The Role of ctDNA in Gastric Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Circulating Tumour Cells
1.2. cfDNA and ctDNA
1.3. ctDNA Sequencing Methods
2. ctDNA Detection in Gastric Cancer
3. Use of ctDNA in Early Detection of Gastric Cancer
4. Using ctDNA to Detect Minimal Residual Disease in Gastric Cancer
5. Use of ctDNA in Advanced Gastric Cancer
6. Future Perspectives in ctDNA in Gastric Cancer
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rawla, P.; Barsouk, A. Epidemiology of Gastric Cancer: Global Trends, Risk Factors and Prevention. Prz. Gastroenterol. 2019, 14, 26–38. [Google Scholar] [CrossRef]
- Bernards, N.; Creemers, G.J.; Nieuwenhuijzen, G.A.P.; Bosscha, K.; Pruijt, J.F.M.; Lemmens, V.E.P.P. No Improvement in Median Survival for Patients with Metastatic Gastric Cancer despite Increased Use of Chemotherapy. Ann. Oncol. 2013, 24, 3056–3060. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Lordick, F.; Carneiro, F.; Cascinu, S.; Fleitas, T.; Haustermans, K.; Piessen, G.; Vogel, A.; Smyth, E.C. Gastric Cancer: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-up. Ann. Oncol. 2022. [Google Scholar] [CrossRef]
- Ajani, J.A.; D’Amico, T.A.; Bentrem, D.J.; Chao, J.; Cooke, D.; Corvera, C.; Das, P.; Enzinger, P.C.; Enzler, T.; Fanta, P.; et al. Gastric Cancer, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 167–192. [Google Scholar] [CrossRef]
- Zheng, L.; Wu, C.; Xi, P.; Zhu, M.; Zhang, L.; Chen, S.; Li, X.; Gu, J.; Zheng, Y. The Survival and the Long-Term Trends of Patients with Gastric Cancer in Shanghai, China. BMC Cancer 2014, 14, 300. [Google Scholar] [CrossRef] [Green Version]
- Asplund, J.; Kauppila, J.H.; Mattsson, F.; Lagergren, J. Survival Trends in Gastric Adenocarcinoma: A Population-Based Study in Sweden. Ann. Surg. Oncol. 2018, 25, 2693–2702. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Campos Bragagnoli, A.; et al. First-Line Nivolumab plus Chemotherapy versus Chemotherapy Alone for Advanced Gastric, Gastro-Oesophageal Junction, and Oesophageal Adenocarcinoma (CheckMate 649): A Randomised, Open-Label, Phase 3 Trial. Lancet 2021, 398, 27–40. [Google Scholar] [CrossRef]
- Chau, I.; Doki, Y.; Ajani, J.A.; Xu, J.; Wyrwicz, L.; Motoyama, S.; Ogata, T.; Kawakami, H.; Hsu, C.-H.; Adenis, A.; et al. Nivolumab (NIVO) plus Ipilimumab (IPI) or NIVO plus Chemotherapy (Chemo) versus Chemo as First-Line (1L) Treatment for Advanced Esophageal Squamous Cell Carcinoma (ESCC): First Results of the CheckMate 648 Study. J. Clin. Oncol. 2021, 39, LBA4001. [Google Scholar] [CrossRef]
- Bang, Y.-J.; van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in Combination with Chemotherapy versus Chemotherapy Alone for Treatment of HER2-Positive Advanced Gastric or Gastro-Oesophageal Junction Cancer (ToGA): A Phase 3, Open-Label, Randomised Controlled Trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef]
- Paterlini-Brechot, P.; Benali, N.L. Circulating Tumor Cells (CTC) Detection: Clinical Impact and Future Directions. Cancer Lett. 2007, 253, 180–204. [Google Scholar] [CrossRef]
- Andree, K.C.; van Dalum, G.; Terstappen, L.W.M.M. Challenges in Circulating Tumor Cell Detection by the CellSearch System. Mol. Oncol. 2016, 10, 395–407. [Google Scholar] [CrossRef] [Green Version]
- Lyu, M.; Zhou, J.; Ning, K.; Ying, B. The Diagnostic Value of Circulating Tumor Cells and CtDNA for Gene Mutations in Lung Cancer. Onco Targets Ther. 2019, 12, 2539–2552. [Google Scholar] [CrossRef] [Green Version]
- Punnoose, E.A.; Atwal, S.; Liu, W.; Raja, R.; Fine, B.M.; Hughes, B.G.M.; Hicks, R.J.; Hampton, G.M.; Amler, L.C.; Pirzkall, A.; et al. Evaluation of Circulating Tumor Cells and Circulating Tumor DNA in Non-Small Cell Lung Cancer: Association with Clinical Endpoints in a Phase II Clinical Trial of Pertuzumab and Erlotinib. Clin. Cancer Res. 2012, 18, 2391–2401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danila, D.C.; Samoila, A.; Patel, C.; Schreiber, N.; Herkal, A.; Anand, A.; Bastos, D.; Heller, G.; Fleisher, M.; Scher, H.I. Clinical Validity of Detecting Circulating Tumor Cells by AdnaTest Assay Compared with Direct Detection of Tumor MRNA in Stabilized Whole Blood, as a Biomarker Predicting Overall Survival for Metastatic Castration-Resistant Prostate Cancer Patients. Cancer J. 2016, 22, 315–320. [Google Scholar] [CrossRef] [Green Version]
- Snyder, M.W.; Kircher, M.; Hill, A.J.; Daza, R.M.; Shendure, J. Cell-Free DNA Comprises an in Vivo Nucleosome Footprint That Informs Its Tissues-Of-Origin. Cell 2016, 164, 57–68. [Google Scholar] [CrossRef] [Green Version]
- Tug, S.; Helmig, S.; Deichmann, E.R.; Schmeier-Jürchott, A.; Wagner, E.; Zimmermann, T.; Radsak, M.; Giacca, M.; Simon, P. Exercise-Induced Increases in Cell Free DNA in Human Plasma Originate Predominantly from Cells of the Haematopoietic Lineage. Exerc. Immunol. Rev. 2015, 21, 164–173. [Google Scholar]
