W.; Stalpers, L.J.; Bartelsman, J.F.; van Lanschot, J.J.; Wijrdeman, H.K.; Mulder, C.J.; Reinders, J.G.; et al. Single-dose brachytherapy versus metal stent placement for the palliation of dysphagia from oesophageal cancer: Multicentre randomised trial. Lancet 2004, 364, 1497–1504. [Google Scholar] [CrossRef]
- Bergquist, H.; Wenger, U.; Johnsson, E.; Nyman, J.; Ejnell, H.; Hammerlid, E.; Lundell, L.; Ruth, M. Stent insertion or endoluminal brachytherapy as palliation of patients with advanced cancer of the esophagus and gastroesophageal junction. Results of a randomized, controlled clinical trial. Dis. Esophagus 2005, 18, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Spencer, G.M.; Thorpe, S.M.; Blackman, G.M.; Solano, J.; Tobias, J.S.; Lovat, L.; Bown, S.G. Laser augmented by brachytherapy versus laser alone in the palliation of adenocarcinoma of the oesophagus and cardia: A randomised study. Gut 2002, 50, 224–227. [Google Scholar] [CrossRef] [Green Version]
- Sander, R.; Hagenmueller, F.; Sander, C.; Riess, G.; Classen, M. Laser versus laser plus afterloading with iridium-192 in the palliative treatment of malignant stenosis of the esophagus: A prospective, randomized, and controlled study. Gastrointest. Endosc. 1991, 37, 433–440. [Google Scholar] [CrossRef]
- Sur, R.; Donde, B.; Falkson, C.; Ahmed, S.N.; Levin, V.; Nag, S.; Wong, R.; Jones, G. Randomized prospective study comparing high-dose-rate intraluminal brachytherapy (HDRILBT) alone with HDRILBT and external beam radiotherapy in the palliation of advanced esophageal cancer. Brachytherapy 2004, 3, 191–195. [Google Scholar] [CrossRef]
- Rosenblatt, E.; Jones, G.; Sur, R.K.; Donde, B.; Salvajoli, J.V.; Ghosh-Laskar, S.; Frobe, A.; Suleiman, A.; Xiao, Z.; Nag, S. Adding external beam to intra-luminal brachytherapy improves palliation in obstructive squamous cell oesophageal cancer: A prospective multi-centre randomized trial of the International Atomic Energy Agency. Radiother. Oncol. 2010, 97, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Swisher, S.G.; Hofstetter, W.; Komaki, R.; Correa, A.M.; Erasmus, J.; Lee, J.H.; Liao, Z.; Maru, D.; Mehran, R.; Patel, S.; et al. Improved Long-Term Outcome With Chemoradiotherapy Strategies in Esophageal Cancer. Ann. Thorac. Surg. 2010, 90, 892–899. [Google Scholar] [CrossRef] [PubMed]
- Urschel, J.D.; Vasan, H. A meta-analysis of randomized controlled trials that compared neoadjuvant chemoradiation and surgery to surgery alone for resectable esophageal cancer. Am. J. Surg. 2003, 185, 538–543. [Google Scholar] [CrossRef]
- Fiorica, F.; Di Bona, D.; Schepis, F.; Licata, A.; Shahied, L.; Venturi, A.; Falchi, A.M.; Craxì, A.; Cammà, C. Preoperative chemoradiotherapy for oesophageal cancer: A systematic review and meta-analysis. Gut 2004, 53, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Hammoud, Z.T.; Kesler, K.A.; Ferguson, M.K.; Battafarrano, R.J.; Bhogaraju, A.; Hanna, N.; Govindan, R.; Mauer, A.A.; Yu, M.; Einhorn, L.H. Survival outcomes of resected patients who demonstrate a pathologic complete response after neoadjuvant chemoradiation therapy for locally advanced esophageal cancer. Dis. Esophagus 2006, 19, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Donahue, J.M.; Nichols, F.C.; Li, Z.; Schomas, D.A.; Allen, M.S.; Cassivi, S.D.; Jatoi, A.; Miller, R.; Wigle, D.A.; Shen, K.R.; et al. Complete pathologic response after neoadjuvant chemoradiotherapy for esophageal cancer is associated with enhanced survival. Ann. Thorac. Surg. 2009, 87, 392–399. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.-L.; Xi, M.; Yang, H.; Yang, Y.-D.; Wu, Y.-J.; Zhao, L.; Zhang, P.; Luo, L.-L.; Liu, M.-Z. Is there a correlation between clinical complete response and pathological complete response after neoadjuvant chemoradiotherapy for esophageal squamous cell cancer? Ann. Surg. Oncol. 2015, 23, 273–281. [Google Scholar] [CrossRef]
