Deep Learning Models for Automated Assessment of Breast Density Using Multiple Mammographic Image Types
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. Convolutional Neural Networks (CNN)
2.2.1. Model Architectures
2.2.2. Training Strategy
2.3. Evaluation
2.3.1. Commercial Tool Evaluation
2.3.2. Model Evaluation
3. Results
3.1. Expert Evaluation
3.2. Commercial Software Evaluation
3.3. DL Model Evaluation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Monticciolo, D.L.; Newell, M.S.; Hendrick, R.E.; Helvie, M.A.; Moy, L.; Monsees, B.; Kopans, D.B.; Eby, P.; Sickles, E.A. Breast Cancer Screening for Average-Risk Women: Recommendations from the ACR Commission on Breast Imaging. J. Am. Coll. Radiol. 2017, 14, 1137–1143. [Google Scholar] [CrossRef] [PubMed]
- Tabár, L.; Dean, P.B.; Chen, T.H.; Yen, A.M.; Chen, S.L.; Fann, J.C.; Chiu, S.Y.-H.; Msc, M.M.K.; Wu, W.Y.; Hsu, C.; et al. The incidence of fatal breast cancer measures the increased effectiveness of therapy in women participating in mammography screening. Cancer 2019, 125, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Seely, J.; Alhassan, T. Screening for breast cancer in 2018—What should we be doing today? Curr. Oncol. 2018, 25, 115–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazari, S.S.; Mukherjee, P. An overview of mammographic density and its association with breast cancer. Breast Cancer 2018, 25, 259–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, W.A.; Rafferty, E.A.; Friedewald, S.M.; Hruska, C.B.; Rahbar, H. Screening Algorithms in Dense Breasts: AJR Expert Panel Narrative Review. Am. J. Roentgenol. 2021, 216, 275–294. [Google Scholar] [CrossRef]
- Destounis, S.V.; Santacroce, A.; Arieno, A. Update on Breast Density, Risk Estimation, and Supplemental Screening. Am. J. Roentgenol. 2020, 214, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Destounis, S.; Arieno, A.; Morgan, R.; Roberts, C.; Chan, A. Qualitative Versus Quantitative Mammographic Breast Density Assessment: Applications for the US and Abroad. Diagnostics 2017, 7, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redondo, A.; Comas, M.; Macià, F.; Ferrer, F.; Murta-Nascimento, C.; Maristany, M.T.; Molins, E.; Sala, M.; Castells, X. Inter- and intraradiologist variability in the BI-RADS assessment and breast density categories for screening mammograms. Br. J. Radiol. 2012, 85, 1465–1470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ooms, E.; Zonderland, H.; Eijkemans, M.; Kriege, M.; Delavary, B.M.; Burger, C.; Ansink, A. Mammography: Interobserver variability in breast density assessment. Breast 2007, 16, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Astley, S.M.; Harkness, E.F.; Sergeant, J.C.; Warwick, J.; Stavrinos, P.; Warren, R.; Wilson, M.; Beetles, U.; Gadde, S.; Lim, Y.; et al. A comparison of five methods of measuring mammographic density: A case-control study. Breast Cancer Res. 2018, 20, 10. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, G.V.; Fergie, M.; Berks, M.; Harkness, E.F.; Hulleman, J.; Brentnall, A.; Cuzick, J.; Evans, G.; Astley, S.M. Prediction of reader estimates of mammographic density using convolutional neural networks. J. Med. Imaging 2019, 6, 031405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehman, C.D.; Yala, A.; Schuster, T.; Dontchos, B.; Bahl, M.; Swanson, K.; Barzilay, R. Mammographic Breast Density Assessment Using Deep Learning: Clinical Implementation. Radiology 2019, 290, 52–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciritsis, A.; Rossi, C.; De Martini, I.; Eberhard, M.; Marcon, M.; Becker, A.S.; Berger, N.; Boss, A. Determination of mammographic breast density using a deep convolutional neural network. Br. J. Radiol. 2018, 92, 20180691. [Google Scholar] [CrossRef] [PubMed]