- Amaral, L.M.; Sandrim, V.C.; Kutcher, M.E.; Spradley, F.T.; Cavalli, R.C.; Tanus-Santos, J.E.; Palei, A.C. Circulating Total Cell-Free DNA Levels Are Increased in Hypertensive Disorders of Pregnancy and Associated with Prohypertensive Factors and Adverse Clinical Outcomes. Int. J. Mol. Sci. 2021, 22, 564. [Google Scholar] [CrossRef]
- Mondelo-Macía, P.; Castro-Santos, P.; Castillo-García, A.; Muinelo-Romay, L.; Diaz-Peña, R. Circulating Free DNA and Its Emerging Role in Autoimmune Diseases. J. Pers. Med. 2021, 11, 151. [Google Scholar] [CrossRef]
- Einbinder, Y.; Shnaider, A.; Ghanayem, K.; Basok, A.; Rogachev, B.; Lior, Y.; Haviv, Y.S.; Cohen-Hagai, K.; Nacasch, N.; Rozenberg, I.; et al. Elevated Circulating Cell-Free DNA in Hemodialysis-Treated Patients Is Associated with Increased Mortality. Am. J. Nephrol. 2020, 51, 852–860. [Google Scholar] [CrossRef]
- Haller, N.; Helmig, S.; Taenny, P.; Petry, J.; Schmidt, S.; Simon, P. Circulating, Cell-Free DNA as a Marker for Exercise Load in Intermittent Sports. PLoS ONE 2018, 13, e0191915. [Google Scholar] [CrossRef]
- Huang, R.S.P.; Xiao, J.; Pavlick, D.C.; Guo, C.; Yang, L.; Jin, D.X.; Fendler, B.; Severson, E.; Killian, J.K.; Hiemenz, M.; et al. Circulating Cell-Free DNA Yield and Circulating-Tumor DNA Quantity from Liquid Biopsies of 12 139 Cancer Patients. Clin. Chem. 2021, 67, 1554–1566. [Google Scholar] [CrossRef]
- Genovese, G.; Kähler, A.K.; Handsaker, R.E.; Lindberg, J.; Rose, S.A.; Bakhoum, S.F.; Chambert, K.; Mick, E.; Neale, B.M.; Fromer, M.; et al. Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood DNA Sequence. N. Engl. J. Med. 2014, 371, 2477–2487. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Kim, M.; Seong, M.W.; Kim, H.S.; Lee, Y.K.; Kang, H.J. Plasma vs. Serum in Circulating Tumor DNA Measurement: Characterization by DNA Fragment Sizing and Digital Droplet Polymerase Chain Reaction. Clin. Chem. Lab. Med. 2020, 58, 527–532. [Google Scholar] [CrossRef] [Green Version]
- Hindson, B.J.; Ness, K.D.; Masquelier, D.A.; Belgrader, P.; Heredia, N.J.; Makarewicz, A.J.; Bright, I.J.; Lucero, M.Y.; Hiddessen, A.L.; Legler, T.C.; et al. High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number. Anal. Chem. 2011, 83, 8604–8610. [Google Scholar] [CrossRef]
- van Ginkel, J.H.; Huibers, M.M.H.; van Es, R.J.J.; de Bree, R.; Willems, S.M. Droplet Digital PCR for Detection and Quantification of Circulating Tumor DNA in Plasma of Head and Neck Cancer Patients. BMC Cancer 2017, 17, 428. [Google Scholar] [CrossRef]
- Sun, X.; Tian, Y.; Wang, J.; Sun, Z.; Zhu, Y. Genome-Wide Analysis Reveals the Association between Alternative Splicing and DNA Methylation across Human Solid Tumors. BMC Med. Genom. 2020, 13, 4. [Google Scholar] [CrossRef] [PubMed]
- Wajed, S.A.; Laird, P.W.; DeMeester, T.R. DNA Methylation: An Alternative Pathway to Cancer. Ann. Surg. 2001, 234, 10–20. [Google Scholar] [CrossRef]
- Sathyanarayana, U.G.; Padar, A.; Huang, C.X.; Suzuki, M.; Shigematsu, H.; Bekele, B.N.; Gazdar, A.F. Aberrant Promoter Methylation and Silencing of Laminin-5-Encoding Genes in Breast Carcinoma. Clin. Cancer Res. 2003, 9, 6389–6394. [Google Scholar] [PubMed]
- Bianco, T.; Chenevix-Trench, G.; Walsh, D.C.A.; Cooper, J.E.; Dobrovic, A. Tumour-Specific Distribution of BRCA1 Promoter Region Methylation Supports a Pathogenetic Role in Breast and Ovarian Cancer. Carcinogenesis 2000, 21, 147–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klump, B.; Hsieh, C.J.; Holzmann, K.; Gregor, M.; Porschen, R. Hypermethylation of the CDKN2/P16 Promoter during Neoplastic Progression in Barrett’s Esophagus. Gastroenterology 1998, 115, 1381–1386. [Google Scholar] [CrossRef]
- Liu, M.C.; Oxnard, G.R.; Klein, E.A.; Swanton, C.; Seiden, M.V.; Liu, M.C.; Oxnard, G.R.; Klein, E.A.; Smith, D.; Richards, D.; et al. Sensitive and Specific Multi-Cancer Detection and Localization Using Methylation Signatures in Cell-Free DNA. Ann. Oncol. 2020, 31, 745–759. [Google Scholar] [CrossRef] [PubMed]
- Wallander, K.; Eisfeldt, J.; Lindblad, M.; Nilsson, D.; Billiau, K.; Foroughi, H.; Nordenskjöld, M.; Liedén, A.; Tham, E. Cell-Free Tumour DNA Analysis Detects Copy Number Alterations in Gastro-Oesophageal Cancer Patients. PLoS ONE 2021, 16, e0245488. [Google Scholar] [CrossRef] [PubMed]
- Varkalaite, G.; Forster, M.; Franke, A.; Kupcinskas, J.; Skieceviciene, J. Liquid Biopsy in Gastric Cancer: Analysis of Somatic Cancer Tissue Mutations in Plasma Cell-Free DNA for Predicting Disease State and Patient Survival. Clin. Transl. Gastroenterol. 2021, 12, e00403. [Google Scholar] [CrossRef]