- Kaklamanos, I.G.; Walker, G.R.; Ferry, K.; Franceschi, D.; Livingstone, A.S. Neoadjuvant treatment for resectable cancer of the esophagus and the gastroesophageal junction: A meta-analysis of randomized clinical trials. Ann. Surg. Oncol. 2003, 10, 754–761. [Google Scholar] [CrossRef]
- Wang, D.-B.; Zhang, X.; Han, H.-L.; Xu, Y.-J.; Sun, D.-Q.; Shi, Z.-L. Neoadjuvant chemoradiotherapy could improve survival outcomes for esophageal carcinoma: A meta-analysis. Dig. Dis. Sci. 2012, 57, 3226–3233. [Google Scholar] [CrossRef]
- Markar, S.; Gronnier, C.; Duhamel, A.; Pasquer, A.; Théreaux, J.; Du Rieu, M.C.; Lefevre, J.H.; Turner, K.; Luc, G.; Mariette, C. Salvage surgery after chemoradiotherapy in the management of esophageal cancer: Is it a viable therapeutic option? J. Clin. Oncol. 2015, 33, 3866–3873. [Google Scholar] [CrossRef] [Green Version]
- Noordman, B.J.; on behalf of the SANO-study group; Wijnhoven, B.P.L.; Lagarde, S.M.; Boonstra, J.J.; Coene, P.P.L.O.; Dekker, J.W.T.; Doukas, M.; van der Gaast, A.; Heisterkamp, J.; et al. Neoadjuvant chemoradiotherapy plus surgery versus active surveillance for oesophageal cancer: A stepped-wedge cluster randomised trial. BMC Cancer 2018, 18, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stahl, M.; Wilke, H.; Lehmann, N.; Stuschke, M. Long-term results of a phase III study investigating chemoradiation with and without surgery in locally advanced squamous cell carcinoma (LA-SCC) of the esophagus. J. Clin. Oncol. 2008, 26, 4530. [Google Scholar] [CrossRef]
- Corradini, S.; Alongi, F.; Andratschke, N.; Belka, C.; Boldrini, L.; Cellini, F.; Debus, J.; Guckenberger, M.; Hörner-Rieber, J.; Lagerwaard, F.J.; et al. MR-guidance in clinical reality: Current treatment challenges and future perspectives. Radiat. Oncol. 2019, 14, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.L.; Mahler, P.; Olson, S.; Witt, J.S.; Musunuru, H.B.; Rajamanickam, V.; Bassetti, M.F.; Yadav, P. Reduction of cardiac dose using respiratory-gated MR-linac plans for gastro-esophageal junction cancer. Med. Dosim. 2020, 46, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.-Y.; Zhang, J.-G.; Li, R.; Zhang, X.-M.; Chen, T.-W.; Liu, N.; Jiang, Y.; Wu, L. Tumour motion of oesophageal squamous cell carcinoma evaluated by cine MRI: Associated with tumour location. Clin. Radiol. 2018, 73, 676.e1–676.e7. [Google Scholar] [CrossRef] [PubMed]
- Winkel, D.; Bol, G.H.; Kroon, P.S.; Van Asselen, B.; Hackett, S.S.; Werensteijn-Honingh, A.; Intven, M.P.; Eppinga, W.S.; Tijssen, R.H.; Kerkmeijer, L.G.; et al. Adaptive radiotherapy: The Elekta Unity MR-linac concept. Clin. Transl. Radiat. Oncol. 2019, 18, 54–59. [Google Scholar] [CrossRef] [Green Version]
- Bohoudi, O.; Bruynzeel, A.; Senan, S.; Cuijpers, J.; Slotman, B.; Lagerwaard, F.; Palacios, M. Fast and robust online adaptive planning in stereotactic MR-guided adaptive radiation therapy (SMART) for pancreatic cancer. Radiother. Oncol. 2017, 125, 439–444. [Google Scholar] [CrossRef]