- Dembrower, K.; Liu, Y.; Azizpour, H.; Eklund, M.; Smith, K.; Lindholm, P.; Strand, F. Comparison of a Deep Learning Risk Score and Standard Mammographic Density Score for Breast Cancer Risk Prediction. Radiology 2020, 294, 265–272. [Google Scholar] [CrossRef]
- Shen, L.; Margolies, L.R.; Rothstein, J.H.; Fluder, E.; McBride, R.; Sieh, W. Deep Learning to Improve Breast Cancer Detection on Screening Mammography. Sci. Rep. 2019, 9, 12495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yala, A.; Lehman, C.; Schuster, T.; Portnoi, T.; Barzilay, R. A Deep Learning Mammography-based Model for Improved Breast Cancer Risk Prediction. Radiology 2019, 292, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Whitney, H.M.; Giger, M.L. A deep learning methodology for improved breast cancer diagnosis using multiparametric MRI. Sci. Rep. 2020, 10, 10536. [Google Scholar] [CrossRef]
- Ha, R.; Chang, P.; Karcich, J.; Mutasa, S.; Van Sant, E.P.; Liu, M.Z.; Jambawalikar, S. Convolutional Neural Network Based Breast Cancer Risk Stratification Using a Mammographic Dataset. Acad. Radiol. 2019, 26, 544–549. [Google Scholar] [CrossRef]
- Manley, H.; Mutasa, S.; Chang, P.; Desperito, E.; Crew, K.; Ha, R. Dynamic Changes of Convolutional Neural Network-based Mammographic Breast Cancer Risk Score among Women Undergoing Chemoprevention Treatment. Clin. Breast Cancer 2020, 21, e312–e318. [Google Scholar] [CrossRef]
- Shu, H.; Chiang, T.; Wei, P.; Do, K.-A.; Lesslie, M.D.; Cohen, E.O.; Srinivasan, A.; Moseley, T.W.; Sen, L.Q.C.; Leung, J.W.T.; et al. A Deep-Learning Approach to Recreate Raw Full-Field Digital Mammograms for Breast Density and Texture Analysis. Radiol. Artif. Intell. 2021, 3, e200097. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Sundararajan, M.; Taly, A.; Yan, Q. Axiomatic attribution for deep networks. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017. [Google Scholar]
- Gweon, H.M.; Youk, J.H.; Kim, J.-A.; Son, E.J. Radiologist Assessment of Breast Density by BI-RADS Categories Versus Fully Automated Volumetric Assessment. Am. J. Roentgenol. 2013, 201, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Brandt, K.R.; Scott, C.G.; Ma, L.; Mahmoudzadeh, A.P.; Jensen, M.R.; Whaley, D.H.; Wu, F.F.; Malkov, S.; Hruska, C.B.; Norman, A.D.; et al. Comparison of Clinical and Automated Breast Density Measurements: Implications for Risk Prediction and Supplemental Screening. Radiology 2016, 279, 710–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maghsoudi, O.H.; Gastounioti, A.; Scott, C.; Pantalone, L.; Wu, F.-F.; Cohen, E.A.; Winham, S.; Conant, E.F.; Vachon, C.; Kontos, D. Deep-LIBRA: An artificial-intelligence method for robust quantification of breast density with independent validation in breast cancer risk assessment. Med. Image Anal. 2021, 73, 102138. [Google Scholar] [CrossRef]
- Heller, S.L.; Young Lin, L.L.; Melsaether, A.N.; Moy, L.; Gao, Y. Hormonal effects on breast density, fibroglandular tissue, and background parenchymal enhancement. Radiographics 2018, 38, 983–996. [Google Scholar] [CrossRef] [PubMed]
Model | Include History | Metric | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TP | FP | Cat. Acc. | Precision | Recall | AUC | F1 per Class | Kappa | |||||