- Nakamura, Y.; Taniguchi, H.; Ikeda, M.; Bando, H.; Kato, K.; Morizane, C.; Esaki, T.; Komatsu, Y.; Kawamoto, Y.; Takahashi, N.; et al. Clinical Utility of Circulating Tumor DNA Sequencing in Advanced Gastrointestinal Cancer: SCRUM-Japan GI-SCREEN and GOZILA Studies. Nat. Med. 2020, 26, 1859–1864. [Google Scholar] [CrossRef]
- Maron, S.B.; Chase, L.M.; Lomnicki, S.; Kochanny, S.; Moore, K.L.; Joshi, S.S.; Landron, S.; Johnson, J.; Kiedrowski, L.A.; Nagy, R.J.; et al. Circulating Tumor DNA Sequencing Analysis of Gastroesophageal Adenocarcinoma. Clin. Cancer Res. 2019, 25, 7098–7112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Office for National Statistics. Cancer Survival in England: Adult, Stage at Diagnosis and Childhood-Patients Followed up to 2018; UK Office for National Statistics: London, UK, 2019. [Google Scholar]
- Shimada, H.; Noie, T.; Ohashi, M.; Oba, K.; Takahashi, Y. Clinical Significance of Serum Tumor Markers for Gastric Cancer: A Systematic Review of Literature by the Task Force of the Japanese Gastric Cancer Association. Gastric Cancer 2014, 17, 26–33. [Google Scholar] [CrossRef]
- Matsuoka, T.; Yashiro, M. Biomarkers of Gastric Cancer: Current Topics and Future Perspective. World J. Gastroenterol. 2018, 24, 2818–2832. [Google Scholar] [CrossRef]
- Fitzgerald, R.C.; di Pietro, M.; O’Donovan, M.; Maroni, R.; Muldrew, B.; Debiram-Beecham, I.; Gehrung, M.; Offman, J.; Tripathi, M.; Smith, S.G.; et al. Cytosponge-Trefoil Factor 3 versus Usual Care to Identify Barrett’s Oesophagus in a Primary Care Setting: A Multicentre, Pragmatic, Randomised Controlled Trial. Lancet 2020, 396, 333–344. [Google Scholar] [CrossRef]
- Jung, Y.J.; Seo, H.S.; Kim, J.H.; Song, K.Y.; Park, C.H.; Lee, H.H. Advanced Diagnostic Technology of Volatile Organic Compounds Real Time Analysis Analysis from Exhaled Breath of Gastric Cancer Patients Using Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry. Front. Oncol. 2021, 11, 1368. [Google Scholar] [CrossRef]
- Kang, H.M.; Kim, G.H.; Jeon, H.K.; Kim, D.H.; Jeon, T.Y.; Park, D.Y.; Jeong, H.; Chun, W.J.; Mi-Hyun, K.; Park, J.; et al. Circulating Tumor Cells Detected by Lab-on-a-Disc: Role in Early Diagnosis of Gastric Cancer. PLoS ONE 2017, 12, e0180251. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.-T.; Chen, M.-H.; Fang, W.-L.; Hsieh, C.-C.; Lin, C.-H.; Jhang, F.-Y.; Yang, S.-H.; Lin, J.-K.; Chen, W.-S.; Jiang, J.-K.; et al. Clinical Relevance of Cell-Free DNA in Gastrointestinal Tract Malignancy. Oncotarget 2017, 8, 3009–3017. [Google Scholar] [CrossRef] [Green Version]
- Sai, S.; Ichikawa, D.; Tomita, H.; Ikoma, D.; Tani, N.; Ikoma, H.; Kikuchi, S.; Fujiwara, H.; Ueda, Y.; Otsuji, E. Quantification of Plasma Cell-Free DNA in Patients with Gastric Cancer. Anticancer Res. 2007, 27, 2747–2751. [Google Scholar] [PubMed]
- Grenda, A.; Wojas-Krawczyk, K.; Skoczylas, T.; Krawczyk, P.; Sierocińska-Sawa, J.; Wallner, G.; Milanowski, J. HER2 Gene Assessment in Liquid Biopsy of Gastric and Esophagogastric Junction Cancer Patients Qualified for Surgery. BMC Gastroenterol. 2020, 20, 382. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, B.; Chakrabarty, M.; Cohn, E.M.; Leon, S.A. Determination of Circulating DNA Levels in Patients with Benign or Malignant Gastrointestinal Disease. Cancer 1983, 51, 2116–2120. [Google Scholar] [CrossRef]
- Qian, C.; Ju, S.; Qi, J.; Zhao, J.; Shen, X.; Jing, R.; Yu, J.; Li, L.; Shi, Y.; Zhang, L.; et al. Alu–Based Cell-Free DNA: A Novel Biomarker for Screening of Gastric Cancer. Oncotarget 2016, 8, 54037–54045. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Gong, Y.; Lam, V.K.; Shi, Y.; Guan, Y.; Zhang, Y.; Ji, L.; Chen, Y.; Zhao, Y.; Qian, F.; et al. Deep Sequencing of Circulating Tumor DNA Detects Molecular Residual Disease and Predicts Recurrence in Gastric Cancer. Cell Death Dis. 2020, 11, 346. [Google Scholar] [CrossRef]
- Bettegowda, C.; Sausen, M.; Leary, R.J.; Kinde, I.; Wang, Y.; Agrawal, N.; Bartlett, B.R.; Wang, H.; Luber, B.; Alani, R.M.; et al. Detection of Circulating Tumor DNA in Early- and Late-Stage Human Malignancies. Sci. Transl. Med. 2014, 6, 224ra24. [Google Scholar] [CrossRef] [Green Version]
- Klein, E.A.; Richards, D.; Cohn, A.; Tummala, M.; Lapham, R.; Cosgrove, D.; Chung, G.; Clement, J.; Gao, J.; Hunkapiller, N.; et al. Clinical Validation of a Targeted Methylation-Based Multi-Cancer Early Detection Test Using an Independent Validation Set. Ann. Oncol. 2021, 32, 1167–1177. [Google Scholar] [CrossRef]
- Nadauld, L.D.; McDonnell, C.H.; Beer, T.M.; Liu, M.C.; Klein, E.A.; Hudnut, A.; Whittington, R.A.; Taylor, B.; Oxnard, G.R.; Lipson, J.; et al. The PATHFINDER Study: Assessment of the Implementation of an Investigational Multi-Cancer Early Detection Test into Clinical Practice. Cancers 2021, 13, 3501. [Google Scholar] [CrossRef] [PubMed]
- NHS Galleri Trial. Available online: https://www.nhs-galleri.org/ (accessed on 1 December 2021).