- Boekhoff, M.; Defize, I.; Borggreve, A.; Takahashi, N.; van Lier, A.; Ruurda, J.; van Hillegersberg, R.; Lagendijk, J.; Mook, S.; Meijer, G. 3-Dimensional target coverage assessment for MRI guided esophageal cancer radiotherapy. Radiother. Oncol. 2020, 147, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Defize, I.L.; Boekhoff, M.R.; Borggreve, A.S.; Van Lier, A.L.H.M.W.; Takahashi, N.; Mohammad, N.H.; Ruurda, J.P.; Van Hillegersberg, R.; Mook, S.; Meijer, G.J. Tumor volume regression during neoadjuvant chemoradiotherapy for esophageal cancer: A prospective study with weekly MRI. Acta Oncol. 2020, 59, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.L.; Bassetti, M.; Meijer, G.J.; Mook, S. Review of MR-Guided Radiotherapy for Esophageal Cancer. Front. Oncol. 2021, 11, 468. [Google Scholar] [CrossRef]
- Lin, J.; Kligerman, S.; Goel, R.; Sajedi, P.; Suntharalingam, M.; Chuong, M.D. State-of-the-art molecular imaging in esophageal cancer management: Implications for diagnosis, prognosis, and treatment. J. Gastrointest. Oncol. 2015, 6, 3–19. [Google Scholar] [CrossRef]
- Li, B.; Li, N.; Liu, S.; Li, Y.; Qian, B.; Zhang, Y.; He, H.; Chen, X.; Sun, Y.; Xiang, J.; et al. Does [18F] fluorodeoxyglucose–positron emission tomography/computed tomography have a role in cervical nodal staging for esophageal squamous cell carcinoma? J. Thorac. Cardiovasc. Surg. 2020, 160, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Gu, Y.; Basu, S.; Berglund, A.; Eschrich, S.A.; Schabath, M.B.; Forster, K.; Aerts, H.J.W.L.; Dekker, A.; Fenstermacher, D.; et al. Radiomics: The process and the challenges. Magn. Reson. Imaging 2012, 30, 1234–1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, C.-Y.; Pang, C.-L.; Chan, B.; Wong, E.; Dou, Q.; Vardhanabhuti, V. Machine Learning and Radiomics Applications in Esophageal Cancers Using Non-Invasive Imaging Methods—A Critical Review of Literature. Cancers 2021, 13, 2469. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Shen, C.; Qin, J.; Wang, Z.; Liu, Z.; Guo, J.; Zhang, H.; Gao, P.; Bei, T.; Wang, Y.; et al. The MR radiomic signature can predict preoperative lymph node metastasis in patients with esophageal cancer. Eur. Radiol. 2018, 29, 906–914. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Liu, Z.; Wang, Z.; Guo, J.; Zhang, H.; Wang, Y.; Qin, J.; Li, H.; Fang, M.; Tang, Z.; et al. Building CT radiomics based nomogram for preoperative esophageal cancer patients lymph node metastasis prediction. Transl. Oncol. 2018, 11, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Yang, X.; Cao, W.; Zhao, K.; Li, W.; Ye, W.; Chen, X.; Zhou, Z.; Liu, Z.; Liang, C. Multiple Level CT radiomics features preoperatively predict lymph node metastasis in esophageal cancer: A multicentre retrospective study. Front. Oncol. 2020, 9, 1548. [Google Scholar] [CrossRef]
- Ditmyer, M.M.; Topp, R.; Pifer, M. Prehabilitation in preparation for orthopaedic surgery. Orthop. Nurs. 2002, 21, 43–51, quiz 52–54. [Google Scholar] [CrossRef]
- Colloca, G.; DI Capua, B.; Bellieni, A.; Cesari, M.; Marzetti, E.; Valentini, V.; Calvani, R. Muscoloskeletal aging, sarcopenia and cancer. J. Geriatr. Oncol. 2018, 10, 504–509. [Google Scholar] [CrossRef]
Trial | Clinical Subset | Study Design | Arm A | Arm B | Estimated Enrollment | Primary Endpoint |
---|---|---|---|---|---|---|
ESOPEC [62] | Esophageal Adenocarcinoma Adenocarcinoma of the Esophagogastric Junction | Phase III multicenter prospective randomized controlled two-arm trial. | Neoadjuvant CRT (CROSS) | Perioperative CT (FLOT) | 438 | OS |
RT (41.4 Gy/23 fractions) and concurrent CT with Carboplatin and Paclitaxel (5 weeks) prior to surgery. | 5-Fluorouracil, Leucovorin, Oxaliplatin and Docetaxel. Repetition every 2 weeks (d15, q2w). Four neoadjuvant cycles (8 weeks) prior to surgery and four adjuvant cycles (8 weeks) postoperatively are given. | |||||