1 | 2 | 3 | 4 | |||||||||
History | N/A | 614 | 379 | 0.62 | 0.57 | 0.62 | 0.70 | 0.00 | 0.55 | 0.70 | 0.00 | 0.26 |
For processing mammography | No | 1458 | 390 | 0.79 | 0.78 | 0.79 | 0.91 | 0.29 | 0.78 | 0.84 | 0.47 | 0.61 |
Yes | 1458 | 390 | 0.79 | 0.78 | 0.79 | 0.91 | 0.18 | 0.78 | 0.84 | 0.49 | 0.61 | |
For presentation mammography | No | 2067 | 461 | 0.82 | 0.81 | 0.82 | 0.93 | 0.36 | 0.81 | 0.86 | 0.50 | 0.66 |
Yes | 2063 | 465 | 0.82 | 0.81 | 0.82 | 0.93 | 0.31 | 0.81 | 0.86 | 0.47 | 0.66 | |
Synthesized 2D mammography | No | 1512 | 353 | 0.81 | 0.81 | 0.81 | 0.93 | 0.10 | 0.81 | 0.85 | 0.51 | 0.65 |
Yes | 1505 | 360 | 0.81 | 0.80 | 0.81 | 0.92 | 0.19 | 0.80 | 0.85 | 0.51 | 0.64 | |
Digital breast tomosynthesis | No | 1282 | 304 | 0.81 | 0.80 | 0.81 | 0.92 | 0.27 | 0.80 | 0.85 | 0.51 | 0.65 |
Yes | 1287 | 299 | 0.81 | 0.80 | 0.81 | 0.92 | 0.29 | 0.81 | 0.85 | 0.52 | 0.65 | |
All modality | No | 1058 | 260 | 0.80 | 0.77 | 0.80 | 0.92 | 0.00 | 0.78 | 0.86 | 0.45 | 0.63 |
Yes | 1059 | 259 | 0.80 | 0.79 | 0.80 | 0.92 | 0.11 | 0.78 | 0.86 | 0.65 | 0.64 |
Model | Include History | Metric | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
TP | FP | Cat. Acc. | Precision | Recall | AUC | F1 per Class | Kappa | |||
Non-Dense | Dense | |||||||||
History | N/A | 669 | 324 | 0.67 | 0.67 | 0.67 | 0.73 | 0.60 | 0.72 | 0.33 |
For processing mammography | No | 1580 | 268 | 0.85 | 0.86 | 0.85 | 0.94 | 0.83 | 0.87 | 0.70 |
Yes | 1581 | 267 | 0.86 | 0.86 | 0.86 | 0.94 | 0.83 | 0.87 | 0.71 | |
For presentation mammography | No | 2218 | 310 | 0.88 | 0.88 | 0.88 | 0.95 | 0.86 | 0.89 | 0.75 |
Yes | 2211 | 317 | 0.87 | 0.87 | 0.87 | 0.95 | 0.86 | 0.89 | 0.75 | |
Synthesized 2D mammography | No | 1625 | 240 | 0.87 | 0.87 | 0.87 | 0.95 | 0.85 | 0.89 | 0.74 |
Yes | 1625 | 240 | 0.87 | 0.87 | 0.87 | 0.95 | 0.85 | 0.89 | 0.74 | |
Digital breast tomosynthesis | No | 1384 | 202 | 0.87 | 0.87 | 0.87 | 0.95 | 0.85 | 0.89 | 0.74 |
Yes | 1384 | 202 | 0.87 | 0.87 | 0.87 | 0.94 | 0.85 | 0.89 | 0.74 | |
All modality | No | 1148 | 170 | 0.87 | 0.88 | 0.87 | 0.95 | 0.84 | 0.89 | 0.73 |
Yes | 1142 | 176 | 0.87 | 0.87 | 0.87 | 0.95 | 0.83 | 0.89 | 0.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rigaud, B.; Weaver, O.O.; Dennison, J.B.; Awais, M.; Anderson, B.M.; Chiang, T.-Y.D.; Yang, W.T.; Leung, J.W.T.; Hanash, S.M.; Brock, K.K. Deep Learning Models for Automated Assessment of Breast Density Using Multiple Mammographic Image Types. Cancers 2022, 14, 5003. https://doi.org/10.3390/cancers14205003
Rigaud B, Weaver OO, Dennison JB, Awais M, Anderson BM, Chiang T-YD, Yang WT, Leung JWT, Hanash SM, Brock KK. Deep Learning Models for Automated Assessment of Breast Density Using Multiple Mammographic Image Types. Cancers. 2022; 14(20):5003. https://doi.org/10.3390/cancers14205003
Chicago/Turabian StyleRigaud, Bastien, Olena O. Weaver, Jennifer B. Dennison, Muhammad Awais, Brian M. Anderson, Ting-Yu D. Chiang, Wei T. Yang, Jessica W. T. Leung, Samir M. Hanash, and Kristy K. Brock. 2022. "Deep Learning Models for Automated Assessment of Breast Density Using Multiple Mammographic Image Types" Cancers 14, no. 20: 5003. https://doi.org/10.3390/cancers14205003
APA StyleRigaud, B., Weaver, O. O., Dennison, J. B., Awais, M., Anderson, B. M., Chiang, T. -Y. D., Yang, W. T., Leung, J. W. T., Hanash, S. M., & Brock, K. K. (2022). Deep Learning Models for Automated Assessment of Breast Density Using Multiple Mammographic Image Types. Cancers, 14(20), 5003. https://doi.org/10.3390/cancers14205003