- Diehl, F.; Schmidt, K.; Choti, M.A.; Romans, K.; Goodman, S.; Li, M.; Thornton, K.; Agrawal, N.; Sokoll, L.; Szabo, S.A.; et al. Circulating Mutant DNA to Assess Tumor Dynamics. Nat. Med. 2008, 14, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Anandappa, G.; Starling, N.; Begum, R.; Bryant, A.; Sharma, S.; Renner, D.; Aresu, M.; Peckitt, C.; Sethi, H.; Feber, A.; et al. Minimal Residual Disease (MRD) Detection with Circulating Tumor DNA (CtDNA) from Personalized Assays in Stage II-III Colorectal Cancer Patients in a U.K. Multicenter Prospective Study (TRACC). J. Clin. Oncol. 2021, 39, 102. [Google Scholar] [CrossRef]
- Abbosh, C.; Birkbak, N.J.; Wilson, G.A.; Jamal-Hanjani, M.; Constantin, T.; Salari, R.; le Quesne, J.; Moore, D.A.; Veeriah, S.; Rosenthal, R.; et al. Phylogenetic CtDNA Analysis Depicts Early-Stage Lung Cancer Evolution. Nature 2017, 545, 446–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fedyanin, M.; Ignatova, E.; Boyarskikh, U.; Polyanskaya, E.; Kechin, A.; Osccorobin, I.; Shamovskaya, D.; Popova, A.; Trigolosov, A.; Nikulin, M.; et al. 137P Clinical utility of circulating tumour DNA (ctDNA) in resectable gastric cancer (GC). Ann. Oncol. 2020, 31, S1295. [Google Scholar] [CrossRef]
- Openshaw, M.R.; Ottolini, B.; Richards, C.J.; Guttery, D.; Shaw, J.A.; Thomas, A. Developing the Liquid Biopsy in Gastroesophageal Adenocarcinoma: Disease Monitoring and Detection of Minimal Residual Disease. Ann. Oncol. 2018, 29, 649–669. [Google Scholar] [CrossRef]
- Zhang, Q.; Shan, F.; Li, Z.; Gao, J.; Li, Y.; Shen, L.; Ji, J.; Lu, M. A Prospective Study on the Changes and Clinical Significance of Pre-Operative and Post-Operative Circulating Tumor Cells in Resectable Gastric Cancer. J. Transl. Med. 2018, 16, 171. [Google Scholar] [CrossRef]
- Kim, Y.W.; Kim, Y.H.; Song, Y.; Kim, H.S.; Sim, H.W.; Poojan, S.; Eom, B.W.; Kook, M.C.; Joo, J.; Hong, K.M. Monitoring Circulating Tumor DNA by Analyzing Personalized Cancer-Specific Rearrangements to Detect Recurrence in Gastric Cancer. Exp. Mol. Med. 2019, 51, 1–10. [Google Scholar] [CrossRef]
- Leal, A.; van Grieken, N.C.T.; Palsgrove, D.N.; Phallen, J.; Medina, J.E.; Hruban, C.; Broeckaert, M.A.M.; Anagnostou, V.; Adleff, V.; Bruhm, D.C.; et al. White Blood Cell and Cell-Free DNA Analyses for Detection of Residual Disease in Gastric Cancer. Nat. Commun. 2020, 11, 525. [Google Scholar] [CrossRef] [Green Version]
- Ococks, E.; Frankell, A.M.; Masque Soler, N.; Grehan, N.; Northrop, A.; Coles, H.; Redmond, A.M.; Devonshire, G.; Weaver, J.M.J.; Hughes, C.; et al. Longitudinal Tracking of 97 Esophageal Adenocarcinomas Using Liquid Biopsy Sampling. Ann. Oncol. 2021, 32, 522–532. [Google Scholar] [CrossRef]
- Cheng, M.L.; Lau, C.J.; Milan, M.S.D.; Supplee, J.G.; Riess, J.W.; Bradbury, P.A.; Jänne, P.A.; Oxnard, G.R.; Paweletz, C.P. Plasma CtDNA Response Is an Early Marker of Treatment Effect in Advanced NSCLC. JCO Precis. Oncol. 2021, 5, 393–402. [Google Scholar] [CrossRef]
- Tie, J.; Kinde, I.; Wang, Y.; Wong, H.L.; Roebert, J.; Christie, M.; Tacey, M.; Wong, R.; Singh, M.; Karapetis, C.S.; et al. Circulating Tumor DNA as an Early Marker of Therapeutic Response in Patients with Metastatic Colorectal Cancer. Ann. Oncol. 2015, 26, 1715–1722. [Google Scholar] [CrossRef] [PubMed]
- Ricciuti, B.; Jones, G.; Severgnini, M.; Alessi, J.v.; Recondo, G.; Lawrence, M.; Forshew, T.; Lydon, C.; Nishino, M.; Cheng, M.; et al. Early Plasma Circulating Tumor DNA (CtDNA) Changes Predict Response to First-Line Pembrolizumab-Based Therapy in Non-Small Cell Lung Cancer (NSCLC). J. Immunother. Cancer 2021, 9, e001504. [Google Scholar] [CrossRef] [PubMed]
- Davidson, M.; Barber, L.J.; Woolston, A.; Cafferkey, C.; Mansukhani, S.; Griffiths, B.; Moorcraft, S.-Y.; Rana, I.; Begum, R.; Assiotis, I.; et al. Detecting and Tracking Circulating Tumour DNA Copy Number Profiles during First Line Chemotherapy in Oesophagogastric Adenocarcinoma. Cancers 2019, 11, 736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Zhang, C.; Zhang, M.; Li, B.; Niu, Y.; Chen, L.; Yang, J.; Lu, S.; Gao, J.; Shen, L. Chromosomal Instability of Circulating Tumor DNA Reflect Therapeutic Responses in Advanced Gastric Cancer. Cell Death Dis. 2019, 10, 697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Y.; Chen, D.-L.; Wang, F.; Yang, C.-P.; Chen, X.-X.; You, J.-Q.; Huang, J.-S.; Shao, Y.; Zhu, D.-Q.; Ouyang, Y.-M.; et al. The Predicting Role of Circulating Tumor DNA Landscape in Gastric Cancer Patients Treated with Immune Checkpoint Inhibitors. Mol. Cancer 2020, 19, 154. [Google Scholar] [CrossRef]