Neo-AEGIS [63] | Esophageal Adenocarcinoma Adenocarcinoma of the Esophagogastric Junction | Phase III multicenter prospective randomized controlled two-arm trial. | Perioperative CT (Modified MAGIC or FLOT) | Neoadjuvant CRT (CROSS) | 366 | OS |
Modified MAGIC: 3 cycles of CT pre-surgery and 3 cycles post-surgery. Epirubicin, cisplatin or oxaliplatin and a choice of 5-fluorouracil or capecitabine. Each cycle lasts 21 days. FLOT: 8 cycles of CT in total, 4 cycles of CT pre-surgery and a further 4 cycles of CT post-surgery. Each cycle of CT lasts 14 days/2 weeks. | RT (41.4 Gy/23 fractions) and concurrent CT with Carboplatin and Paclitaxel (5 weeks) prior to surgery. | |||||
RACE [65] | Gastroesophageal Junction Adenocarcinoma | Phase III multicenter prospective randomized controlled two-arm trial | Perioperative CT (FLOT) | Perioperative CT + Neoadjuvant CRT | 340 | PFS |
Four cycles of neoadjuvant CT with FLOT every two weeks followed by surgical resection 4–6 weeks after day 1 of the last cycle of neoadjuvant therapy. | Two cycles of neoadjuvant induction CT with FLOT. CRT consists of oxaliplatin 45 mg/m2 weekly (d1, 8, 15, 22, 29) and continuous infusional 5-FU 225 mg/m2 plus concurrent radiotherapy given in 5/week fractions with 1.8 Gy to a dose of 45 Gy over 5 weeks. Resection is performed 4–6 weeks after last treatment with CT/radiation. Adjuvant treatment starts 6–12 weeks after surgery and consists of 4 cycles of FLOT (total treatment period of 26–33 weeks). | |||||
PROTECT [26] | Esophageal cancer located under the carena (beyond 25 cm from the incisors) or junctional cancer (Siewert I or II). | Phase II multicenter prospective randomized two-arm trial | Neoadjuvant CRT (FOLFOX) | Neoadjuvant CRT (Carbo-Paclitaxel) | 106 | CRR and severe (grade ≥ 3) postoperative morbidity/mortality. |
RT (41.4 Gy/23 fractions) and concurrent every two weeks CT with Folfox scheme (5-Fluorouracil; Oxaliplatin and Folinic acid). | RT (41.4 Gy/23 fractions) and concurrent weekly CT with Carboplatin and Paclitaxel. |
Trial Name | Country | Participants | Endpoints | Intervention |
---|---|---|---|---|
Adjuvant radiotherapy, chemotherapy or surgery alone for high-risk histological node negative esophageal squamous cell carcinoma: Protocol for a multicenter prospective randomized controlled trial | China | 486 patients: - No prior therapies; - R0 resection; - Thoracic esophgeal squamous cells carcinoma; - pT1b-T4a; - pN0; - High risk features (middle/upper third, LVI/SM, G3); - ECOG PS 0-2; - Adequate organ function. | Primary: DFS. Secondary: OS, adverse events |
|
A phase-II/III randomized controlled trial of adjuvant radiotherapy or concurrent chemoradiotherapy after surgery versus surgery alone in patients with stage-IIB/III esophageal squamous cell carcinoma | China | 120 patients: - Age 18–68 years; - Pathologically proven stage-IIB/III esophageal squamous cell carcinoma; - Radical resection (R0); - No prior therapies; - KPS ≥ 70; - Adequate organ function; - No locoregional recurrence or distant metastasis after surgery and before recruitment; - IMRT/VMAT - Adhesion to follow-up | Primary: DFS. Secondary: OS. Other: proportion of patients who complete treatment, toxicity, and out-of-field regional recurrence rate |
|