- Kim, S.T.; Cristescu, R.; Bass, A.J.; Kim, K.-M.; Odegaard, J.I.; Kim, K.; Liu, X.Q.; Sher, X.; Jung, H.; Lee, M.; et al. Comprehensive Molecular Characterization of Clinical Responses to PD-1 Inhibition in Metastatic Gastric Cancer. Nat. Med. 2018, 24, 1449–1458. [Google Scholar] [CrossRef]
- Yarchoan, M.; Hopkins, A.; Jaffee, E.M. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N. Engl. J. Med. 2017, 377, 2500–2501. [Google Scholar] [CrossRef]
- Marabelle, A.; Fakih, M.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakagawa, K.; Chung, H.C.; Kindler, H.L.; Lopez-Martin, J.A.; Miller, W.H., Jr.; et al. Association of Tumour Mutational Burden with Outcomes in Patients with Advanced Solid Tumours Treated with Pembrolizumab: Prospective Biomarker Analysis of the Multicohort, Open-Label, Phase 2 KEYNOTE-158 Study. Lancet Oncol. 2020, 21, 1353–1365. [Google Scholar] [CrossRef]
- Qiu, P.; Poehlein, C.H.; Marton, M.J.; Laterza, O.F.; Levitan, D. Measuring Tumor Mutational Burden (TMB) in Plasma from MCRPC Patients Using Two Commercial NGS Assays. Sci. Rep. 2019, 9, 114. [Google Scholar] [CrossRef] [Green Version]
- Araujo, D.V.; Wang, A.; Torti, D.; Huang, J.; Leon, A.; Marsh, K.; McCarthy, A.; Berman, H.; Spreafico, A.; Hansen, A.R.; et al. 1257P-Blood-Based TMB (BTMB) Correlates with Tissue-Based TMB (TTMB) in a Multi-Cancer Phase I IO Cohort. Ann. Oncol. 2019, 30, v512. [Google Scholar] [CrossRef]
- Gandara, D.R.; Paul, S.M.; Kowanetz, M.; Schleifman, E.; Zou, W.; Li, Y.; Rittmeyer, A.; Fehrenbacher, L.; Otto, G.; Malboeuf, C.; et al. Blood-Based Tumor Mutational Burden as a Predictor of Clinical Benefit in Non-Small-Cell Lung Cancer Patients Treated with Atezolizumab. Nat. Med. 2018, 24, 1441–1448. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Liu, Y.; Zhang, Z.; Zhang, X.; Gong, J.; Qi, C.; Li, J.; Shen, L.; Peng, Z. Positive Status of Epstein-Barr Virus as a Biomarker for Gastric Cancer Immunotherapy: A Prospective Observational Study. J. Immunother. 2020, 43, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Qiu, M.-Z.; He, C.-Y.; Lu, S.-X.; Guan, W.-L.; Wang, F.; Wang, X.-J.; Jin, Y.; Wang, F.-H.; Li, Y.-H.; Shao, J.-Y.; et al. Prospective Observation: Clinical Utility of Plasma Epstein–Barr Virus DNA Load in EBV-Associated Gastric Carcinoma Patients. Int. J. Cancer 2020, 146, 272–280. [Google Scholar] [CrossRef]
- Shitara, K.; Bang, Y.; Iwasa, S.; Sugimoto, N.; Ryu, M.; Sakai, D.; Chung, H.; Omuro, Y.; Kawakami, H.; Yabusaki, H.; et al. Exploratory Biomarker Analysis of Trastuzumab Deruxtecan in DESTINY-Gastric01, A Randomized, Phase 2, Multicenter, Open-Label Study in Patients with HER2-Positive or -Low Advanced Gastric or Gastroesophageal Junction Adenocarcinoma. In Proceedings of the ESMO World Congress on Gastrointestinal Cancer, virtual, 30 June 2021. [Google Scholar]
- van Cutsem, E.; di Bartolomeo, M.; Smyth, E.; Chau, I.; Park, H.; Siena, S.; Lonardi, S.; Wainberg, Z.A.; Ajani, J.A.; Chao, J.; et al. LBA55 Primary Analysis of a Phase II Single-Arm Trial of Trastuzumab Deruxtecan (T-DXd) in Western Patients (Pts) with HER2-Positive (HER2+) Unresectable or Metastatic Gastric or Gastroesophageal Junction (GEJ) Cancer Who Progressed on or after a Trastuzumab-Containing Regimen. Ann. Oncol. 2021, 32, S1332. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Wang, Y.; Wu, D.; Lin, E.; Xia, Q. Intratumoral and Intertumoral Heterogeneity of HER2 Immunohistochemical Expression in Gastric Cancer. Pathol. Res. Pract. 2020, 216, 153229. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, B.; Liu, Z.; Gong, J.; Shao, L.; Ren, J.; Niu, Y.; Bo, S.; Li, Z.; Lai, Y.; et al. HER2 Copy Number of Circulating Tumour DNA Functions as a Biomarker to Predict and Monitor Trastuzumab Efficacy in Advanced Gastric Cancer. Eur. J. Cancer 2018, 88, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-S.; Liu, Z.-X.; Lu, Y.-X.; Bao, H.; Wu, X.; Zeng, Z.-L.; Liu, Z.; Zhao, Q.; He, C.-Y.; Lu, J.-H.; et al. Liquid Biopsies to Track Trastuzumab Resistance in Metastatic HER2-Positive Gastric Cancer. Gut 2019, 68, 1152–1161. [Google Scholar] [CrossRef]
- Makiyama, A.; Sagara, K.; Kawada, J.; Kashiwada, T.; Hosokawa, A.; Horie, Y.; Satake, H.; Yamamoto, Y.; Tanioka, H.; Shinozaki, K.; et al. A Randomized Phase II Study of Weekly Paclitaxel ± Trastuzumab in Patients with HER2-Positive Advanced Gastric or Gastro-Esophageal Junction Cancer Refractory to Trastuzumab Combined with Fluoropyrimidine and Platinum: WJOG7112G (T-ACT). J. Clin. Oncol. 2018, 36, 4011. [Google Scholar] [CrossRef]
- Deng, N.; Goh, L.K.; Wang, H.; Das, K.; Tao, J.; Tan, I.B.; Zhang, S.; Lee, M.; Wu, J.; Lim, K.H.; et al. A Comprehensive Survey of Genomic Alterations in Gastric Cancer Reveals Systematic Patterns of Molecular Exclusivity and Co-Occurrence among Distinct Therapeutic Targets. Gut 2012, 61, 673–684. [Google Scholar] [CrossRef]
- Pearson, A.; Smyth, E.; Babina, I.S.; Herrera-Abreu, M.T.; Tarazona, N.; Peckitt, C.; Kilgour, E.; Smith, N.R.; Geh, C.; Rooney, C.; et al. High-Level Clonal FGFR Amplification and Response to FGFR Inhibition in a Translational Clinical Trial. Cancer Discov. 2016, 6, 838–851. [Google Scholar] [CrossRef] [Green Version]
- Wainberg, Z.A.; Enzinger, P.C.; Kang, Y.-K.; Yamaguchi, K.; Qin, S.; Lee, K.-W.; Oh, S.C.; Li, J.; Turk, H.M.; Teixeira, A.C.; et al. Randomized Double-Blind Placebo-Controlled Phase 2 Study of Bemarituzumab Combined with Modified FOLFOX6 (MFOLFOX6) in First-Line (1L) Treatment of Advanced Gastric/Gastroesophageal Junction Adenocarcinoma (FIGHT). J. Clin. Oncol. 2021, 39, 160. [Google Scholar] [CrossRef]
- Kim, M.A.; Lee, H.S.; Lee, H.E.; Jeon, Y.K.; Yang, H.K.; Kim, W.H. EGFR in Gastric Carcinomas: Prognostic Significance of Protein Overexpression and High Gene Copy Number. Histopathology 2008, 52, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Waddell, T.; Chau, I.; Cunningham, D.; Gonzalez, D.; Okines, A.F.C.; Okines, C.; Wotherspoon, A.; Saffery, C.; Middleton, G.; Wadsley, J.; et al. Epirubicin, Oxaliplatin, and Capecitabine with or without Panitumumab for Patients with Previously Untreated Advanced Oesophagogastric Cancer (REAL3): A Randomised, Open-Label Phase 3 Trial. Lancet Oncol. 2013, 14, 481–489. [Google Scholar] [CrossRef] [Green Version]
- Smyth, E.C.; Vlachogiannis, G.; Hedayat, S.; Harbery, A.; Hulkki-Wilson, S.; Salati, M.; Kouvelakis, K.; Fernandez-Mateos, J.; Cresswell, G.D.; Fontana, E.; et al. EGFR Amplification and Outcome in a Randomised Phase III Trial of Chemotherapy Alone or Chemotherapy plus Panitumumab for Advanced Gastro-Oesophageal Cancers. Gut 2021, 70, 1632–1641. [Google Scholar] [CrossRef]
- Dutton, S.J.; Ferry, D.R.; Blazeby, J.M.; Abbas, H.; Dahle-Smith, A.; Mansoor, W.; Thompson, J.; Harrison, M.; Chatterjee, A.; Falk, S.; et al. Gefitinib for Oesophageal Cancer Progressing after Chemotherapy (COG): A Phase 3, Multicentre, Double-Blind, Placebo-Controlled Randomised Trial. Lancet Oncol. 2014, 15, 894–904. [Google Scholar] [CrossRef]
- Petty, R.D.; Dahle-Smith, A.; Stevenson, D.A.J.; Osborne, A.; Massie, D.; Clark, C.; Murray, G.I.; Dutton, S.J.; Roberts, C.; Chong, I.Y.; et al. Gefitinib and EGFR Gene Copy Number Aberrations in Esophageal Cancer. J. Clin. Oncol. 2017, 35, 2279–2287. [Google Scholar] [CrossRef] [Green Version]
- Petty, R.D.; Dahle-Smith, A.; Miedzybrodzka, Z.; Dutton, S.J.; Murray, G.I.; Stevenson, D.; Massie, D.; Osbourne, A.; Clark, C.; Mansoor, W.; et al. Epidermal Growth Factor Receptor Copy Number Gain (EGFR CNG) and Response to Gefitinib in Esophageal Cancer (EC): Results of a Biomarker Analysis of a Phase III Trial of Gefitinib versus Placebo (TRANS-COG). J. Clin. Oncol. 2014, 32, 4016. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.T.; Kim, K.; Lee, H.; Kozarewa, I.; Mortimer, P.G.S.; Odegaard, J.I.; Harrington, E.A.; Lee, J.; Lee, T.; et al. Tumor Genomic Profiling Guides Patients with Metastatic Gastric Cancer to Targeted Treatment: The VIKTORY Umbrella Trial. Cancer Discov. 2019, 9, 1388–1405. [Google Scholar] [CrossRef] [Green Version]
- Beer, T.M.; McDonnell, C.H.; Nadauld, L.; Liu, M.C.; Klein, E.A.; Reid, R.L.; Chung, K.; Lopatin, M.; Fung, E.T.; Schrag, D. A Prespecified Interim Analysis of the PATHFINDER Study: Performance of a Multicancer Early Detection Test in Support of Clinical Implementation. J. Clin. Oncol. 2021, 39, 3070. [Google Scholar] [CrossRef]
- SYMPLIFY Clinical Trial. Available online: https://www.cancer.ox.ac.uk/research/projects/symplify (accessed on 1 December 2021).