Efficacy of Intensity Modulated Radiation Therapy After Surgery in Early Stage of Esophageal Carcinoma; (IMRT) | China | 240 patients: - Pathologically proven stage T2-3N0M0 thoracic esophageal squamous cells carcinoma - Radical resection (R0) - KPS ≥ 70; - No prior therapies; - No clear recurrent or metastatic lesions before RT; - IMRT; - Adhesion to follow-up. | Primary: DFS. Secondary: OS. |
|
Phase I/II Study of Postoperative Chemoradiation in Patients With Node-positive Esophageal Squamous Cell Carcinoma | China | 33 patients: - KPS ≥ 70; - Pathologically proven positive lymph node thoracic esophageal cancer; - Radical resection (R0); - Adequate organ function. | Primary: Maximum tolerated dose of weekly paclitaxel and cisplatin with concurrent RT. Secondary: toxicity, OS, DFS. | Experimental: Arm A Phase 1: weekly paclitaxel (dose escalation) and cisplatin with concurrent RT Phase 2: weekly paclitaxel (dose according to phase 1) and cisplatin with concurrent RT |
Phase III Intergroup Trial of Adjuvant Chemoradiation After Resection of Gastric or Gastroesophageal Adenocarcinoma | USA | 546 patients: - Pathologically proven stage-IIa/IV M0 stomach/GEJ adenocarcinoma; - En bloc resection; - No prior therapies; - ECOG PS 0–2; - Adequate organ function; - No locoregional recurrence or distant metastasis after surgery and before recruitment; - IMRT/VMAT - adhesion to follow-up | Primary: OS. Secondary: DFS. | Arm 1: leucovorin calcium IV and 5-FU IV on days 1–5 of courses 1, 3, and 4. Courses repeat every 28 days. Concomitant RT and 5-FU IV continuously for 5 to 6 weeks. Arm 2: epirubicin IV and cisplatin IV on day 1 and 5-FU IV continuously on days 1–21 during course 1. Beginning 1 week later, patients undergo RT 5 days a week and 5-FU IV continuously for 5 weeks. |
Phase II Study of Postoperative Concurrent Chemoradiotherapy for Esophageal Squamous Cell Carcinoma (ESO-Shanghai 17) | China | 74 patients: - Age 18–75 years; - Pathologically proven T3-4N0M0, T1-4N1-3M0 esophageal squamous cell carcinoma; - Radical resection (R0); - No prior therapies; - ECOG PS 0-2; - Adequate organ function. | Primary: LC rate. Secondary: OS. | Experimental Arm: Concurrent CTRT: Paclitaxel 50 mg/m2/d, iv over 3 h, d1; Carboplatin AUC = 2 + RT 50.4 Gy/1.8 Gy. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cellini, F.; Manfrida, S.; Casà, C.; Romano, A.; Arcelli, A.; Zamagni, A.; De Luca, V.; Colloca, G.F.; D’Aviero, A.; Fuccio, L.; et al. Modern Management of Esophageal Cancer: Radio-Oncology in Neoadjuvancy, Adjuvancy and Palliation. Cancers 2022, 14, 431. https://doi.org/10.3390/cancers14020431
Cellini F, Manfrida S, Casà C, Romano A, Arcelli A, Zamagni A, De Luca V, Colloca GF, D’Aviero A, Fuccio L, et al. Modern Management of Esophageal Cancer: Radio-Oncology in Neoadjuvancy, Adjuvancy and Palliation. Cancers. 2022; 14(2):431. https://doi.org/10.3390/cancers14020431
Chicago/Turabian StyleCellini, Francesco, Stefania Manfrida, Calogero Casà, Angela Romano, Alessandra Arcelli, Alice Zamagni, Viola De Luca, Giuseppe Ferdinando Colloca, Andrea D’Aviero, Lorenzo Fuccio, and et al. 2022. "Modern Management of Esophageal Cancer: Radio-Oncology in Neoadjuvancy, Adjuvancy and Palliation" Cancers 14, no. 2: 431. https://doi.org/10.3390/cancers14020431
APA StyleCellini, F., Manfrida, S., Casà, C., Romano, A., Arcelli, A., Zamagni, A., De Luca, V., Colloca, G. F., D’Aviero, A., Fuccio, L., Lancellotta, V., Tagliaferri, L., Boldrini, L., Mattiucci, G. C., Gambacorta, M. A., Morganti, A. G., & Valentini, V. (2022). Modern Management of Esophageal Cancer: Radio-Oncology in Neoadjuvancy, Adjuvancy and Palliation. Cancers, 14(2), 431. https://doi.org/10.3390/cancers14020431