- Kelly, R.J.; Ajani, J.A.; Kuzdzal, J.; Zander, T.; van Cutsem, E.; Piessen, G.; Mendez, G.; Feliciano, J.; Motoyama, S.; Lièvre, A.; et al. Adjuvant Nivolumab in Resected Esophageal or Gastroesophageal Junction Cancer. N. Engl. J. Med. 2021, 384, 1191–1203. [Google Scholar] [CrossRef]
- Sargent, D.J.; Marsoni, S.; Monges, G.; Thibodeau, S.N.; Labianca, R.; Hamilton, S.R.; French, A.J.; Kabat, B.; Foster, N.R.; Torri, V.; et al. Defective Mismatch Repair as a Predictive Marker for Lack of Efficacy of Fluorouracil-Based Adjuvant Therapy in Colon Cancer. J. Clin. Oncol. 2010, 28, 3219–3226. [Google Scholar] [CrossRef] [PubMed]
- Pietrantonio, F.; Miceli, R.; Raimondi, A.; Kim, Y.W.; Kang, W.K.; Langley, R.E.; Choi, Y.Y.; Kim, K.M.; Nankivell, M.G.; Morano, F.; et al. Individual Patient Data Meta-Analysis of the Value of Microsatellite Instability as a Biomarker in Gastric Cancer. J. Clin. Oncol. 2019, 37, 3392–3400. [Google Scholar] [CrossRef] [PubMed]
- Dasari, A.; Morris, V.K.; Allegra, C.J.; Atreya, C.; Benson, A.B.; Boland, P.; Chung, K.; Copur, M.S.; Corcoran, R.B.; Deming, D.A.; et al. CtDNA Applications and Integration in Colorectal Cancer: An NCI Colon and Rectal–Anal Task Forces Whitepaper. Nat. Rev. Clin. Oncol. 2020, 17, 757–770. [Google Scholar] [CrossRef] [PubMed]
- Crocetto, F.; Barone, B.; Ferro, M.; Busetto, G.M.; la Civita, E.; Buonerba, C.; di Lorenzo, G.; Terracciano, D.; Schalken, J.A. Liquid Biopsy in Bladder Cancer: State of the Art and Future Perspectives. Crit. Rev. Oncol. Hematol. 2022, 170, 103577. [Google Scholar] [CrossRef]
- Huang, Z.B.; Zhang, H.T.; Yu, B.; Yu, D.H. Cell free DNA as a Liquid Biopsy for Early Detection of Gastric Cancer (Review). Oncol. Lett. 2021, 21, 3. [Google Scholar] [CrossRef] [PubMed]
- Deveson, I.W.; Gong, B.; Lai, K.; LoCoco, J.S.; Richmond, T.A.; Schageman, J.; Zhang, Z.; Novoradovskaya, N.; Willey, J.C.; Jones, W.; et al. Evaluating the Analytical Validity of Circulating Tumor DNA Sequencing Assays for Precision Oncology. Nat. Biotechnol. 2021, 39, 1115–1128. [Google Scholar] [CrossRef] [PubMed]
Tissue Biopsy | Liquid Biopsy |
---|---|
Requires invasive procedure | Minimally invasive |
Unable to capture tumour heterogeneity | Overcomes challenges of tumour heterogeneity |
Unable to assess temporal genomic changes | Real time genomic monitoring and cancer evolution monitoring |
Very low risk of false positives (CHIP) | Risk of false positives (CHIP) |
Risk of non-diagnostic sample | Variable detection rate (dependant on stage, site of metastases, type of cancer) |
Technical consideration for tissue processing required (storage of tissue, cutting, histopathological review) | Pre-analytical variable requirements (plasma storage, isolation, and processing) |
Larger DNA collection and input for broad sequencing panels (including WES/WGS) | Variable DNA collection (possible limitations for WES/WGS) |
Technology | Example | Molecular Targets | Detection Limit | Limitations | Benefits |
---|---|---|---|---|---|
Allele-Specific PCR Assay | Roche/Cobas | Known mutations | <0.01% | Only semi-quantitative; less sensitive compared with ddPCR | Highly specific with broad coverage |
Emulsion PCR Assays | ddPCR BEAMing | Known mutations | <0.01% | Less specific. Unable to detect CNV/fusions | Fully quantitative |
Targeted NGS Assays | |||||
Amplicon-based | TAM-Seq | Hotspot SNV and CNV | <0.1% | Less sensitive and limited variant analysis compared to capture-based assay | Fast and cost effective |
Capture-based | Guardant360© | SNV, CNV, fusions | <0.1% | Lower specificity compared to amplicon-based assays, complex, and slower. | Higher sensitivity compared with amplicon sequencing |
Non-targeted NGS Assays | Whole-genome sequencing Whole-exome sequencing | All variants | <1% | Reduced sequencing depth compared with NGS, costly | Genome-wide analysis |
Clinical Trials.Gov Identifier/Location | Study Design/ Patients | Population | Aim | Detection Technique | ctDNA Sampling Timepoints | Primary Outcome Measure | End Date |
---|---|---|---|---|---|---|---|
Screening | |||||||
Prospective observational | |||||||
NCT04947995 China | Case control n = 450 | Patients undergoing OGD-cancer, precancerous, or healthy control | To develop and validate a blood-based multi-omics assay and computational model for early detection of gastric cancer | NGS | At OGD | Sensitivity and specificity of blood-based multi-omics assay for early detection of gastric cancer with comparison to OGD and/or histological diagnosis | June 2023 |
NCT04665687 South Korea | Cohort n = 1730 | Early GC, gastric adenoma | To identify whether tumour molecular profiling based on tissue or blood could be used for prediction of prognosis and diagnosis of early GC and precancerous gastric adenoma | NGS | At intervals up to 2 years | To identify biomarkers for differential diagnosis between early gastric cancer and precancerous adenoma including liquid biopsy | September 2022 |
NCT04511559 China | Cohort n = 540 | Patients with chronic gastritis, moderate to severe atrophy/metaplasia, or gastric cancer | To describe the profile of ctDNA methylation in gastric cancer To demonstrate correlation between ctDNA methylation status and prognosis | DNA methylation | At OGD | ctDNA methylation status and correlation with early diagnosis and prognostic evaluation | May 2025 |
Early-stage disease | |||||||
Prospective observational | |||||||
NCT05027347 Vietnam | Cohort n = 200 | I-IIIA GC and healthy control | To develop a protocol for detection of ctDNA in plasma of patients with early-stage GC | NGS | Not specified | Sensitivity and specificity of mutation-based assay for detecting early-stage GC | September 2023 |
NCT05029869 Vietnam | Cohort n = 100 | Early-stage GC undergoing radical gastrectomy | To detect ctDNA as a biomarker to monitor MRD after radical gastrectomy | NGS | 14 days pre- and at scheduled intervals post-gastrectomy | Sensitivity and specificity of MRD detection using ctDNA | October 2025 |
NCT04943406 Italy | Cohort n = 150 | cT2 and/or N+ gastric or GOJ Siewert type II -III adenocarcinoma | To determine the prognostic role of liquid biopsy for detection of ctDNA in patients with locally advanced GC | Not specified | Pre- and post-operation, last cycle of adjuvant chemotherapy, or 3 months post-operation if there is no adjuvant chemotherapy recurrence | Prognostic impact of ctDNA positivity at recurrence or 3 year follow-up | May 2025 |
Interventional | |||||||
NCT04510285 US | Phase II–pilot n = 24 | Patients that had HER2-positive oesophageal, GOJ, and gastric adenocarcinoma and completed standard-of-care surgery (R0) plus neoadjuvant or adjuvant therapy who are ctDNA-positive within 8 months of competing treatment | To investigate whether trastuzumab plus pembrolizumab will improve clearance of tumour DNA after surgery | Not specified | Post-operation and then at scheduled intervals | Rate of ctDNA clearance at 6 months | August 2022 |
NCT03957564 China | Phase II n = 40 | >T1 and N+ resectable gastric/GOJ adenocarcinoma undergoing neoadjuvant chemotherapy and surgery | To explore the clinical value of dynamic detection of CTCs, ctDNA, and cfDNA To explore the relationship between detection and prognosis | Not specified | Before and during neoadjuvant chemotherapy, 10 days after operation | Number and types of CTCs, mutation rate of ctDNA, and concentration of cfDNA pre- and post-neoadjuvant chemotherapy and surgery The relationship between tumour response and changes in numbers of CTCs and mutation of ctDNA pre- and post-neoadjuvant chemotherapy and surgery | May 2024 |
NCT04817826 Italy | Phase II, multi-cohort n = 31 | MSI-H gastric/GOJ (Siewert II, III) cancer eligible for radical surgery | To evaluate the activity and safety of combination tremelimumab and durvalumab as neoadjuvant (cohort 1) and definitive (cohort 2) treatment for MSI-high gastric/GOJ cancer | Not specified | Pre- and post-operation and at intervals up to year 5 | Cohort 1: pathological complete response (ypT0N0) and negative ctDNA status | April 2025 |
Advanced disease | |||||||
Prospective observational | |||||||
NCT04520295 China | Cohort n = 100 | HER2-positive advanced GC HER2-negative advanced GC control | To identify molecular panel correlating with efficacy towards HER2-postitive GC To observe the molecular evolution of HER2-positive GC during treatment by ctDNA detection | NGS | Baseline, first surveillance after treatment, progression | Change in baseline of molecular biomarkers at time of best overall response | May 2025 |
Early and late-stage disease | |||||||
Prospective observational | |||||||
NCT04576858 Denmark | Cohort n = 1950 | Cohorts 1 and 2: Perioperative and trimodality treatment Cohort 3: Definitive CRT Cohort 4: Palliative chemotherapy Cohort 5: Palliative treatment without the use of chemotherapy | Clinical utility of plasma of ctDNA in OG cancer | Not specified | Intermittent intervals over a two-year period | Time until recurrence | July 2025 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mencel, J.; Slater, S.; Cartwright, E.; Starling, N. The Role of ctDNA in Gastric Cancer. Cancers 2022, 14, 5105. https://doi.org/10.3390/cancers14205105
Mencel J, Slater S, Cartwright E, Starling N. The Role of ctDNA in Gastric Cancer. Cancers. 2022; 14(20):5105. https://doi.org/10.3390/cancers14205105
Chicago/Turabian StyleMencel, Justin, Susanna Slater, Elizabeth Cartwright, and Naureen Starling. 2022. "The Role of ctDNA in Gastric Cancer" Cancers 14, no. 20: 5105. https://doi.org/10.3390/cancers14205105
APA StyleMencel, J., Slater, S., Cartwright, E., & Starling, N. (2022). The Role of ctDNA in Gastric Cancer. Cancers, 14(20), 5105. https://doi.org/10.3390/cancers14205105